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Estimation Using Bivariate Extreme Ranked Set Sampling 
With Application To The Bivariate Normal Distribution 

 
             Mohammad Fraiwan Al-Saleh                                        Hani M. Samawi 
                           Yarmouk University                                               Sultan Qaboos University 
                                    Jordan                                                                        Sultanate of Oman 
 
 
 
In this article, the procedure of bivariate extreme ranked set sampling (BVERSS) is introduced and 
investigated as a procedure of obtaining more accurate samples for estimating the parameters of bivariate 
populations. This procedure takes its strength from the advantages of bivariate ranked set sampling 
(BVRSS) over the usual ranked set sampling in dealing with two characteristics simultaneously, and the 
advantages of extreme ranked set sampling (ERSS) over usual RSS in reducing the ranking errors and 
hence in being more applicable. The BVERSS procedure will be applied to the case of the parameters of 
the bivariate normal distributions. Illustration using real data is also provided. 
 
Key words: Bivariate ranked set sampling; Efficiency; Ranked set sampling; Extreme ranked set 
sampling; Bivariate extreme ranked set sampling 
 
 

Introduction 
 
Ranked set sampling (RSS) was first suggested 
by McIntyre (1952) as a method for estimating 
pasture yields. The supporting mathematical 
theory was later provided by Takahasi and 
Wakimoto (1968). The RSS procedure consists 
of drawing m random samples of size m each 
from the population of interest, and ranking each 
of them by judgment with respect to (w.r.t.) the 
characteristic of interest. Then the ith smallest 
observation from the ith set is chosen for actual 
quantification. The RSS consists of these m  
selected units.  
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Although only m  units out of 2m are 

chosen for quantification, all units contribute 
information to the m  quantified ones. The entire 
cycle may be repeated, if necessary, r times to 
produce a RSS sample of size mrn= . The 
mean of the RSS sample, as an unbiased 
estimator of the population mean ( )µ , is found 
to have smaller variance than the mean of a 
simple random sample (SRS) of the same size.  

For recent work, consult Patil et al. 
(1999), Al-Saleh and Al-Kadiri (2000), Al-Saleh 
and Samawi (2000), Chen (2000), Samawi 
(2001), Zheng and Al-Saleh (2002) and Al-Saleh 
and Al-Omari (2002). 

The RSS procedure is rarely applicable 
with large set size m . Ranking a large set of 
elements is not possible without committing 
errors of ranking. Ranking errors can destroy the 
efficiency gain of using RSS instead of SRS. 
Extreme Ranked Set Sampling (ERSS), as 
introduced and investigated by Samawi et al. 
(1996), is a modified procedure of RSS that 
consists of choosing for quantification the first 
and the last (Judgment) ordered statistics. In 
other words, the ERSS procedure consists of 
drawing m random samples of size m each from 
the population. 
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Then, the smallest observation 
(identified by judgment) from each of the first 

2
m

 sets and the largest observation for each of 

the last 
2
m

sets are chosen for actual 

quantification. The ERSS consists of these m  
selected units, assuming that m  is even. It turns 
out that this procedure, besides being more 
applicable, can be more efficient than RSS 
procedure in case of uniform distributions and 
more efficient than SRS in case of symmetric 
distributions 

A new RSS plan for multiple 
characteristics was introduced recently by Al-
Saleh and Zheng (2002). For simplicity, they 
introduced the method for two characteristics 
and refer to it as Bivariate Ranked Set Sampling 
(BVRSS). It is believed that both characteristics 
will benefit from this scheme of BVRSS. There 
are situations, when several attributes are to be 
studied simultaneously using a single combined 
study rather than separate studies, one for each 
characteristics. For example, in situations where 
quantifications entail destruction of units as in 
uprooting of plants. Also, analytical procedures 
such as spectroscopy can be used to quantify 
several contaminants at once (Patil et al. 1994); 
also Mode et al. (1999) and Al-Saleh and Zheng 
(2002) for more applications. 

