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The calibration approach based estimators of population parameters improves their 

efficiency by borrowing strength from available auxiliary variables effectively. In the 

present article, calibrated estimators of the population mean incorporating two-

auxiliary variables under non-linear constraints are proposed and the properties of the 

estimators are discussed under relevant sampling designs. In addition empirical 

analysis supported with simulation study is also performed and checked for the 

superiority of the proposed estimators.  
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1. Introduction 

In sample surveys, the commonly used generalized regression estimator (GREG) 

incorporates auxiliary information efficiently to enhance the precision of estimates of 

population parameters e.g., mean, total, ratio, variances, and distribution function. 

Another frequently used methodology to increase the precision of estimates is 

“Calibration method of estimation” introduced by Deville and Särndal (1992). Authors 

have derived modified weights, which are selected in such a way that they minimize 

the given distance measure between the initial and modified weights satisfying some 

calibration constraints related to auxiliary variables. It provides a systematic procedure 

to utilize the auxiliary information efficiently to strengthen the estimates. This has 

become an important methodological tool now in the statistical literature and 

accelerated over decades to develop several different statistics to solve real life 

problems.  

Estevao and Särndal (2000) derived calibrated weights by functional form approach. 

Tracy et al. (2003) suggested the calibration estimators in stratified sampling and 
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double sampling by borrowing strength from available auxiliary information. 

Subsequently, Singh and Arnab (2006) and Kim et al. (2007) developed the estimators 

for different population parameters under various sampling designs using different 

linear constraints. Series of research articles evolved viz. Kim and Park (2010), Singh 

and Arnab (2011), Singh (2012, 2013), Clement and Enang (2015), Singh and Sedory 

(2016), Salinas et al. (2018), Enang and Clement (2019), and references there in, 

among many others are produced in this area. Alam et al. (2020) derived a new 

calibration estimator for population mean under different sampling designs using a 

single auxiliary variable and non-linear constraints.  

Using single auxiliary variable which is correlated with study variable, many research 

articles are available to develop calibration estimation technique in the sample survey 

literature. However, less attention is paid to estimate the character of the study variable 

incorporating two or multi auxiliary variables and related issues. In this context, 

previous studies are available for estimation in literature which deals with multi-

auxiliary variables. Olkin (1958) has taken multi-auxiliary variables into consideration 

to introduce the multivariate regression type ratio estimate. Moreover, under single 

sampling design, Shukla (1965) derived a multivariate regression estimate and also 

continued it for the double sampling design. Taking advantage of the availability of 

more than one auxiliary variable, Raj (1965) also proposed a multivariate difference 

estimator. Recently, Alka et al. (2019) developed a two-step calibration approach for 

estimating the problem of design weights for two auxiliary variables. The computation 

problems become very complicated when multivariate cases are considered in real life 

cause less concern towards this area. Some recent works on calibration method of 

estimation include Singh et al. (2019), Ozgul et al. (2019), Salinas et al. (2019), Alam 

and Shabbir (2020), Sisodia and Singh (2020), Wu and Thompson (2020), among 

many. . Number of studies has been proven the richness of calibration estimation over 

other available techniques during past couple of decades. In this direction, use of single 

and multi-auxiliary variables are well taken into the consideration and several 

dimensions of the estimators have been analyzed under linear constraint defined in 

literature. 

Here, our objective is to develop calibration approach based estimators using two 

auxiliary variables with linear and non-linear constraints under simple random 

sampling with replacement (SRSWR), probability proportional to size (PPS) sampling 

and stratified random sampling designs. These proposed estimators are also checked 

for their performances using empirical and simulated data. 

 

2. Calibration Estimators: Notations and Terminologies 

Suppose that a finite population consists of 𝑁 units (Ω =  1, 2, …  𝑖, . . . , 𝑁) from which 

a random sample 𝑠 (𝑠 ∈ Ω) of size 𝑛 is drawn through a sampling design 𝑝(. ). It is 

assumed that the first-order (𝜋𝑖 = 𝑃(𝑖 ∈ 𝑠), and the second-order (𝜋𝑖𝑗 = 𝑃(𝑖 and𝑗 ∈

𝑠)) inclusion probabilities are strictly positive and known. Let us denote the two 

auxiliary variables as 𝑋1 and 𝑋2 on which the information is assumed to be available 

and known for every unit associated with the study variable 𝑌. Let 𝑦𝑖, 𝑥1𝑖, and 
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𝑥2𝑖  represent the values of the 𝑖𝑡ℎunit of study and two auxiliary variables respectively 

and the population total of the auxiliary variables are given as  𝑋1 = ∑ 𝑥1𝑖𝑖∈Ω and 𝑋2 =

∑ 𝑥2𝑖𝑖∈Ω  whereas  �̅� =
1

𝑛
∑ 𝑦𝑖𝑖∈𝑠 , �̅�1 =

1

𝑛
∑ 𝑥1𝑖𝑖∈𝑠  and �̅�2 =

1

𝑛
∑ 𝑥2𝑖𝑖∈𝑠  are the sample 

mean estimators  for study and auxiliary variables considered under study. The aim is 

to estimate the population mean �̅� incorporating information on two auxiliary 

variables  𝑋1 and  𝑋2 through calibration technique. 

An unbiased estimator of population total  𝑌 was given by Horvitz and Thompson 

(1952) as  

 �̂�𝐻𝑇 = ∑ 𝑑𝑖yii∈s   ,                                                                                                      (1) 

where 𝑑𝑖 =
1

𝜋𝑖
 are the initial design weights. An improved estimator proposed by 

Deville and Särndal (1992) is given by                                          

�̂�𝑑𝑠 = ∑ 𝑤𝑖yii∈s                                                                                                  (2) 

where 𝑤𝑖 are the calibrated weights obtained by minimizing the chi-square distance 

measure 

∑
(𝑤𝑖−𝑑𝑖)2

𝑞𝑖𝑑𝑖
i∈s  ,                                                   (3) 

and satisfying the calibration equation           

∑ 𝑤𝑖𝑥𝑖𝑖∈𝑠 = ∑ 𝑋𝑖𝑖∈Ω .                                                                                      (4)  

Here 𝑞𝑖  used in Eq. (3) are suitable chosen weights which decide the form of estimator. 

In general, the value of 𝑞𝑖is taken as equal i.e. 1, but unequal weights may also be 

considered [Deville and Särndal (1992)]. 

The calibrated weights, using the method of Lagrange’s multiplier are obtained a 

𝑤𝑖 = 𝑑𝑖 +
𝑑𝑖𝑞𝑖 𝑥𝑖

∑ 𝑑𝑖𝑞𝑖 𝑥𝑖
2

𝑖∈𝑠
(𝑋 − ∑ 𝑑𝑖𝑥𝑖)𝑖∈𝑠 ,                                                                        (5) 

 and based on these calibrated weights, the improved calibrated estimator is given by 

Deville and Särndal (1992) as 

�̂�𝑑𝑠 = ∑ 𝑑𝑖yi +
∑ 𝑑𝑖𝑞𝑖 𝑥𝑖yi𝑖∈𝑠

∑ 𝑑𝑖𝑞𝑖 𝑥𝑖
2

𝑖∈𝑠
i∈s (𝑋 − ∑ 𝑑𝑖𝑥𝑖𝑖∈𝑠 ) = �̂�𝐻𝑇 + �̂�𝑑𝑠(𝑋 − �̂�𝐻𝑇),             (6) 

where �̂�𝑑𝑠 =
∑ 𝑑𝑖𝑞𝑖 𝑥𝑖yi𝑖∈𝑠

∑ 𝑑𝑖𝑞𝑖 𝑥𝑖
2

𝑖∈𝑠
 is a weighted multiple regression coefficients’ estimator. The 

form of �̂�𝑑𝑠 in Eq. (6) resembles with the GREG estimator of population total using 

single auxiliary variable. 

Next, the expressions for proposed calibration estimators are derived under two 

auxiliary variables using different sampling designs considered in the study.  
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2.1 Calibration Estimator under Simple Random Sampling with Replacement 

(SRSWR) Scheme 

The classical unbiased estimator of the population mean under SRS is given by 

 �̅�𝑠𝑟𝑠 = ∑ 𝑑𝑖yii∈s ,                                                                                                        (7) 

where 𝑑𝑖 =
1

𝑛
are fixed design weights under SRSWR scheme. The calibration 

estimator under SRS incorporating information on auxiliary variables 𝑋1and𝑋2is 

considered as                                             

 �̅�𝑠𝑟𝑠(𝑐) = ∑ 𝑤𝑖yii∈s                                                                                                     (8) 

where 𝑤𝑖are modified calibrated weights chosen to minimize the chi-square distance 

function given in Eq.(3), subject to the following linear and non-linear calibration 

constraints 

∑ 𝑤𝑖𝑖∈𝑠 = 1 ,                                                                                                              (9) 

∑ 𝑤𝑖𝑥1𝑖𝑖∈𝑠 = �̅�1,                                                                                                       (10)  

∑ 𝑤𝑖𝑥2𝑖𝑖∈𝑠 = �̅�2,                                                                                                      (11) 

∑ 𝑤𝑖
2(𝑥1𝑖 − �̅�1)2 = 𝑆𝑥1

2
𝑖∈𝑠 ,                                                                                       (12) 

