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The single-parameter “Bell distribution” for discrete data allows for over-dispersion 

in the data. The maximum likelihood estimator for its parameter is downward-biased 

in finite samples. We consider various methods for reducing this bias. A simulation 

study shows that these are effective and also lead to a small improvement in the 

mean squared error of the estimator. The Cox-Snell correction is the recommended. 

choice among the options that are considered. 

 

Keywords: Discrete data, over-dispersion, maximum likelihood estimation 

and bias reduction.  

 

  

1. Introduction 

There are many statistical distributions that can be used to model integer-valued 

“count” data. The most commonly encountered one is the Poisson distribution, which 

has both advantages and disadvantages in practice. While the distribution enjoys the 

numerical simplicity of a single parameter, it is limited by the fact that this parameter 

is both the mean and variance. This renders the Poisson distribution inappropriate 

when the data are either over- or under-dispersed.  Alternatives, such as the negative 

binomial distribution can deal with over-dispersion, but this is achieved at the “cost” 

of the probability mass function (p.m.f.) involving one or more additional 

parameters.  

Recently, Castellares et al. (2018) introduced a new single-parameter discrete 

probability distribution based on the Bell numbers (Bell, 1934a, 1934b), which 

exhibits over-dispersion for all values of its parameter.  Several authors have 

explored the use of this “Bell distribution”, and its zero-inflated counterpart, in the 

context of regression analysis. For example, see Castellares et al. (2018), Lemonte et 

al. (2020), Abduljabbar and Algamal (2022), Abduljabbar et al. (2022), Shewa and 

Ugwowo (2022), and Ertan et al. (2023). While this application of the distribution is 
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not our primary concern here, we present some results that relate to it. Our primary 

focus is on the Bell distribution itself. 

The maximum likelihood (ML) estimator of the Bell parameter is readily obtained, 

although it cannot be expressed in a simple closed form. The ML estimator is also 

the method of moments estimator in this case. The sampling properties of this 

estimator in finite samples have not been examined systematically to date, and this is 

the objective of this paper. In the next section we derive the second-order bias of the 

ML estimator in question, and consider various bias-reduction techniques. We also 

show that the ML estimator of the distribution’s mean is unbiased for all sample 

sizes, with implications for regression modelling. The results of a simulation 

experiment, described in section 3, illustrate the effectiveness of the various bias-

correction methods under consideration. 

 

2. Estimation issues 

2.1 Maximum likelihood estimation 

The p.m.f. for the Bell distribution is 

𝑝(𝑦) = 𝑃𝑟. [𝑌 = 𝑦] = 𝜃𝑦𝐵𝑦𝑒𝑥𝑝(−𝑒
𝜃 + 1)/𝑦!   ;   𝑦 = 0, 1, 2, … ..   ;  𝜃 > 0 (1) 

where the Bell numbers are given by 

𝐵𝑗 = ∑ 𝑘𝑗∞
𝑘=0 /𝑗! .         (2) 

The latter satisfy the recurrence relationship: 

𝐵𝑛+1 = ∑ (
𝑛
𝑘
)𝐵𝑘

𝑛
𝑘=0    ;   𝑛 = 1, 2, …… ..      (3) 

with  𝐵0 = 𝐵1 = 1. The Bell p.m.f. is uni-modal, with 𝐸[𝑌] = 𝜃𝑒𝜃 and  𝑉𝑎𝑟. [𝑌] =
𝜃(1 + 𝜃)𝑒𝜃 = (1 + 𝜃)𝐸[𝑌], implying that the distribution allows for a particular 

form of over-dispersion. Figure 1 illustrates the p.m.f. for various values of 𝜃. 

 

Figure 1. Bell Distribution p.m.f. 
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The Bell distribution is a member of the one-parameter exponential family. Given a 

sample of n independent observations, the associated log-likelihood function is 

𝑙(𝜃) = 𝑛�̅� log(𝜃) − 𝑛𝑒𝜃 + 𝑐,        (4) 

where c is a constant, and �̅� =
1

𝑛
∑ 𝑦𝑖
𝑛
𝑖=1 . 