Suppose ),( YX is a bivariate random 
vector with pdf ),(, yxf YX . Let θ  and µ  be the 
means of X  and Y , respectively. To obtain a 
BVRSS sample follow the five steps described 
below: 

1) For a given set size m , a random 
sample of size 4m  is identified from the 
population and randomly allocated into 2m  
pools of size m  each, where each pool is a 
square matrix with m  rows and m  columns. 

2) In the first pool, identify the 
minimum value by judgment w.r.t. the first 
characteristic, for each of the m rows. 

3) For the m  minima obtained in Step 
2, choose the pair that corresponds to the 
minimum value of the second characteristic, 
identified by judgment, for actual quantification. 

This pair, which resembles the label )1,1( , is the 
first element of the BVRSS sample. 

4) Repeat Steps 2 and 3 for the second 
pool, but the pair that corresponds to the first 
minimum value w.r.t. the first characteristic and 
the second minimum value w.r.t. the second 
characteristic is chosen for actual quantification. 
This pair resembles the label )2,1( . 

5) The process continues until the label 
),( mm is resembled from the 2m th (last) pool. 

This process produces a BVRSS sample of size 
2m . If a sample of higher size is required, then 

the whole process can be repeated r times until 
the required size rmn 2=  is achieved. Note 

that although 4m  units are identified for the 
BVRSS sample, only 2m  are chosen for actual 

quantification. However all 4m  units contribute 
information to the 2m  quantified units. 

In this article, the ERSS is combined 
with BVRSS to obtain a more applicable 
procedure namely the Bivariate Extreme Ranked 
Set Sampling (BVERSS). In section 2, the 
procedure is described and some fundamental 
properties will be given. Application to bivariate 
normal distribution is introduced in Section 3. 
Section 4 provides illustration to the procedure 
using real data set. 
 

Methodology 
 
Assume that ),( YX is a bivariate random 
variable with the joint density function (p.d.f) 

),(, yxf YX . To obtain a BVERSS follow the 
following steps: 

1) For a given set size m , m4  random 
samples of size m  each are drawn from the 
population. 

2) For each of the first m  samples 
drawn in (1), the minimum with respect to the X-
characteristic is identified by Judgment. Among 
the m  pairs identified in this step, the pair that 
corresponds to the minimum with respect to the 
Y -characteristic is identified. This pair is the 
first element in the BVERSS. This element is 
chosen for actual quantification. 
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3) For each of the second m samples 
drawn in (1), the minimum with respect to the X-
characteristic is identified by Judgment. Among 
the m  pairs identified in this step, the pair that 
corresponds to the maximum with respect to the 
Y -characteristic is identified. This pair is the 
second element in the BVERSS. This element is 
chosen for actual quantification. 

4) For each of the third m  samples 
drawn in (1), the maximum with respect to the 
X-characteristic is identified by Judgment. 
Among the m  pairs identified in this step, the 
pair that corresponds to the minimum with 
respect to the Y -characteristic is identified. This 
pair is the third element in the BVERSS. This 
element is chosen for actual quantification. 

5) For each of the fourth m  samples 
drawn in (1), the maximum with respect to the 
X-characteristic is identified by Judgment. 
Among the m  pairs identified in this step, the 
pair that corresponds to the maximum with 
respect to the Y -characteristic is identified. This 
pair is the fourth element in the BVERSS. This 
element is chosen for actual quantification. 

The above 5 steps leads to a BVERSS of 
size 4. The above steps can be repeated, if 
necessary, r times to obtain a sample of size n = 
4r. 