And  ∑ 𝑤𝑖
2(𝑥2𝑖 − �̅�2)2 = 𝑆𝑥2

2
𝑖∈𝑠 ,                                                                              (13)                                   

where �̅�1and �̅�2 are samples means, while �̅�1 =
1

𝑁
∑ 𝑥1𝑖𝑖∈Ω  and �̅�2 =

1

𝑁
∑ 𝑥2𝑖𝑖∈Ω are the 

population mean and  𝑆𝑥1
2 =

1

𝑁
∑ (𝑋1𝑖 − �̅�1)2

𝑖∈Ω  and 𝑆𝑥2
2 =

1

𝑁
∑ (𝑋2𝑖 − �̅�2)2

𝑖∈Ω arethe 

population variance of the auxiliary variables 𝑋1 and𝑋2respectively.  The Lagrange’s 

function is defined as 

𝐿1 =
1

2
∑

(𝑤𝑖−𝑑𝑖)2

𝑞𝑖𝑑𝑖
− 𝜆0(∑ 𝑤𝑖𝑖∈𝑠 − 1) − 𝜆1(∑ 𝑤𝑖𝑥1𝑖𝑖∈𝑠 − �̅�1) − 𝜆2(∑ 𝑤𝑖𝑥2𝑖𝑖∈𝑠 −𝑖∈𝑠

�̅�2) +
𝜆3

2
(∑ 𝑤𝑖

2(𝑥1𝑖 − �̅�1)2 − 𝑆𝑥1
2

𝑖∈𝑠 ) +
𝜆4

2
(∑ 𝑤𝑖

2(𝑥2𝑖 − �̅�2)2 − 𝑆𝑥2
2

𝑖∈𝑠 ),               (14) 

where the Lagrange multipliers 𝜆0,  𝜆1,  𝜆2 are linear, as they are attached with the 

linear constraints [Eqs. (9), (10) and (11)] and 𝜆3, 𝜆4 are associated with the non-linear 

constraints [Eqs. (12) and (13)] in terms of𝑤𝑖, so they are non-linear.  

For obtaining optimum weights, differentiating Eq. (14) with respect to wiand setting  
𝜕𝐿1

𝜕𝑤𝑖
= 0we have, 

wi −
di

(1+λ3qidi(x1i−x̅1)2+λ4qidi(x2i−x̅2)2)
+ λ0

qidi

(1+λ3qidi(x1i−x̅1)2+λ4qidi(x2i−x̅2)2)
+

 λ1
x1iqidi

(1+λ3qidi(x1i−x̅1)2+λ4qidi(x2i−x̅2)2)
+ λ2

x2iqidi

(1+λ3qidi(x1i−x̅1)2+λ4qidi(x2i−x̅2)2)
= 0      (15) 

or, equivalently 

wi = 𝐴𝑖 + λ0qi𝐴𝑖 + λ1x1iqi𝐴𝑖 + λ2x2iqi𝐴𝑖                                                            (16) 

where 𝐴𝑖 =
di

(1+λ3qidi(x1i−x̅1)2+λ4qidi(x2i−x̅2)2)
 . 
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Here, wi is a function of Lagrange multipliers𝜆0, 𝜆1,  𝜆2, 𝜆3 and 𝜆4. Since 𝜆3and 𝜆4are 

attached with the non-linear constraints, thus the unique solution of  𝜆3and 𝜆4 cannot 

be obtained by solving the system of equations. So, by solving the system of three 

linear constraints, the values of 𝜆0, 𝜆1 and 𝜆2 can be found after substituting the Eq. 

(16), i.e. 

λ0 ∑ qi𝐴𝑖𝑖∈𝑠 + λ1 ∑ x1iqi𝐴𝑖𝑖∈𝑠 + λ2 ∑ x2iqi𝐴𝑖𝑖∈𝑠 = 1 − ∑ 𝐴𝑖𝑖∈𝑠                               (17) 

λ0 ∑ x1iqi𝐴𝑖𝑖∈𝑠 + λ1 ∑ x1𝑖
2 qi𝐴𝑖𝑖∈𝑠 + λ2 ∑ x1ix2iqi𝐴𝑖𝑖∈𝑠 = �̅�1 − ∑ x1i𝐴𝑖𝑖∈𝑠                (18) 

λ0 ∑ x2iqi𝐴𝑖𝑖∈𝑠 + λ1 ∑ x1ix2iqi𝐴𝑖𝑖∈𝑠 + λ2 ∑ x2𝑖
2 qi𝐴𝑖𝑖∈𝑠 = �̅�2 − ∑ x2i𝐴𝑖𝑖∈𝑠              (19) 

or, equivalently 

[

∑ 𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥1𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥2𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠

∑ 𝑥1𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥1𝑖
2 𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥1𝑖𝑥2𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠

∑ 𝑥2𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥1𝑖𝑥2𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥2𝑖
2 𝑞𝑖𝐴𝑖𝑖𝜖𝑠

] [

𝜆0

𝜆1

𝜆2

] = [

1 − ∑ 𝐴𝑖𝑖𝜖𝑠

�̅�1 − ∑ 𝑥1𝑖𝐴𝑖𝑖𝜖𝑠

�̅�2− ∑ 𝑥2𝑖𝐴𝑖𝑖𝜖𝑠

].            

On solving the system of equations, we have 

𝜆0 =
(𝑑∗𝑓∗−𝑒∗2)(1−∑ 𝐴𝑖𝑖𝜖𝑠 )−(𝑏∗𝑓∗−𝑐∗𝑒∗)(�̅�1−∑ 𝐴𝑖𝑥1𝑖𝑖𝜖𝑠 )+(𝑏∗𝑒∗−𝑐∗𝑑∗)(�̅�2− ∑ 𝐴𝑖𝑥2𝑖𝑖𝜖𝑠 )

|Ζ1|
=

Π0𝑠

Π𝑠
,  (20) 

𝜆1 =
(𝑐∗𝑒∗−𝑏∗𝑓∗)(1−∑ 𝐴𝑖𝑖𝜖𝑠 )+(𝑎∗𝑓∗−𝑐∗2)(�̅�1−∑ 𝐴𝑖𝑥1𝑖𝑖𝜖𝑠 )−(𝑎∗𝑒∗−𝑏∗𝑐∗)(�̅�2− ∑ 𝐴𝑖𝑥2𝑖𝑖𝜖𝑠 )

|Ζ1|
=

Π1𝑠

Π𝑠
,  (21) 

𝜆2 =
(𝑏∗𝑒∗−𝑐∗𝑑∗)(1−∑ 𝐴𝑖𝑖𝜖𝑠 )−(𝑎∗𝑒∗−𝑏∗𝑐∗)(�̅�1−∑ 𝐴𝑖𝑥1𝑖𝑖𝜖𝑠 )+(𝑎∗𝑑∗−𝑏∗2)(�̅�2− ∑ 𝐴𝑖𝑥2𝑖𝑖𝜖𝑠 )

|Ζ1|
=

Π2𝑠

Π𝑠
,  (22) 

where 

Ζ1 = [
𝑎∗ 𝑏∗ 𝑐∗

𝑏∗ 𝑑∗ 𝑒∗

𝑐∗ 𝑒∗ 𝑓∗
]   =  [

∑ 𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥1𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥2𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠

∑ 𝑥1𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥1𝑖
2 𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥1𝑖𝑥2𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠

∑ 𝑥2𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥1𝑖𝑥2𝑖𝑞𝑖𝐴𝑖𝑖𝜖𝑠 ∑ 𝑥2𝑖
2 𝑞𝑖𝐴𝑖𝑖𝜖𝑠

] 

and  |Ζ1| = 𝑎∗𝑑∗𝑓∗ −  𝑎∗𝑒∗2 −  𝑏∗2𝑓∗ +  2𝑏∗𝑐∗𝑒∗ −  𝑐∗2𝑑∗ . 

On putting the values of λ0, λ1 and λ2 in Eq.(16), the value of calibrated weights are 

given by 

wi = 𝐴𝑖 +
Π0𝑠

Π𝑠
qi𝐴𝑖 +

Π1𝑠

Π𝑠
x1iqi𝐴𝑖 +

Π2𝑠

Π𝑠
x2iqi𝐴𝑖  .                                                    (23)                        

These optimum calibrated weights obtained in Eq.(23) rely upon the values of non-

linear Lagrange multipliers λ3 and λ4 and it can be found by satisfying the following 

non-linear equations: 

∑ [𝐴𝑖 +
Π0𝑠

Π𝑠
qi𝐴𝑖 +

Π1𝑠

Π𝑠
x1iqi𝐴𝑖 +

Π2𝑠

Π𝑠
x2iqi𝐴𝑖]

2
(𝑥1𝑖 − �̅�1)2 − 𝑆𝑥1

2 = 0𝑖∈𝑠 ,              (24)                           

∑ [𝐴𝑖 +
Π0𝑠

Π𝑠
qi𝐴𝑖 +

Π1𝑠

Π𝑠
x1iqi𝐴𝑖 +

Π2𝑠

Π𝑠
x2iqi𝐴𝑖]

2
(𝑥2𝑖 − �̅�2)2 − 𝑆𝑥2

2 = 0𝑖∈𝑠 ,              (25)                                