Noting that  

𝜕𝑙

𝜕𝜃
= (𝑛�̅�/𝜃) − 𝑛𝑒𝜃,         (5) 

the ML estimator of θ is obtained as �̃� = 𝑊0(�̅�), where 𝑊0(. ) is the principal branch 

of the Lambert W-function, which does not have a closed-form expression. It is 

simply the inverse function of 𝑓(𝑊) = 𝑊𝑒𝑊, and is computed numerically. For 

further details, see Corless et al. (1996), for example. 

Equating 𝐸[𝑌] and �̅� and solving for θ, we see immediately that  �̃� is also the method 

of moments estimator of θ. Although �̃� is a consistent estimator of θ, it is biased, as 

we see below. 

2.2 Bias reduction 

First, consider the “corrective” approach to bias reduction developed by Cox and 

Snell (1968). Adopting the notation of Cordeiro and Klein (1994), to obtain an 

analytic expression for the bias of  �̃� to to O(n -1) we use the cumulants of the log-

likelihood function. The second and third derivatives of the log-likelihood function 

are 

𝜕2𝑙

𝜕𝜃2
= −(

𝑛�̅�

𝜃2
) − 𝑛𝑒𝜃         (6) 

𝜕3𝑙

𝜕𝜃3
= (2𝑛�̅�/𝜃3) − 𝑛𝑒𝜃 ,       (7) 

and their expected values are 

𝜅11 = 𝐸 [
𝜕2𝑙

𝜕𝜃2
] = −𝑛(1 + 𝜃)𝑒𝜃/𝜃       (8) 

𝜅111 = 𝐸 [
𝜕3𝑙

𝜕𝜃3
] = 𝑛𝑒𝜃(2 − 𝜃2/𝜃2.       (9) 

Although the ML estimator does not have a closed form expression, its bias (to O(n -

1)) can be obtained in terms of the following quantities: 

𝜅11
(1)

=
𝜕

𝜕𝜃
(𝜅11) = −𝑛𝑒𝜃(𝜃2 + 𝜃 + 1)/𝜃2 

and 

𝑎11 = 𝜅11
(1)

−
𝜅111

2
= −𝑛𝑒𝜃(𝜃 + 2)/(2𝜃). 

The results of Cordeiro and Klein (1994) imply that the bias of �̃� is 
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𝐵(�̃�) =
𝑎11

(𝜅11)2
= −

𝜃(𝜃+2)

[2𝑛𝑒𝜃(1+𝜃)2]
+ 𝑂(𝑛−2)   ,             (10) 

which is negative for all 𝜃, and is plotted (for 𝑛 = 10) in Figure 2. Equating the 

derivative of (10) with respect to θ to zero, and using the ‘uniroot’ function in R to 

solve the equation,  

𝜃3 + 3𝜃2 + 2𝜃 − 2 = 0 ,                 (11) 

we can locate the minimum of the bias function at 𝜃 = 0.5218.  

 

Figure 2. First-Order Bias of 𝜃 

 

 

Using the expression in (10), the traditional Cox-Snell “corrective” method of 

obtaining an estimator of 𝜃 that is unbiased to O(n-2), is to construct the estimator, 

𝜃 = �̃� − �̃�(�̃�) ,                  (12) 

where �̃�(�̃�) is the bias expression in (10), evaluated at the original ML estimator, �̃�. 

There are numerous applications of this methodology in the literature. For example, 

see the extensive references in Cordeiro and Cribari-Neto (2014). 

Although the absolute value of the bias in Figure 2 is very small (and indeed, 

negligible for 𝜃 > 5), the shape of the bias function warrants further consideration. 

As is noted by MacKinnon and Smith (1998) a corrective estimator of the form given 

in (12) is appropriate if the bias function is “flat” with respect to the parameter being 
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estimated, and this is clearly not the case here. Godwin and Giles (2019) suggest a 

modified corrective estimator, in which the bias is evaluated (implicitly) using the 

bias-corrected estimator rather than the (biased) ML estimator. That is, they propose 

the estimator, 𝜃∗, that is the solution to the expression. 