Denote the elements obtained in the 
second step by ( )jj YX ]1[)1( , ; where for 

mj ,....,2,1= , jX )1(  denotes the minimum of 

the m  elements in the jth set and jY ]1[  is the 
corresponding Y -value, where the squared 
brackets is used here to denote the induced rank 
of Y by the actual rank of the X.  
let )(min ]1[)1](1[ jj YY =  and let ]1)[1(X be the 

corresponding X-value then ( ))1](1[]1)[1( ,YX  
denotes the first element in the BVERSS. The 
other three elements of the first cycle are defined 
similarly and will be denoted by  
 
                   ( ))](1[])[1( , mm YX , 

                   ( ))1]([]1)[( , mm YX ,   

                  ( ))]([])[( , mmmm YX . 
 
 

Now for the kth cycle, let 
 

{ ( )kk YX ),1](1[],1)[1( , , ( )kmkm YX ),](1[],)[1( , , 

( )kmkm YX ),1]([],1)[( , , ( )kmmkmm YX ),]([],)[( , } 
 

be the chosen BVERSS, rk ,...,2,1= . 
( )kk YX ),1](1[],1)[1( ,  are independent and identically 
distributed (iid) with common joint density 

)1](1[]1)[1( ,YXf  given by  

 

)(

)|()(
)(),(

]1[

)1(

)1](1[)1](1[]1)[1(

|
, yf

xyfxf
yfyxf

Y

XYX
YYX =  

                         2.1 
where )(

)1(
xf X  is the density of the first order 

statistics of an iid sample from the marginal 
density )(xf X , given by  
 

( ) )()(1)( 1
)1(

xfxFmxf X
m

XX
−−= ;  

 

∫
∞

∞−
= dxxyfxfyf XYXY )|()()( |)1(]1[

; )(
)1](1[

yfY  

is the density of the first order statistics of an iid 
sample from )(

]1[
yfY . Similarly, for the other 

three quantities the joint densities are 
respectively given by: 
 

)(

)|()(
)(),(

]1[

)1(

)](1[)](1[])[1(

|
, yf

xyfxf
yfyxf

Y

XYX
YYX mmm

=

                         2.2 
 

)(

)|()(
)(),(

][

)(

)1]([)1]([]1)[(

|
, yf

xyfxf
yfyxf

m

m

mmm
Y

XYX
YYX =  

                                     2.3 
 

)(

)|()(
)(),(

][

)(

)]([)]([])[(

|
, yf

xyfxf
yfyxf

m

m

mmmmmm
Y

XYX
YYX =

       2.4 (Saleh and Zheng, 2002). 
 
Note that if X and Y are uncorrelated 

then )1(])[1(],1)[1( XdXdX mk  and 
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)(])[(],1)[( mmmkm XdXdX . Similar statements 
can be said about the sY ' . Thus, in this case the 
BVERSS is equivalent to an ERSS sample of size 

r4  from the X-population, and an ERSS sample 
of size 4r from the Y -population. This means 
that there is no gain of using BVERSS instead of 
using ERSS. However, there are situations when 
several characteristics are to be investigated 
simultaneously and using a single combined 
study rather than a separate study for each 
attribute. (Al-Saleh and Zheng 2002).  

On the other extreme, if X and Y are 
perfectly correlated then )1)(1(],1)[1( XdX k ; 

))(1(],)[1( mkm XdX , )1)((],1)[( mkm XdX ; and 

))((],)[( mmkmm XdX . Thus, in this case for the 
first variable, the BVERSS is equivalent to two 
ERSS of size r2  each one from 

)1(Xf  and the 

other from 
)( mXf . Similar statements can be said 

about the Y -variable. Therefore, the advantage 
of BVERSS over the (univariate) ERSS is 
obvious. 

Let 
2 2( ); ( ); ( );

( ) ( , )
E X E Y Var X

Var Y and Corr X Y
µ θ σ τ

ρ
= = = =

=
. 

Assume that there is a BVERSS of size 
rn 4= given by 
{ ( )kk YX ),1](1[],1)[1( , , ( )kmkm YX ),](1[],)[1( , , 

( )kmkm YX ),1]([],1)[( , , ( )kmmkmm YX ),]([],)[( , } 
 
Let 
 

      
(1)[1], (1)[ ], ( )[1], ( )[ ],

4

k

k m k m k m m k

X
X X X X

=
+ + +  

 

then  ∑ =

∧

=
r

k kBVERSS X
r 1

1µ  2.5 is 

an estimator of µ  based on the BVERSS. 