Initially, the wide range values of 𝜆3and 𝜆4 is to be pre-assigned and those values 

which satisfy Eqs.(24) and (25) will be selected as their optimum values. These 
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optimum values generate optimum calibrated weights in Eq.(23) and based on these 

weights, the calibrated estimator in Eq.(7) is obtained as, 

�̅�𝑠𝑟𝑠(𝑐) = ∑ 𝐴𝑖𝑦𝑖 + �̂�0𝑠(1 − ∑ 𝐴𝑖𝑖𝜖𝑠 ) + �̂�1𝑠(�̅�1 − ∑ 𝐴𝑖𝑥1𝑖𝑖𝜖𝑠 ) +𝑖∈𝑠

�̂�2𝑠(�̅�2− ∑ 𝐴𝑖𝑥2𝑖𝑖𝜖𝑠 )                                                                                                  (26)                                                                                   

where  �̂�0𝑠 =
(𝑑∗𝑓∗−𝑒∗2) ∑ 𝑞𝑖𝑦𝑖𝐴𝑖+(𝑐∗𝑒∗−𝑏∗𝑓∗) ∑ 𝑞𝑖𝑥1𝑖𝑦𝑖𝐴𝑖+(𝑏∗𝑒∗−𝑐∗𝑑∗) ∑ 𝑞𝑖𝑥2𝑖𝑦𝑖𝐴𝑖𝑖𝜖𝑠𝑖𝜖𝑠𝑖𝜖𝑠

|Ζ1|
 , 

�̂�1𝑠 =
(𝑐∗𝑒∗−𝑏∗𝑓∗) ∑ 𝑞𝑖𝑦𝑖𝐴𝑖+(𝑎∗𝑓∗−𝑐∗2) ∑ 𝑞𝑖𝑥1𝑖𝑦𝑖𝐴𝑖+(𝑏∗𝑐∗−𝑎∗𝑒∗) ∑ 𝑞𝑖𝑥2𝑖𝑦𝑖𝐴𝑖𝑖𝜖𝑠𝑖𝜖𝑠𝑖𝜖𝑠

|Ζ1|
 , and 

�̂�2𝑠 =
(𝑏∗𝑒∗−𝑐∗𝑑∗) ∑ 𝑞𝑖𝑦𝑖𝐴𝑖+(𝑏∗𝑐∗−𝑎∗𝑒∗) ∑ 𝑞𝑖𝑥1𝑖𝑦𝑖𝐴𝑖+(𝑎∗𝑑∗−𝑏∗2) ∑ 𝑞𝑖𝑥2𝑖𝑦𝑖𝐴𝑖𝑖𝜖𝑠𝑖𝜖𝑠𝑖𝜖𝑠

|Ζ1|
 . 

2.2 Calibration Estimator under Probability Proportional to Size Sampling (PPS) 

Scheme 

In PPS sampling design, the probability of selection for units in sample is directly 

proportional to a given size measure, 𝑋 which is assumed to be known for all sampling 

units and highly correlated with the study variable 𝑌. Let, a sample of size 𝑛is drawn 

using PPSWR scheme.  

An unbiased estimator of the population total 𝑌 = ∑ 𝑦𝑖
𝑁
1 is given by Hansen and 

Hurwitz (1943) as                              

 Ŷpps = ∑ 𝑑𝑖yii∈s  ,                                                                                                  (27) 

where 𝑑𝑖 =
1

𝑛𝑝𝑖
  are design weights under PPSWR sampling scheme. The improved 

calibrated estimator of mean is given as 

�̅�𝑝𝑝𝑠(𝑐) =
1

𝑁
∑ 𝑤𝑖𝑦𝑖𝑖∈𝑠  ,                                                                                           (28)                                                              

where𝑤𝑖 are calibrated weights obtained by minimizing the distance function in Eq.(3) 

with respect to the following calibration constraints,    

∑ 𝑤𝑖𝑖∈𝑠 = ∑ 𝑑𝑖𝑖∈𝑠 ,                                                                                                    (29)  

∑ 𝑤𝑖𝑥1𝑖𝑖∈𝑠 = 𝑋1 ,                                                                                              (30) 

∑ 𝑤𝑖𝑥2𝑖𝑖∈𝑠 = 𝑋2,                                                                                             (31) 

𝑁 ∑ 𝑤𝑖
2𝑝𝑖

𝛼 (
𝑥1𝑖

𝑝𝑖
− �̂�1,𝐻𝐻)

2

𝑖∈𝑠 =
1

𝑛
∑ 𝑃𝑖 (

𝑋1𝑖

𝑃𝑖
− 𝑋1)

2
𝑁
𝑖 ,                                      (32)                

and 𝑁 ∑ 𝑤𝑖
2𝑝𝑖

𝛼 (
𝑥2𝑖

𝑝𝑖
− �̂�2,𝐻𝐻)

2

𝑖∈𝑠 =
1

𝑛
∑ 𝑃𝑖 (

𝑋2𝑖

𝑃𝑖
− 𝑋2)

2

𝑖∈𝑈 ,                                 (33) 

where α is any positive constant, 𝑝𝑖 =
𝑥𝑖

𝑋
, , 𝑖 ∈ 𝑠and 𝑃𝑖 =

𝑋𝑖

𝑋
, 𝑖 ∈ Ω and �̂�1,𝐻𝐻 and �̂�2,𝐻𝐻 

is the Hansen and Hurwitz (1943) estimator for the two auxiliary totals. The 

Lagrange’s function is defined as   
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𝐿2 =
1

2
∑

(𝑤𝑖−𝑑𝑖)2

𝑑𝑖𝑞𝑖
𝑖∈𝑠 − 𝜆5(∑ 𝑤𝑖𝑖∈𝑠 − ∑ 𝑑𝑖𝑖∈𝑠 ) − 𝜆6(∑ 𝑤𝑖𝑖∈𝑠 𝑥1𝑖 − 𝑋1) −

𝜆7(∑ 𝑤𝑖𝑖∈𝑠 𝑥2𝑖 − 𝑋2) −          
𝜆8

2
{𝑁 ∑ 𝑤𝑖

2𝑝𝑖
𝛼 (

𝑥1𝑖

𝑝𝑖
− �̂�1,𝐻𝐻)

2

𝑖∈𝑠 −
1

𝑛
∑ 𝑃𝑖 (

𝑋1𝑖

𝑃𝑖
−𝑁

𝑖

𝑋1)
2

} −
𝜆9

2
{𝑁 ∑ 𝑤𝑖

2𝑝𝑖
𝛼 (

𝑥2𝑖

𝑝𝑖
− �̂�2,𝐻𝐻)

2

𝑖∈𝑠 −         
1

𝑛
∑ 𝑃𝑖 (

𝑋2𝑖

𝑃𝑖
− 𝑋2)

2
𝑁
𝑖 }                   (34) 

On solving  
𝜕𝐿2

𝜕𝑤𝑖
= 0 weget, 

𝑤𝑖 = 𝐵𝑖 + 𝜆5𝑞𝑖𝐵𝑖 + 𝜆6𝑥1𝑖𝑞𝑖𝐵𝑖 + 𝜆7𝑥2𝑖𝑞𝑖𝐵𝑖,                                                           (35)                                              

where 𝐵𝑖 =
𝑑𝑖

1−𝜆8𝑁𝑑𝑖𝑞𝑖𝑝𝑖
𝛼(

𝑥1𝑖
𝑝𝑖

−�̂�1,𝐻𝐻)
2

−𝜆9𝑁𝑑𝑖𝑞𝑖𝑝𝑖
𝛼(

𝑥2𝑖
𝑝𝑖

−�̂�2,𝐻𝐻)
2. 

Here, the Lagrange multiplier 𝜆8 and 𝜆9 are associated with Eqs.(32) and (33) are non-

linear in terms of𝑤𝑖.Thus,the values of  𝜆5, 𝜆6 and 𝜆7 are to be found by simultaneously 

solving the system of three linear equations i.e. Eqs.(29), (30) and (31), we have, 

𝜆5 =
(𝑗∗𝑙∗−𝑘∗2)(∑ 𝑑𝑖𝑖∈𝑠 −∑ 𝐵𝑖𝑖∈𝑠 )+(𝑖∗𝑘∗−ℎ∗𝑙∗)(𝑋1−∑ 𝐵𝑖𝑖∈𝑠 𝑥1𝑖)+(ℎ∗𝑘∗−𝑖∗𝑗∗)(𝑋2−∑ 𝐵𝑖𝑖∈𝑠 𝑥2𝑖)

|Ζ2|
=

Π0𝑝

Π𝑝
,                         

(36) 

𝜆6 =
(𝑖∗𝑘∗−ℎ∗𝑙∗)(∑ 𝑑𝑖𝑖∈𝑠 −∑ 𝐵𝑖𝑖∈𝑠 )+(𝑔∗𝑙∗−𝑖∗2)(𝑋1−∑ 𝐵𝑖𝑖∈𝑠 𝑥1𝑖)+(ℎ∗𝑖∗−𝑔∗𝑘∗)(𝑋2−∑ 𝐵𝑖𝑖∈𝑠 𝑥2𝑖)

|Ζ2|
=

Π1𝑝

Π𝑝
 ,             

(37) 