𝜃∗ = �̃� − 𝐵∗(�̃�) ,                 (13) 

where 𝐵∗(�̃�) is the bias expression in (10), evaluated at 𝜃∗. Godwin and Giles 

provide several examples that justify this modified corrective approach. 

In the case of the Bell distribution, this involves solving  

  𝜃∗ − �̃� −
𝜃∗(𝜃∗+2)

[2𝑛𝑒𝜃
∗(1+𝜃∗)2]

= 0                  (14) 

 for 𝜃∗, which is easily done numerically. 

An alternative to using a corrective procedure is to use the “preventive” approach to 

bias reduction proposed by Firth (1993) for ML estimators This involves adjusting 

the score function, and instead obtaining the solution to the equation. 

𝜕𝑙

𝜕𝜃
+

𝑎11

𝜅11
= 0.                              (15) 

In the case of the Bell distribution, we need to find the estimator,  �̆�, that solves 

(𝑛�̅�−𝑛𝜃𝑒𝜃)

𝜃
−

𝜃(𝜃+2)𝑒𝜃

[2(�̅�+𝜃2𝑒𝜃)]
= 0    .                (16) 

Again, this is easily achieved numerically. 

2.3 Estimation of the mean 

If interest centers on the mean of the distribution, rather than on the parameter 𝜃 

itself, then it is easily established that the associated ML estimator is just the sample 

mean, which is unbiased. To see this, we invoke the invariance property of ML 

estimators, and use the result that 𝜇 = 𝐸[𝑌] = 𝜃𝑒𝜃.  

So, the ML estimator of 𝜇 is  

𝜇 = �̃�𝑒�̃� = 𝑊0(�̅�)exp(𝑊0(�̅�)).                 (17) 

That is, 𝜇 = 𝑥𝑒𝑥, which implies that 𝑥 = 𝑊0(𝜇). However, from (17), 𝑥 = 𝑊0(�̅�), 
and so 𝜇 = �̅�. 

This result can also be obtained by re-parameterizing the p.m.f. (and hence the log-

likelihood function) in terms of  𝜇, yielding 

𝑙(𝜇) = 𝑛[1 − exp(𝑊0(𝜇)] + 𝑛�̅� log(𝑊0(𝜇)) + 𝑐′,              (18) 

where  𝑐′ is a constant. Noting that 
𝜕𝑊0(𝜇)

𝜕𝜇
= 𝑊0(𝜇)/[𝜇(1 +𝑊0(𝜇)], the score 

function is 

𝜕𝑙

𝜕𝜇
= 𝑛[�̅� −𝑊0(𝜇) exp(𝑊0(𝜇)] /[𝜇(1 +𝑊0(𝜇))].              (19) 
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Equating (19) to zero and solving for 𝜇 confirms that 𝜇 = �̅�. 

The unbiasedness of the ML estimator for the Bell distribution’s mean implies that 

the ML estimator for the coefficient vector in the Bell regression model proposed by 

Castellares et al. (2018) is also unbiased if a linear link function is used. This result 

need not hold for other choices of the link function. However, the simulation results 

reported by Castellares et al. (2018, p.178) suggest that the bias of the ML estimator 

is quite small (even for n = 50) when a logarithmic link function is used. 

 

3. Simulation analysis 

While bias reduction is of considerable interest, it is well known that in many 

situations this is achieved at the cost of an increase in the estimator’s variance, or 

even its mean squared error (MSE). Accordingly, we have conducted a Monte Carlo 

simulation experiment to systematically explore both the (relative) bias and (relative) 

MSE of the ML estimator, and the various “bias-reduced” estimators, for the Bell 

distribution introduced in section 2. Various values of  𝜃 and sample sizes, n, have 

been considered. 