𝜆7 =
(ℎ∗𝑘∗−𝑖∗𝑗∗)(∑ 𝑑𝑖𝑖∈𝑠 −∑ 𝐵𝑖𝑖∈𝑠 )+(ℎ∗𝑖∗−𝑔∗𝑘∗)(𝑋1−∑ 𝐵𝑖𝑖∈𝑠 𝑥1𝑖)+(𝑔∗𝑗∗−ℎ∗2)(𝑋2−∑ 𝐵𝑖𝑖∈𝑠 𝑥2𝑖)

|Ζ2|
=

Π2𝑝

Π𝑝
 , 

 (38) 

where  Ζ2 = [
𝑔∗ ℎ∗ 𝑖∗

ℎ∗ 𝑗∗ 𝑘∗

𝑖∗ 𝑘∗ 𝑙∗

] = [

∑ 𝑞𝑖𝐵𝑖𝑖𝜖𝑠 ∑ 𝑞𝑖𝑥1𝑖𝐵𝑖𝑖𝜖𝑠 ∑ 𝑞𝑖𝑥2𝑖𝐵𝑖𝑖𝜖𝑠

∑ 𝑞𝑖𝑥1𝑖𝐵𝑖𝑖𝜖𝑠 ∑ 𝑞𝑖𝑥1𝑖
2 𝐵𝑖𝑖𝜖𝑠 ∑ 𝑞𝑖𝑥1𝑖𝑥2𝑖𝐵𝑖𝑖𝜖𝑠

∑ 𝑞𝑖𝑥2𝑖𝐵𝑖𝑖𝜖𝑠 ∑ 𝑞𝑖𝑥1𝑖𝑥2𝑖𝐵𝑖𝑖𝜖𝑠 ∑ 𝑞𝑖𝑥2𝑖
2 𝐵𝑖𝑖𝜖𝑠

] 

and |Ζ2| =  𝑔∗𝑗∗𝑙∗ −  𝑘∗2𝑔∗ −  ℎ∗2𝑙∗ +  2ℎ∗𝑖∗𝑘∗ − 𝑖∗2𝑗∗. Now, after solving the 

system of linear equation and on putting the values of lambdas in Eq. (35), the 

calibrated weights are obtained as  

 wi = 𝐵𝑖 +
Π0𝑝

Π𝑝
qi𝐵𝑖 +

Π1𝑝

Π𝑝
x1iqi𝐵𝑖 +

Π2𝑝

Π𝑝
x2iqi𝐵𝑖.                                                    (39) 

On substituting calibrated weights  𝑤𝑖 from Eq.(39) in Eq.(32) and Eq.(33), we get 

𝑁 ∑ [𝐵𝑖 +
Π0𝑝

Π𝑝
qi𝐵𝑖 +

Π1𝑝

Π𝑝
x1iqi𝐵𝑖 +

Π2𝑝

Π𝑝
x2iqi𝐵𝑖]

2

𝑝𝑖
𝛼 (

𝑥1𝑖

𝑝𝑖
− �̂�1,𝐻𝐻)

2

𝑖∈𝑠 =

1

𝑛
∑ 𝑃𝑖 (

𝑋1𝑖

𝑃𝑖
− 𝑋1)

2
𝑁
𝑖 ,                                                                                                 (40) 
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𝑁 ∑ [𝐵𝑖 +
Π0𝑝

Π𝑝
qi𝐵𝑖 +

Π1𝑝

Π𝑝
x1iqi𝐵𝑖 +

Π2𝑝

Π𝑝
x2iqi𝐵𝑖]

2

𝑝𝑖
𝛼 (

𝑥2𝑖

𝑝𝑖
− �̂�2,𝐻𝐻)

2

𝑖∈𝑠 =

1

𝑛
∑ 𝑃𝑖 (

𝑋2𝑖

𝑃𝑖
− 𝑋2)

2

𝑖∈𝑈 ,                                                                                               (41)                

Here, we can obtain the optimum range for non-linear Lagrange multiplier i.e. the 

values of 𝜆8 and 𝜆9 by selecting those values which satisfy the Eqs. (40) and (41).The 

form of calibrated estimator Eq.(28), based on the improved calibrated weights as in 

Eq. (39) is given by 

�̅�𝑝𝑝𝑠(𝑐) =
1

𝑁
[∑ 𝑦𝑖𝐵𝑖 + �̂�0𝑝(∑ 𝑑𝑖 − ∑ 𝐵𝑖𝑖∈𝑠𝑖∈𝑠 )𝑖∈𝑠 + �̂�1𝑝(𝑋1 − ∑ 𝑥1𝑖𝐵𝑖𝑖∈𝑠 )+�̂�2𝑝(𝑋2 −

∑ 𝑥2𝑖𝐵𝑖𝑖∈𝑠 )],                                                                                                             (42) 

where, 

�̂�0𝑝 =
(𝑗∗𝑙∗−𝑘∗2) ∑ 𝑞𝑖𝑦𝑖𝐵𝑖+(𝑖∗𝑘∗−ℎ∗𝑙∗) ∑ 𝑞𝑖𝑥1𝑖𝑦𝑖𝐵𝑖+(ℎ∗𝑘∗−𝑖∗𝑗∗) ∑ 𝑞𝑖𝑥2𝑖𝑦𝑖𝐵𝑖𝑖𝜖𝑠𝑖𝜖𝑠𝑖𝜖𝑠

|Ζ2|
 ,  

�̂�1𝑝 =
(𝑖∗𝑘∗−ℎ∗𝑙∗) ∑ 𝑞𝑖𝑦𝑖𝐵𝑖+𝑖𝜖𝑠 (𝑔∗𝑙∗−𝑖∗2) ∑ 𝑞𝑖𝑥1𝑖𝑦𝑖𝐵𝑖𝑖𝜖𝑠 +(ℎ∗𝑖∗−𝑔∗𝑘∗) ∑ 𝑞𝑖𝑥2𝑖𝑦𝑖𝐵𝑖𝑖𝜖𝑠

|Ζ2|
 , 

�̂�2𝑝 =
(ℎ∗𝑘∗−𝑖∗𝑗∗) ∑ 𝑞𝑖𝑦𝑖𝐵𝑖+(ℎ∗𝑖∗−𝑔∗𝑘∗)𝑖𝜖𝑠 ∑ 𝑞𝑖𝑥1𝑖𝑦𝑖𝐵𝑖𝑖𝜖𝑠 +(𝑔∗𝑗∗−ℎ∗2) ∑ 𝑞𝑖𝑥2𝑖𝑦𝑖𝐵𝑖𝑖𝜖𝑠

|Ζ2|
 . 

2.3 Calibration Estimator Under Stratified Random Sampling Scheme 

Now, let us divide Ωof N individual units into L homogeneous subgroups referred as 

strata such that the ℎ𝑡ℎ stratum consist of 𝑁ℎ units, where h = (1, 2,...,L) and 

∑ 𝑁ℎ = 𝑁𝐿
ℎ=1 . Further using SRSWR a sample of size 𝑛ℎ is draw from each stratum. 

The new calibrated estimator for population mean under stratified random sampling is 

considered as, 

�̅�𝑠𝑡(𝑐) = ∑ 𝑤ℎ�̅�ℎ
𝐿
ℎ=1 ,                                                                                               (43) 

where 𝑤ℎare the improved weights obtained by minimizing Eq.(3) satisfying the 

following calibration constraints,  

∑ 𝑤ℎ =  ∑ 𝑑ℎ
𝐿
ℎ=1

𝐿
ℎ=1 ,                                                                                               (44)  

∑ 𝑤ℎ�̅�1ℎ =  �̅�1
𝐿
ℎ=1 ,                                                                                                               (45)                                                                                                                          

∑ 𝑤ℎ�̅�2ℎ =  �̅�2 
𝐿
ℎ=1 ,                                                                                                  (46)  

∑ 𝑤ℎ
2 𝑠ℎ𝑥1

2

𝑛ℎ
=  ∑ 𝑑ℎ

2 𝑆ℎ𝑥1
2

𝑛ℎ

𝐿
ℎ=1 ,𝐿

ℎ=1                                                                                  (47)                                                                                         

∑ 𝑤ℎ
2 𝑠ℎ𝑥2

2

𝑛ℎ
=  ∑ 𝑑ℎ

2 𝑆ℎ𝑥2
2

𝑛ℎ

𝐿
ℎ=1

𝐿
ℎ=1 ,                                                                                  (48) 

where𝑑ℎ =
𝑁ℎ

𝑁
are the stratified design weights,�̅�ℎ = ∑

𝑥ℎ𝑖

𝑛ℎ

𝐿
ℎ=1  and �̅� = ∑ 𝑑ℎ

𝐿
ℎ=1 �̅�ℎare 

the sample mean and population mean, while 𝑠ℎ𝑥
2 = ∑

(𝑥ℎ𝑖−�̅�ℎ)2

𝑛ℎ−1

𝑛ℎ
𝑖=1  and 𝑆ℎ𝑥

2 =

∑
(𝑋ℎ𝑖−�̅�ℎ)2

𝑁ℎ−1

𝑁ℎ
𝑖=1 are the sample variance and  population variance of the auxiliary 

variable in the ℎ𝑡ℎ stratum, respectively. 
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The Lagrange function for this problem of minimization is defined as, 

𝐿3 =
1

2
∑

(𝑤ℎ−𝑑ℎ)2

𝑑ℎ𝑞ℎ

𝐿
ℎ=1 − 𝜆10(∑ 𝑤ℎ −  ∑ 𝑑ℎ

𝐿
ℎ=1

𝐿
ℎ=1 ) − 𝜆11(∑ 𝑤ℎ�̅�1ℎ − �̅�1

𝐿
ℎ=1 ) −

𝜆12(∑ 𝑤ℎ�̅�2ℎ −  �̅�2
𝐿
ℎ=1 ) +

𝜆13

2
(∑ 𝑤ℎ

2 𝑠ℎ𝑥1
2

𝑛ℎ
−  ∑ 𝑑ℎ

2 𝑆ℎ𝑥1
2

𝑛ℎ

𝐿
ℎ=1

𝐿
ℎ=1 ) +

𝜆14

2
(∑ 𝑤ℎ

2 𝑠ℎ𝑥2
2

𝑛ℎ
−𝐿

ℎ=1

∑ 𝑑ℎ
2 𝑆ℎ𝑥2

2

𝑛ℎ

𝐿
ℎ=1 ),                                                                                                           (49)                                                 

where 𝜆𝑖, (𝑖 = 10, 11, 12, 13, 14)are Lagrange multipliers. On solving
𝜕𝐿3

𝜕𝑤𝑖
= 0 , we 

have 

𝑤ℎ = 𝐶ℎ(1 + 𝜆10𝑞ℎ + 𝜆11�̅�1ℎ𝑞ℎ + 𝜆12�̅�2ℎ𝑞ℎ),                                                       (50) 

where  𝐶ℎ =
𝑑ℎ

1+𝜆13𝑑ℎ𝑞ℎ

𝑠𝑥1ℎ
2

𝑛ℎ
+𝜆14𝑑ℎ𝑞ℎ

𝑠𝑥2ℎ
2

𝑛ℎ

 . 

As Eqs.(44), (45) and (46) are linear constraints with respect to 𝑤ℎ, so we get the 

values of 𝜆10, 𝜆11 and 𝜆12 by substituting 𝑤ℎfrom Eq.(50) in Eqs.(44), (45) and (46), 

respectively. Now, solving the system of equations, we obtain 

𝜆10 =
(𝑝∗𝑟∗−𝑞∗2)(∑ 𝑑ℎ

𝐿
ℎ=1 −∑ 𝐶ℎ

𝐿
ℎ=1 )+(𝑜∗𝑞∗−𝑛∗𝑟∗)(�̅�1−∑ �̅�1ℎ𝐶ℎ

𝐿
ℎ=1 )+(𝑛∗𝑞∗−𝑜∗𝑝∗)(�̅�2−∑ �̅�2ℎ𝐶ℎ

𝐿
ℎ=1 )

|Ζ3|
=

Π0𝑠𝑡

Π𝑠𝑡
,       

(51)    

𝜆11 =
(𝑜∗𝑞∗−𝑛∗𝑟∗)(∑ 𝑑ℎ

𝐿
ℎ=1 −∑ 𝐶ℎ

𝐿
ℎ=1 )+(𝑚∗𝑟∗−𝑜∗2)(�̅�1−∑ �̅�1ℎ𝐶ℎ

𝐿
ℎ=1 )+(𝑛∗𝑜∗−𝑚∗𝑞∗)(�̅�2−∑ �̅�2ℎ𝐶ℎ

𝐿
ℎ=1 )

|Ζ3|
=

Π1𝑠𝑡

Π𝑠𝑡
 ,                                                                                                                          (52)                                                                       

𝜆12 =
(𝑛∗𝑞∗−𝑜∗𝑝∗)(∑ 𝑑ℎ

𝐿
ℎ=1 −∑ 𝐶ℎ

𝐿
ℎ=1 )+(𝑛∗𝑜∗−𝑚∗𝑞∗)(�̅�1−∑ �̅�1ℎ𝐶ℎ

𝐿
ℎ=1 )+(𝑚∗𝑝∗−𝑛∗2)(�̅�2−∑ �̅�2ℎ𝐶ℎ

𝐿
ℎ=1 )

|Ζ3|
=

Π2𝑠𝑡

Π𝑠𝑡
 ,                                                                                                                          (53)       

whereΖ3 = [
𝑚∗ 𝑛∗ 𝑜∗

𝑛∗ 𝑝∗ 𝑞∗

𝑜∗ 𝑞∗ 𝑟∗
] =

[

∑ 𝑞ℎ𝐶ℎ
𝐿
ℎ=1 ∑ 𝑞ℎ�̅�1ℎ𝐶ℎ

𝐿
ℎ=1 ∑ 𝑞ℎ�̅�2ℎ𝐶ℎ

𝐿
ℎ=1

∑ 𝑞ℎ�̅�1ℎ𝐶ℎ
𝐿
ℎ=1 ∑ 𝑞ℎ�̅�1ℎ

2 𝐶ℎ
𝐿
ℎ=1 ∑ 𝑞ℎ�̅�1ℎ�̅�2ℎ𝐶ℎ

𝐿
ℎ=1

∑ 𝑞ℎ�̅�2ℎ𝐶ℎ
𝐿
ℎ=1 ∑ 𝑞ℎ�̅�1ℎ�̅�2ℎ𝐶ℎ

𝐿
ℎ=1 ∑ 𝑞ℎ�̅�2ℎ

2 𝐶ℎ
𝐿
ℎ=1

] 

and |Ζ3| = 𝑚∗𝑝∗𝑟∗ − 𝑚∗𝑞∗2 − 𝑛∗2𝑟∗ +  2𝑛∗𝑜∗𝑞∗ − 𝑝∗𝑜∗2.  

On substituting the values of 𝜆10, 𝜆11 and 𝜆12  in Eq.(50), the optimum calibrated 

weights are obtained as 
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 𝑤ℎ = 𝐶ℎ +
Π0𝑠𝑡

Π𝑠𝑡
𝑞ℎ𝐶ℎ +

Π1𝑠𝑡

Π𝑠𝑡
�̅�1ℎ𝑞ℎ𝐶ℎ +

Π2𝑠𝑡

Π𝑠𝑡
𝑞ℎ�̅�2ℎ𝐶ℎ .                                           (54) 

Now, on putting the value of  𝑤ℎ from Eq.(54) in Eq.(47) and Eq.(48), we get 

∑ [𝐶ℎ +
Π0𝑠𝑡

Π𝑠𝑡
𝑞ℎ𝐶ℎ +

Π1𝑠𝑡

Π𝑠𝑡
�̅�1ℎ𝑞ℎ𝐶ℎ +

Π2𝑠𝑡

Π𝑠𝑡
𝑞ℎ�̅�2ℎ𝐶ℎ]

2 𝑠ℎ𝑥1
2

𝑛ℎ
=  ∑ 𝑑ℎ

2 𝑆ℎ𝑥1
2

𝑛ℎ

𝐿
ℎ=1 ,𝐿

ℎ=1        (55)  

∑ [𝐶ℎ +
Π0𝑠𝑡

Π𝑠𝑡
𝑞ℎ𝐶ℎ +

Π1𝑠𝑡

Π𝑠𝑡
�̅�1ℎ𝑞ℎ𝐶ℎ +

Π2𝑠𝑡

Π𝑠𝑡
𝑞ℎ�̅�2ℎ𝐶ℎ]

2 𝑠ℎ𝑥2
2

𝑛ℎ
=  ∑ 𝑑ℎ

2 𝑆ℎ𝑥2
2

𝑛ℎ
  ,   𝐿

ℎ=1
𝐿
ℎ=1     (56)  

The calibrated weights so derived in Eq.(54) are the function of non-linear Lagrange 

multipliers 𝜆13 and 𝜆14, which can be obtained by pre-assigning a wide range of values 

of 𝜆 which satisfy Eqs.(55) and (56). Thus, the expression for improved calibrated 

estimator can be obtained by putting the optimum weights from Eq.(54) in Eq.(43), 

we have 

�̅�𝑠𝑡(𝑐) = ∑ 𝐶ℎ�̅�ℎ
𝐿
ℎ=1 + �̂�0𝑠𝑡(∑ 𝑑ℎ

𝐿
ℎ=1 − ∑ 𝐶ℎ

𝐿
ℎ=1 ) + �̂�1𝑠𝑡(�̅�1 − ∑ �̅�1ℎ𝐶ℎ

𝐿
ℎ=1 ) +

�̂�2𝑠𝑡(�̅�2 − ∑ �̅�2ℎ𝐶ℎ
𝐿
ℎ=1 )                                                                                            (57) 

where 

�̂�0𝑠𝑡 =
(𝑝∗𝑟∗−𝑞∗2) ∑ 𝑞ℎ�̅�ℎ𝐶ℎ+(𝑜∗𝑞∗−𝑛∗𝑟∗) ∑ 𝑞ℎ�̅�1ℎ�̅�ℎ𝐶ℎ

𝐿
ℎ=1

𝐿
ℎ=1 +(𝑛∗𝑞∗−𝑜∗𝑝∗) ∑ 𝑞ℎ�̅�2ℎ�̅�ℎ𝐶ℎ

𝐿
ℎ=1

|Ζ3|
, 

�̂�1𝑠𝑡 =
(𝑜∗𝑞∗−𝑛∗𝑟∗) ∑ 𝑞ℎ�̅�ℎ𝐶ℎ+(𝑚∗𝑟∗−𝑜∗2) ∑ 𝑞ℎ�̅�1ℎ�̅�ℎ𝐶ℎ

𝐿
ℎ=1

𝐿
ℎ=1 +(𝑛∗𝑜∗−𝑚∗𝑞∗) ∑ 𝑞ℎ�̅�2ℎ�̅�ℎ𝐶ℎ

𝐿
ℎ=1

|Ζ3|
, 

�̂�2𝑠𝑡 =
(𝑛∗𝑞∗−𝑜∗𝑝∗) ∑ 𝑞ℎ�̅�ℎ𝐶ℎ+(𝑛∗𝑜∗−𝑚∗𝑞∗) ∑ 𝑞ℎ�̅�1ℎ�̅�ℎ𝐶ℎ

𝐿
ℎ=1

𝐿
ℎ=1 +(𝑚∗𝑝∗−𝑛∗2) ∑ 𝑞ℎ�̅�2ℎ�̅�ℎ𝐶ℎ

𝐿
ℎ=1

|Ζ3|
 .  