The experiment involves N = 50,000 replications, with the Bell-distributed variates 

being generated using the ‘rbell’ function in the ‘bellreg’ package for R (Demarqui, 

et al., 2022). The ‘lambertW0’ function in the R package ‘lamW’ (Adler, 2023) was 

used to compute �̃�; and the ‘uniroot’ function in R was used to solve the non-linear 

equations to obtain 𝜃∗and �̆�. The R code used in the experiment is available at 

https://github.com/DaveGiles1949/My-Documents. 

Many of the other studies that have evaluated the Cox-Snell and Firth estimators for 

various distributions have also considered the use of the bootstrap as an alternative 

way of reducing the bias of the ML estimator. For example, see Cribari-Neto and 

Vasconcellos (2002), Xiao and Giles (2014), among others. The bootstrap bias-

corrected estimator of 𝜃 is obtained as 𝜃 = 2�̃� − (
1

𝑁𝐵
)[∑ �̃�(𝑗)

𝑁𝐵
𝑗=1 ], where �̃�(𝑗) is the 

ML estimator of   obtained from the jth of the NB (= 999) bootstrap samples. See 

Efron (1982, p.33). This estimator is also unbiased to )( 2−nO , but in practice it this 

may come at the expense of increased variance. Moreover, the bootstrap frequently 

over-corrects the first-order bias of ML estimators, as is found by Cribari-Neto and 

Vasconcellos (2002) and Schwartz et al. (2013), for example. In overall terms, Giles 

et al. (2013, 2016) find that the parametric bootstrap estimator is inferior to the Cox-

Snell estimator for the two-parameter Lomax model and for the generalized Pareto 

distribution; and Xiao and Giles (2014) come to a similar conclusion in the case of 

the generalize Rayleigh family of distributions. 

In our experiment, for each (𝜃, 𝑛) combination the simulated percentage bias and 

percentage MSE were computed for each estimator, as follows: 

https://github.com/DaveGiles1949/My-Documents
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%𝐵𝑖𝑎𝑠(�̃�) = 100 ∗ [
1

𝑁
∑(�̃�𝑗) − 𝜃

𝑁

𝑗=1

] /𝜃 

%𝑀𝑆𝐸(�̃�) = 100 ∗ [
1

𝑁
∑ (�̃�𝑗 − 𝜃)

2𝑁
𝑗=1 ] /𝜃2 , 

and similarly for 𝜃, 𝜃∗, �̆�, and  𝜃.  

The simulation results appear in Table 1, where the percentage MSE values are in 

parentheses below the corresponding percentage biases. We see that the percentage 

biases and MSE’s decline as the sample size increases, reflecting the consistency of 

al of the estimators. As expected from Figure 2, the percentage bias of the 

(uncorrected) ML estimator becomes negligible, and the corresponding percentage 

MSE values decrease, as the population value of  𝜃 increases. (Although not shown 

in Table 1, when 𝜃 = 4 and n = 10, the % bias and % MSE of �̃� are -0.017 and 0.009 

respectively. The corresponding values for each of the bias-adjusted estimators are 

0.005% and 0.09%.) 

 

Table 1. Simulated %Bias (%MSE) for estimators of θ 

𝜽 = 𝟎. 𝟕𝟓 

n �̃� �̂� �̌� 𝜽∗ �⃛� 

10 -2.194 -0.089 -0.074 -0.101 -0.138 

(3.779) (3.693) (3.689) (3.690) (3.686) 

15 -1.484 -0.080 -0.070 -0.082 -0.150 

(2.477) (2.436) (2.435) (2.435) (2.424) 

25 -0.859 -0.012 -0.010 -0.015 -0.024 

(1.455) (1.440) (1.440) (1.440) (1.443) 

50 -0.419 0.005 0.005 0.005 -0.082 

(0.723) (0.720) (0.719) (0.719) (0.731) 

75 -0.279 0.003 0.004 0.004 -0.015 

(0.482) (0.481) (0.481) (0.481) (0.481) 

100 -0.190 0.022 0.023 0.023 -0.010 

(0.359) (0.358) (0.358) (0.358) (0.360) 

150 -0.114 0.027 0.027 0.027 -0.014 

(0.239) (0.239) (0.239) (0.239) (0.239) 