We have obtained the expression of the calibrated estimator under SRSWR, PPS, and 

stratified random sampling designs incorporating two auxiliary variables. Now, to 

analyze the efficiency of these proposed calibrated estimators, an empirical study 

supported by a simulation study is also provided in further sections. 

 

3. Empirical Study 

In this Section, an empirical study is carried out for comparing the efficacy of proposed 

calibrated estimators with existing estimators based on single auxiliary variable under 

three different sampling techniques (i.e. SRSWR, PPS, and Stratified Random 

Sampling). The two auxiliary variables based proposed calibrated estimators �̅�𝑠𝑟𝑠(𝑐), 

�̅�𝑝𝑝𝑠(𝑐) and �̅�𝑠𝑡(𝑐) defined in Eqs. (26), (42) and (57) are compared with the existing 

single auxiliary variable based calibrated estimators �̅�𝑠𝑟𝑠
∗ (𝑐), �̅�𝑝𝑝𝑠

∗ (𝑐) and �̅�𝑠𝑡
∗ (𝑐)[Alam 

et. al. (2020)],respectively, as defined below: 

(1) �̅�𝑠𝑟𝑠
∗ (𝑐) =

1

𝑛
∑ (

𝑦𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

)𝑖𝜖𝑠 + �̂�1𝑠
∗ (�̅� −

1

𝑛
∑

𝑥𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) + �̂�2𝑠
∗ (1 −

1

𝑛
∑

1

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ),                                                                                                 (58) 
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where 

�̂�1𝑠
∗ =

1

∆𝑠
{(

1

𝑛
∑

𝑞𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) (
1

𝑛
∑

𝑞𝑖𝑥𝑖𝑦𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) −

(
1

𝑛
∑

𝑞𝑖𝑥𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) (
1

𝑛
∑

𝑞𝑖𝑦𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 )} , 

�̂�2𝑠
∗ =

1

∆𝑠
{(

1

𝑛
∑

𝑞𝑖𝑥𝑖
2

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) (
1

𝑛
∑

𝑞𝑖𝑦𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) −

(
1

𝑛
∑

𝑞𝑖𝑥𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) (
1

𝑛
∑

𝑞𝑖𝑥𝑖𝑦𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 )}, 

∆𝑠= (
1

𝑛
∑

𝑞𝑖𝑥𝑖
2

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) (
1

𝑛
∑

𝑞𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 ) − (
1

𝑛
∑

𝑞𝑖𝑥𝑖

1+𝜆2
∗ 𝑞𝑖

(𝑥𝑖−�̅�)
2

𝑛

𝑖𝜖𝑠 )

2

. 

(2)   y̅pps
∗ (c) =   

1

N
{∑ (

yi

npi−Nλ2
∗∗pi

αqi(
xi
pi

−X̂HH)
2)iϵs + β̂1p

∗ (
1

n
∑

1

pi
iϵs −

qi

npi−Nλ2
∗∗pi

αqi(
xi
pi

−X̂HH)
2)  +β̂2p

∗ (X −  
xi

npi−Nλ2
∗∗pi

αqi(
xi
pi

−X̂HH)
2)},                        (59) 

where                         

�̂�1𝑝
∗ =

1

∆𝑝
{(∑

𝑦𝑖

𝑛𝑝𝑖 − 𝑁𝜆5
∗ 𝑝𝑖

𝛼𝑞𝑖 (
𝑥𝑖

𝑝𝑖
− �̂�𝐻𝐻)

2

𝑖𝜖𝑠

) (∑
𝑞𝑖𝑥𝑖

2

𝑛𝑝𝑖 − 𝑁𝜆5
∗ 𝑝𝑖

𝛼𝑞𝑖 (
𝑥𝑖

𝑝𝑖
− �̂�𝐻𝐻)

2

𝑖𝜖𝑠

) 

 − (∑
𝑞𝑖𝑥𝑖

𝑛𝑝𝑖−𝑁𝜆5
∗ 𝑝𝑖

𝛼𝑞𝑖(
𝑥𝑖
𝑝𝑖

−�̂�𝐻𝐻)
2𝑖𝜖𝑠 ) (∑

𝑞𝑖𝑥𝑖𝑦𝑖

𝑛𝑝𝑖−𝑁𝜆5
∗ 𝑝𝑖

𝛼𝑞𝑖(
𝑥𝑖
𝑝𝑖

−�̂�𝐻𝐻)
2𝑖𝜖𝑠 )}, 

�̂�2𝑝
∗

=
1

∆𝑝
{(∑

𝑞𝑖𝑥𝑖𝑦𝑖

𝑛𝑝𝑖 − 𝑁𝜆2
∗∗𝑝𝑖

𝛼𝑞𝑖 (
𝑥𝑖

𝑝𝑖
− �̂�𝐻𝐻)

2

𝑖𝜖𝑠

) (∑
𝑞𝑖

𝑛𝑝𝑖 − 𝑁𝜆2
∗∗𝑝𝑖

𝛼𝑞𝑖 (
𝑥𝑖

𝑝𝑖
− �̂�𝐻𝐻)

2

𝑖𝜖𝑠

) 

− (∑
𝑞𝑖𝑦𝑖

𝑛𝑝𝑖−𝑁𝜆2
∗∗𝑝𝑖

𝛼𝑞𝑖(
𝑥𝑖
𝑝𝑖

−�̂�𝐻𝐻)
2𝑖𝜖𝑠 ) (∑

𝑞𝑖𝑥𝑖

𝑛𝑝𝑖−𝑁𝜆2
∗∗𝑝𝑖

𝛼𝑞𝑖(
𝑥𝑖
𝑝𝑖

−�̂�𝐻𝐻)
2𝑖𝜖𝑠 )} , 
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∆𝑝= (∑
𝑞𝑖𝑥𝑖

2

𝑛𝑝𝑖−𝑁𝜆2
∗∗𝑝𝑖

𝛼𝑞𝑖(
𝑥𝑖
𝑝𝑖

−�̂�𝐻𝐻)
2𝑖𝜖𝑠 ) (∑

𝑞𝑖

𝑛𝑝𝑖−𝑁𝜆2
∗∗𝑝𝑖

𝛼𝑞𝑖(
𝑥𝑖
𝑝𝑖

−�̂�𝐻𝐻)
2𝑖𝜖𝑠 ) −

(∑
𝑞𝑖𝑥𝑖

𝑛𝑝𝑖−𝑁𝜆2
∗∗𝑝𝑖

𝛼𝑞𝑖(
𝑥𝑖
𝑝𝑖

−�̂�𝐻𝐻)
2𝑖𝜖𝑠 )

2

 . 

(3) �̅�𝑠𝑡
∗ (𝑐) = ∑ (

𝑑ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

)𝐿
ℎ=1 + �̂�1𝑠𝑡 (1 − ∑

𝑑ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

𝐿
ℎ=1 ) + �̂�2𝑠𝑡 (�̅� −

∑
𝑑ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

𝐿
ℎ=1 ) ,                                                                                                (60) 

where 

�̂�1𝑠𝑡
∗ =

1

∆𝑠𝑡
{(

𝑑ℎ𝑞ℎ�̅�ℎ
2

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

) (
𝑑ℎ𝑞ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

) − (
𝑑ℎ𝑞ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

) (
𝑑ℎ𝑞ℎ�̅�ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

)}, 

�̂�2𝑠𝑡
∗ =

1

∆𝑠𝑡
{(

𝑑ℎ𝑞ℎ�̅�ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

) (
𝑑ℎ𝑞ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

) − (
𝑑ℎ𝑞ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

) (
𝑑ℎ𝑞ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

)}, 

∆𝑠𝑡= (
𝑑ℎ𝑞ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

) (
𝑑ℎ𝑞ℎ�̅�ℎ

2

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

) − (
𝑑ℎ𝑞ℎ�̅�ℎ

1+𝜆2
∗∗∗𝑑ℎ𝑞ℎ

𝑠ℎ𝑥
2

𝑛ℎ

)

2

, 

where 𝜆2
∗ ,  𝜆2

∗∗and 𝜆2
∗∗∗ are the non-linear lagrange’s multiplier under SRS, PPS and 

Stratified sampling, respectively. 

The evaluation of performances of these estimators is done by using the average of 

absolute relative bias (ARB), simulated relative squared error (SRSE), and percent 

relative efficiency (PRE) (expressed as the ratio of the mean square error of the two 

estimators). These three criterion are defined below: 

𝐴𝑅𝐵(𝑇) =
1

𝑀
(∑ |

𝑇𝑟−𝜃

𝜃
|𝑀

𝑟=1 ) × 100%                                                                           (61) 

𝑆𝑅𝑆𝐸 =
1

𝜃
√

1

𝑀
∑ (𝑇𝑟 − 𝜃)𝑀

𝑟=1
2

                                                                                     (62) 

𝑃𝑅𝐸 =
𝑀𝑆𝐸(𝜃)

𝑀𝑆𝐸(𝑇𝑟)
× 100%                                                                                             (63) 

where 𝑟 = 1, 2, … , 𝑀 denotes the number of replications, 𝑇𝑟 is the proposed calibration 

estimator under two auxiliary variables and𝜃 is the existing calibration estimator under 

single auxiliary variable. 
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In order to check the efficacy of the proposed calibration estimator under the SRS and 

PPS sampling designs, we considered the Forced Expiratory Volume (FEV) dataset 

used by Alka et.al. (2019). The dataset contains the information of 654 children aged 

3 to 19 years’ old who had childhood respiratory diseases. In our study, the FEV is 

considered as a study variable whereas, the two auxiliary variables are the child's age 

(3-19 years old) and the child's height (inches) considered as  𝑋1 and 𝑋2, respectively. 