250 -0.085 -0.001 -0.000 -0.001 0.003 

(0.144) (0.144) (0.144) (0.144) (0.144) 

500 -0.025 0.017 0.017 0.017 -0.006 

(0.072) (0.072) (0.072) (0.072) (0.072) 

 

𝜽 = 𝟏. 𝟎 

n �̃� �̂� �̌� 𝜽∗ �⃛� 

10 -1.494 -0.105 -0.102 -0.116 -0.168 

(1.955) (1.899) (1.898) (1.899) (1.890) 
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15 -0.919 0.005 0.006 -0.000 -0.129 

(1.268) (1.245) (1.245) (1.245) (1.249) 

25 -0.552 0.002 0.002 0.001 -0.009 

0.750) (0.741) (0.741) (0.741) (0.745) 

50 -0.265 0.012 0.011 0.011 -0.034 

(0.372) (0.370) (0.370) (0.370) (0.372) 

75 -0.157 0.027 0.027 0.027 -0.028 

(0.246) (0.245) (0.245) (0.245) (0.246) 

100 -0.109 0.029 0.029 0.029 0.008 

0.184) (0.184) (0.184) (0.184) 0.184) 

150 -0.079 0.013 0.012 0.013 -0.006 

(0.123) (0.122) (0.122) (0.122) (0.124) 

250 -0.057 -0.002 -0.002 -0.002 -0.005 

(0.073) (0.073) (0.073) (0.073) (0.073) 

500 -0.015 0.013 0.012 0.012 -0.017 

(0.037) (0.036) (0.036) (0.036) (0.037) 

 

𝜽 = 𝟏. 𝟐𝟓 

n �̃� �̂� �̌� 𝜽∗ �⃛� 

10 -0.951 -0.021 -0.022 -0.028 -0.124 

(1.060) (1.032) (1.032) (1.032) (1.040) 

15 -0.623 -0.005 -0.006 -0.008 -0.032 

(0.695) (0.683) (0.683) (0.683) (0.688) 

25 -0.367 0.003 0.003 0.002 0.055 

(0.412) (0.408) (0.408) (0.408) (0.411) 

50 -0.152 0.032 0.032 0.032 -0.009 

(0.203) (0.202) (0.202) (0.202) (0.204) 

75 -0.088 0.034 0.034 0.034 -0.029 

(0.136) (0.135) (0.135) (0.135) (0.136) 

100 -0.063 0.029 0.029 0.029 0.011 

(0.102) (0.102) (0.102) (0.102) (0.102) 

150 -0.046 0.016 0.016 0.016 0.010 

(0.067) (0.067) (0.067) (0.067) (0.068) 

250 -0.023 0.013 0.013 0.013 0.004 

(0.041) (0.040) (0.040) (0.040) (0.041) 

500 -0.007 0.011 0.011 0.011 0.005 

(0.020) (0.020) (0.020) (0.020) (0.020) 

 

𝜽 = 𝟏. 𝟓 

n �̃� �̂� �̌� 𝜽∗ �⃛� 

10 -0.640 -0.008 -0.009 -0.012 -0.020 

(0.616) (0.602) (0.602) (0.602) (0.610) 

15 -0.417 0.003 0.002 0.001 -0.028 

(0.405) (0.399) (0.399) (0.399) (0.405) 

25 -0.241 0.010 0.009 0.009 -0.002 

(0.240) (0.238) (0.238) (0.238) (0.239) 
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50 -0.117 0.009 0.008 0.009 -0.004 

(0.119) (0.119) (0.119) (0.119) (0.118) 

75 -0.073 0.010 0.009 0.010 0.004 

(0.079) (0.079) (0.079) (0.079) (0.080) 

100 -0.006 0.002 0.001 0.002 0.007 

(0.060) (0.059) (0.059) (0.059) (0.060) 

150 -0.038 0.004 0.003 0.004 -0.000 

(0.040) (0.040) (0.040) (0.040) (0.040) 

250 -0.014 0.011 0.011 0.011 -0.010 

(0.024) (0.024) (0.024) (0.024) (0.024) 