For this data set, �̅� = 2.636,�̅�1 = 9.931, �̅�2 = 61.143 ,the correlation coefficient 

values,𝜌( 𝑋1, 𝑌) = 0.756, 𝜌( 𝑋2, 𝑌) = 0.868, and 𝜌( 𝑋1,  𝑋2) = 0.791. The aim is to 

estimate the population mean, Y (assumed unknown) for the known values of  𝑋1,  𝑋2. 

Random samples of proportion ranging from 5% to 30% are drawn with an increment 

of 5% using SRSWR and PPSWR. Also, the values of non-linear Lagrange multipliers 

𝜆3and 𝜆4taken from −1 to 1 and -1.5 to 1 with an increment of 0.05under SRS. 

Whereas, under PPS sampling design, the values of non-linear Lagrange multipliers 

𝜆8and 𝜆9 are taken with an increment of 0.5 ranging from – 2 to 3 and -1.5 to 2, 

respectively. The whole procedure is replicated 2000 times using R- software. The 

values of the ARB, SRSE, and PRE of the calibration estimators incorporating single 

and two-auxiliary variables under SRS and PPS are shown in Table 1, Table 2 and 

Table 3, respectively.  

 

Table 1. ARB, SRSE and PRE values for the calibrated estimator under SRS 

Sample 

Proportion (%) 

ARB SRSE  

PRE �̅�𝑠𝑟𝑠
∗ (𝑐) �̅�𝑠𝑟𝑠(𝑐) �̅�𝑠𝑟𝑠

∗ (𝑐) �̅�𝑠𝑟𝑠(𝑐) 

5 0.937 0.932 3.957 2.844 193.641 

10 0.758 0.548 2.654 1.887 197.816 

15 0.586 0.388 2.130 1.506 200.055 

20 0.479 0.318 1.774 1.264 196.877 

25 0.380 0.240 1.492 1.068 195.279 

30 0.351 0.209 1.384 0.974 202.087 

 

For checking the efficiency of the proposed estimator under stratified random 

sampling design, we consider the data set on Abalone which was used by Alamet al. 

(2020). The complete dataset of 4177 values is divided into three strata with respect 

to the sex of abalone, with stratum sizes 1528, 1307 and 1342, for male, female, and 

infant, respectively. In our study, the study variable 𝑌 is considered to be the number 

of rings (for calculating the age of abalone) whereas the diameter (mm) and whole 

weight are taken as an auxiliary variables (𝑋1, 𝑋2). The correlation coefficient 0.574  

is observedbetween 𝑌 and 𝑋1, 0.540 between 𝑌 and 𝑋2 whereas 0.925 between 𝑋1 and 

𝑋2for this dataset. Under stratified random sampling, thevalues of non-linear Lagrange 

multipliers 𝜆13and 𝜆14 are taken with an increment of 0.5 ranging from – 1.8to 1.8 and 

-1.5 to 1.5, respectively.Simple random samples of sample proportions ranging from 
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5% to 30% with an increment of 5% are selected with replacement from each stratum 

and analysed using R software for 2000 iterations. 

                     

Table 2. ARB, SRSE and PRE values for the calibrated estimator under PPS 

Sample 

Proportion (%) 

ARB SRSE  

PRE �̅�𝒑𝒑𝒔
∗ (𝒄) �̅�𝒑𝒑𝒔(𝒄) �̅�𝒑𝒑𝒔

∗ (𝒄) �̅�𝒑𝒑𝒔(𝒄) 

5 2.262 2.164 4.539 5.577 65.893 

10 0.766 0.406 2.816 3.576 87.877 

15 0.288 0.256 2.925 3.476 93.476 

20 0.729 0.483 3.585 3.084 135.082 

25 0.671 0.313 4.176 3.007 192.801 

30 0.138 0.305 3.845 2.448 246.651 

 

Table 3. ARB, SRSE and PRE values for the calibrated estimator under Stratified 

Random Sampling 

Sample 

Proportion 

(%) 

ARB SRSE  

PRE �̅�𝒔𝒕
∗ (𝒄) �̅�𝒔𝒕(𝒄) �̅�𝒔𝒕

∗ (𝒄) �̅�𝒔𝒕(𝒄) 

5 0.036 0.033 1.923 1.789 107.452 

10 0.017 0.015 1.331 1.274 104.495 

15 0.010 0.010 1.073 1.020 105.204 

20 0.025 0.013 0.874 0.805 108.574 

25 0.021 0.011 0.808 0.739 109.236 

30 0.026 0.016 0.702 0.641 109.516 

 

4. Simulation Study 

A simulation study is also carried out to assess the performance of the proposed 

calibration estimator incorporating two auxiliary variables with the existing calibration 

estimator under single auxiliary variable. This study is divided into three different 

parts based on different sampling designs as discussed below: 

4.1 Under Simple Random Sampling  

Under this sampling design, a finite population of size 𝑁 = 1500is generated using 

normal distribution with mean 5 and variance 1 i.e. 𝑦𝑖~𝑁(5,1). The two auxiliary 

variables are also generated for various values of degree of correlation ranging from 

0.5 to 0.8 between 𝑌 and 𝑋1and 0.6 to 0.85 between 𝑌 and 𝑋2. The two auxiliary 

variables are chosen such that a positive correlation exists between them. Based on 

different correlation coefficient, four sets of populations are generated and random 

samples of proportions 5%, 10%, 15%, 20%, 25%, and 30% of 𝑁, are drawn using 
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SRSWR. The program is simulated for 500 times using 𝑅 software and different 

estimates of population mean, ARB, SRSE and PRE are calculated. The value of 𝜆2
∗  is 

defined in the range of – 0.5 to 0.85. The maximum and minimum value of 𝜆3is taken 

as -1 and 1 whereas for 𝜆4, -1.5 and 1 is considered for all generated population sets. 

The results are produced in Table 4. 

 

Table 4. Simulated ARB, SRSE and PRE values for the calibrated estimator under 

SRSWR 

 

4.2 Under Probability Proportional to Size (PPS) Sampling  

Under PPS sampling scheme, a finite population of size 𝑁 = 1500 is generated using 

normal distribution with mean 4 and variance 1 i.e. 𝑦𝑖~𝑁(4,1). The two auxiliary 

variables are also generated for various values of degree of correlation ranging from 

0.5 to 0.8 (𝑟1) between 𝑌 and 𝑋1and 0.6 to 0.85 (𝑟2) between 𝑌 and 𝑋2 as in case for 

Sample 

Proportion (%) 

Correlation 

coefficient 

ARB SRSE  

PRE �̅�𝒔𝒓𝒔
∗ (𝒄) �̅�𝒔𝒓𝒔(𝒄) �̅�𝒔𝒓𝒔

∗ (𝒄) �̅�𝒔𝒓𝒔(𝒄) 

5  

 

 

𝒓𝟏 = 𝟎. 𝟓0 

𝒓𝟐 = 𝟎. 𝟔0 

0.347 0.007 2.789 0.559 2468.998 

10 0.074 0.006 1.921 0.151 16111.007 

15 0.221 0.002 1.391 0.080 30140.674 

20 0.420 0.003 1.246 0.064 37207.010 

25 0.279 0.002 1.045 0.039 71044.305 

30 0.211 0.001 0.934 0.032 82466.129 

5  

 

 

𝒓𝟏 = 𝟎. 𝟔0 

 𝒓𝟐 = 𝟎. 𝟕0 

0.580 0.008 2.558 0.089 2874.157 

10 0.277 0.009 1.645 0.210 6109.493 

15 0.085 0.005 1.378 0.232 3526.469 

20 0.085 0.001 1.209 0.085 19766.452 

25 0.265 0.001 1.007 0.106 8883.001 

30 0.210 0.001 0.846 0.021 155887.344 

5  

 

 

   𝒓𝟏 = 𝟎. 𝟕0 

   𝒓𝟐 = 𝟎. 𝟖0 

0.021 0.107 2.346 0.307 5837.191 

10 0.076 0.028 1.502 0.466 1038.776 

15 0.174 0.001 1.121 0.030 134183.693 

20 0.042 0.002 0.946 0.143 4359.812 

25 0.260 0.003 0.908 0.055 27125.616 

30 0.169 0.001 0.740 0.024 101537.756 

5  

 

 

 

𝒓𝟏 = 𝟎. 𝟖0 

   𝒓𝟐 = 𝟎. 𝟖𝟓 

0.429 0.122 1.973 0.213 8564.719 

10 0.144 0.008 1.170 0.214 2979.811 

15 0.008 0.007 0.915 0.112 6653.248 

20 0.057 0.005 0.808 0.123 4280.487 

25 0.046 0.008 0.710 0.170 1733.063 

30 0.023 0.003 0.669 0.051 16693.155 
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SRS. A total of 500 random pprswr samples of proportions 5%, 10%, 15%, 20%, 25%, 

and 30% of population size is drawn using cumulative method and estimates are 

calculated for the two cases of auxiliary variable (see Table 5). Also, the values of 

𝜆2
∗∗, 𝜆8 and 𝜆9 are defined in the range (-1, 1), (-2, 2) and (-1.5, 1) with an increment 

of 0.05, 0.5 and 0.5, respectively. The optimum value of 𝛼 is taken in between -2 to 2 

with an increment of 0.2. 