500 0.003 0.009 0.008 0.009 0.005 

(0.012) (0.012) (0.012) (0.012) (0.012) 

 

𝜽 = 𝟐. 𝟎 

n �̃� �̂� �̌� 𝜽∗ �⃛� 

10 -0.292 0.012 0.010 0.010 -0.011 

(0.278) (0.224) (0.224) (0.224) (0.230) 

15 -0.185 0.017 0.016 0.016 -0.025 

(0.149) (0.148) (0.148) (0.148) (0.151) 

25 -0.110 0.011 0.009 0.010 -0.003 

(0.090) (0.089) (0.089) (0.089) (0.089) 

50 -0.038 -0.008 -0.007 -0.008 -0.015 

(0.019) (0.019) (0.019) (0.019) (0.045) 

75 -0.045 -0.005 -0.006 -0.005 -0.010 

(0.030) (0.030) (0.030) (0.030) (0030) 

100 -0.016 -0.001 -0.000 -0.001 -0.010 

(0.009) (0.009) (0.009) (0.009) (0.023) 

150 -0.004 0.008 0.007 0.008 0.009 

(0.009) (0.009) (0.009) (0.009) (0.015) 

250 -0.004 0.008 0.007 0.008 -0.002 

(0.009) (0.009) (0.009) (0.009) (0.009) 

 

𝜽 = 𝟑. 𝟎 

n �̃� �̂� �̌� 𝜽∗ �⃛� 

10 -0.086 -0.009 -0.009 -0.009 -0.008 

(0.043) (0.042) 0.042) (0.042) (0.042) 

15 -0.046 0.006 0.006 0.006 -0.003 

(0.028) (0.028) (0.028) (0.028) (0.028) 

25 -0.030 0.001 0.001 0.001 0.004 

(0.017) (0.017) (0.017) (0.017) (0.017) 

50 -0.013 0.002 0.002 0.002 0.003 

(0.008) (0.008) (0.008) (0.008) (0.008) 

75 -0.006 0.004 0.004 0.004 0.001 

(0.006) (0.006) (0.006) (0.006) (0.006) 
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100 -0.005 0.002 0.002 0.002 0.002 

(0.004) (0.004) (0.004) (0.004) (0.004) 

150 -0.005 -0.000 -0.000 -0.000 0.002 

(0.003) (0.003) (0.003) (0.003) (0.002) 

250 -0.004 -0.001 -0.001 -0.001 0.002 

(0.002) (0.002) (0.002) (0.002) (0.002) 

 

In terms of bias, the performance of the bootstrap bias-corrected estimator is 

generally inferior to that of the other modified ML estimators for small n, especially 

when the true value of the parameter is also small. For moderate sample sizes, its 

performance in terms of bias is “mixed”. In all cases considered, the percentage MSE 

of the boostrap estimator is almost the same as that of its analytical competitors. 

A key feature of the results is that the three analytical bias-reduction methods 

essentially perform equally well, and in addition they all reduce the percentage MSE 

of the original ML estimator to a similar (slight) degree. As the Cox-Snell corrective 

procedure has an obvious computational advantage over the methods proposed by 

Firth and by Godwin and Giles (and the bootstrap estimator) it may be preferred in 

practice.  

 

4. Conclusions 

The Bell distribution for discrete “count” data has the advantage of allowing for 

over-dispersion while being based on just a sole parameter. This sets it apart from 

competitors such as the negative binomial distribution. We have shown that while 

the ML estimator for the Bell parameter is downward-biased in small samples, this 

bias can be reduced substantially by using the simple Cox-Snell “corrective 

approach, while simultaneously reducing the MSE of the estimator slightly. Other 

analytical and bootstrap approaches to reducing the bias are also very effective, but 

are slightly more burdensome, computationally. 

Our results support the use of the Bell distribution, even for relatively small samples. 

Moreover, as the ML estimator of the distribution’s mean is exactly unbiased, this 

adds support for the Bell regression that has been discussed by Castellares et al. 

(2018) and others.  if a linear link function is employed. 
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