 

Table 5. Simulated ARB, SRSE and PRE values for the calibrated estimator under 

PPS 

 

4.3 Under Stratified Random Sampling 

Here, we generated a finite population of size 𝑁 = 1500, constituting three different 

strata with stratum sizes 𝑁ℎ = 500 for ℎ = 1, 2, 3. The study and auxiliary variables 

are generated using gamma distribution such that 𝑌 and 𝑋1 have the correlation 

coefficient in the range of 0.5-0.55, 0.6-0.68, 0.7-0.78 and 0.8-0.85 whereas 𝑌 and 𝑋2 

Sample 

Proportion (%) 

Correlation 

coefficient 

ARB SRSE  

PRE �̅�𝒑𝒑𝒔
∗ (𝒄) �̅�𝒑𝒑𝒔(𝒄) �̅�𝒑𝒑𝒔

∗ (𝒄) �̅�𝒑𝒑𝒔(𝒄) 

5  

 

 

𝒓𝟏 = 𝟎. 𝟓0 

𝒓𝟐 = 𝟎. 𝟔0 

0.145 0.010 2.738 0.200 18574.633 

10 0.135 0.011 2.094 0.285 5385.252 

15 0.090 0.002 2.039 0.219 8659.648 

20 0.016 0.005 2.662 0.369 5201.659 

25 0.063 0.006 5.599 0.142 153738.469 

30 0.010 0.005 2.123 0.276 5909.991 

5  

 

 

𝒓𝟏 = 𝟎. 𝟔0 

𝒓𝟐 = 𝟎. 𝟕0 

0.033 0.009 2.445 0.203 14426.570 

10 0.070 0.001 2.247 0.061 135053.616 

15 0.036 0.003 3.087 0.075 165171.170 

20 0.381 0.016 4.907 0.244 40283.255 

25 0.526 0.037 6.602 0.735 8059.432 

30 0.031 0.011 2.969 0.194 23342.565 

5  

 

 

𝒓𝟏 = 𝟎. 𝟕0 

𝒓𝟐 = 𝟎. 𝟖0 

0.093 0.001 2.148 0.042 254825.244 

10 0.124 0.004 1.719 0.142 14562.679 

15 0.105 0.005 1.411 0.120 13718.158 

20 0.007 0.006 5.078 0.164 95788.045 

25 0.054 0.010 2.472 0.172 20505.312 

30 0.012 0.001 2.026 0.073 77068.083 

5  

 

 

𝒓𝟏 = 𝟎. 𝟖0 

   𝒓𝟐 = 𝟎. 𝟖𝟓 

 

0.165 0.002 1.752 0.083 44552.757 

10 0.126 0.011 3.505 0.204 29409.167 

15 0.095 0.001 2.218 0.042 411218.092 

20 0.037 0.001 1.879 0.008 4706442.798 

25 0.301 0.049 2.557 0.133 7748.485 

30 0.066 0.004 2.137 0.221 9347.985 
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have 0.6-0.65, 0.7-0.79, 0.8-0.88, and 0.87-0.92 for the population sets 1, 2, 3 and 4, 

respectively. Samples of proportions 5%, 10%, 15%, 20%, 25%, and 30% of 𝑁ℎ, are 

drawn from each stratum using SRSWR. The program is simulated for 500 times for 

the different values of𝜆2
∗∗∗ lying in the range (-1, 1) and𝜆13, 𝜆14 in between -0.5 to 0.5 

with an increment of0.05 and 0.1, respectively for all sets. The simulated ARB, SRSE 

and PRE values are noted down in Table 6 for the calibrated estimator under single 

and two- auxiliary variables. 

 

Table 6. Simulated ARB, SRSE and PRE values for the calibrated estimator under 

Stratified Random Sampling 

 

 

5. Results and Discussion 

Sample 

Proportion (%) 

Correlation 

coefficient 

ARB SRSE  

PRE �̅�𝒔𝒕
∗ (𝒄) �̅�𝒔𝒕(𝒄) �̅�𝒔𝒕

∗ (𝒄) �̅�𝒔𝒕(𝒄) 

5  

 

 

𝒓𝟏 = 𝟎. 𝟓-0.6, 

𝒓𝟐 = 𝟎. 𝟔-

0.65 

0.110 0.014 4.985 4.880 104.351 

10 0.372 0.218 5.184 4.906 111.647 

15 0.106 0.006 4.900 4.809 103.812 

20 0.403 0.314 5.744 5.450 111.063 

25 0.202 0.053 4.930 4.726 108.844 

30 0.255 0.065 5.555 5.230 112.820 

5  

𝒓𝟏 = 𝟎. 𝟔-

0.68, 

𝒓𝟐 = 𝟎. 𝟕-

0.79 

 

0.285 0.118 5.060 4.861 108.350 

10 0.303 0.114 4.782 4.653 105.595 

15 0.301 0.128 5.110 4.975 105.494 

20 0.235 0.059 5.214 5.089 104.981 

25 0.499 0.277 5.552 5.136 116.879 

30 0.303 0.126 5.143 5.049 103.772 

5  

𝒓𝟏 = 𝟎. 𝟕-

0.78, 

𝒓𝟐 = 𝟎. 𝟖-

0.88 

 

0.294 0.218 5.262 5.146 104.576 

10 0.661 0.393 5.822 5.337 118.974 

15 0.152 0.101 5.845 5.352 119.269 

20 0.138 0.298 5.502 5.155 113.929 

25 0.528 0.297 5.668 5.298 114.467 

30 0.362 0.143 5.436 4.964 119.925 

5  

𝒓𝟏 = 𝟎. 𝟖-

0.85,  

𝒓𝟐 = 𝟎. 𝟖7-

0.92 

 

0.296 0.064 5.098 4.792 113.149 

10 0.185 0.064 5.306 5.030 111.254 

15 0.412 0.118 5.049 4.821 109.687 

20 0.182 0.079 4.929 4.816 104.781 

25 0.210 0.125 5.490 5.171 112.690 

30 0.167 0.066 5.004 4.786 109.307 
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Tables 1, 2 and 3, represent the values of ARB, SRSE, and PRE using empirical dataset 

under SRS, PPS with replacement scheme, and stratified random sampling, 

respectively. It can be seen from Table 1 that, the PRE values vary closely from 

193.641% to 202.087%. We can also observe that the ARB and SRSE values decrease 

with an increase in the sample proportions and maximum gain efficiency is202.087% 

at 30% sample proportion under two auxiliary variables compared to existing Alam et 

al.(2020) estimator under single auxiliary variable. From Table 2, we can observe that 

the PRE values are increasing as sample proportion increases and maximum gained 

efficiency is 246.651% at 30% sample proportion over existing estimator under PPS 

using single auxiliary variable a similar trend as SRSWR design. However, the PRE 

values are not found favorable for the proposed estimator with some variations in case 

of small sample proportions i.e. 5%, 10%, and 15%. Table 3 highlights very less 

variation in PRE values with respect to change of sample size. The maximum and 

minimum gained efficiency are 109.516% and 104.495% at 30% and 10% sample 

proportions, respectively. 

Table 4; conclude about the results obtained through simulated data. The values of 

ARB, SRSE, and PRE under SRSWR design for estimators under single and two 

auxiliary variables, it shows that all average relative biases are very small and nearly 

unbiased for some sample proportions. The maximum percentage relative efficiency 

gained is 101537.756% for upper sample proportion when the correlation coefficient 

is 0.7 and 0.8 between(𝑋1, 𝑌) and (𝑋2, 𝑌), respectively.  It shows a similar tendency 

of the estimator as in case of empirical analysis. 

Table5; shows simulated ARB, SRSE, and PRE values of both types of estimators 

under PPSWR sampling scheme, we can observe that the percentage relative 

efficiency varies from 5201.696% (20% sample proportions, 𝑟1 = 0.5, 𝑟2 = 0.6) to 

4706443.798% (20% sample proportions, 𝑟1 = 0.8, 𝑟2 = 0.85)within the complete 

population sets. Average relative biases are found to be very small in both the cases 

and may be ignored. 

Table6; shows the values of three performance criteria in case of stratified random 

sampling, here also the average relative biases are very small and negligible. There is 

less fluctuations of PRE value with respect to sample proportions are obtained. The 

maximum PRE observed is 119.925% for 30% sample proportions (𝑟1 = 0.7 − 0.78, 

𝑟2 = 0.8 − 0.88) and the minimum is 103.772% for 30% sample proportions with 

varying correlation coefficient as 𝑟1 = 0.6 to 0.68 and𝑟2 = 0.7 to 0.79. 

 

6. Conclusions 

In this study, different new calibrated weights are derived for estimating population 

mean under calibration approach using two auxiliary variables with non-linear 

constraints and three different sampling designs, SRSWR, Stratified and PPS. On the 

basis of real and simulated data analysis, the proposed calibrated estimators for mean 

under PPSWR performed better for large sample proportions with substantial increase 

in PRE values than that for the other two sampling designs. Also, all the proposed 

mean calibration estimators under three different sampling designs incorporating two-
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auxiliary variables using non-linear constraints are found to be more efficient than that 

for single auxiliary variable based calibrated estimators [i.e. Alam et. al. (2020) 

estimators] in terms of ARB (%), SRSE (%) and PRE (%) and recommended to prefer 

more effectively in sample surveys. 
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