Similarly BVERSS

∧

θ  can be defined as an 
estimator of θ . 

Now, let )( ]1)[1(]1)[1( XE=µ ; 

)( ])[1(])[1( mm XE=µ ; )( ]1)[(]1)[( mm XE=µ ;             

)( ])[(])[( mmmm XE=µ ;  

)( ]1)[1(]1)[1(
2 XVar=σ ; )( ])[1(])[1(

2
mm XVar=σ ; 

)( ]1)[(]1)[(
2

mm XVar=σ ; 

)( ])[(])[(
2

mmmm XVar=σ . 
Then, 

4
)( ])[(]1)[(])[1(]1)[1( mmmm

kXE
µµµµ +++

=  

and

16
)( ])[(

2
]1)[(

2
])[1(

2
]1)[1(

2
mmmm

kXVar σσσσ +++
=

 Hence, 

)( BVERSSE
∧

µ = 

4
)( ])[(]1)[(])[1(]1)[1( mmmm

kXE
µµµµ +++

=  

                                                             2.6 
and 
 

)( BVERSSVar
∧

µ = 

rr
XVar mmmmk

16
)( ])[(

2
]1)[(

2
])[1(

2
]1)[1(

2 σσσσ +++
= . 

                                                             2.7 

Similar formulas can be obtained for BVERSS

∧

θ . 

Note that the performances of BVERSS

∧

µ and 

BVERSS

∧

θ depend on the properties of the joint 
distribution of X and Y. Though not explicitly 
seen in the above formula, the means and 
variances of the two estimators depend on the 
relation between the two variables; Values of 

])[( jiµ  and 2
])[( jiσ  depend on the joint 

distribution of X and Y. 
Now assume that ),( YX  have the joint 

density ),(, yxf YX  which is symmetric in both 

variable around ),( θµ , i.e. 
),(),( ,, θµθµ +−+−=−− yxfyxf YXYX . 

Then each of X and Y has a symmetric marginal 
distribution. As result of that  
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µµ +−− )()1( mXdX  and  

θθ +−− )()1( mYdY . The following lemma 
summarizes other related results. 
Lemma (1): Under the above assumptions exist 
 

i. µµ +−− ][]1[ mXdX  & 

θθ +−− ][]1[ mYdY  

ii. µµ +−− ])[(]1)[1( mmXdX  & 

θθ +−− )]([)1](1[ mmYdY  

iii. µµ +−− )1)((])[1( mm XdX  & 

θθ +−− )1]([)](1[ mm YdY . 
 
Proof: (i) Without loss of generality, assume 
that 0== µθ . Then exist 
 

∫
∞

∞−
= dxxyfxfyf XYXY )|()()( |)1(]1[

 

∫
∞

∞−
−=− dxxyfxfyf XYXY )|()()( |)1(]1[

 

               ∫
∞

∞−
−−−= dxxyfxf XYX )|()( |)1(

 

               ∫
∞

∞−
= dxxyfxf XYX m

)|()( |)(
    

                )(
][

yf
mY=  

For the other variable, the proof is similar. 
 
(ii)  
   ( ) )()(1)(

]1[]1[)1](1[

1 yfyFmyf Y
m

YY
−−=  

   ( ) )()(1)(
]1[]1[)1](1[

1 yfyFmyf Y
m

YY −−−=− −  

                   ( ) )()(
][][

1 yfyFm
mm Y

m
Y

−=  

hence, θθ +−− )]([)1](1[ mmYdY .  

From (2.1), µµ +−− ])[(]1)[1( mmXdX iff 

θθ +−− )]([)1](1[ mmYdY . (iii) follows similarly. 
As a consequence of Lemma (1), the following 

properties of BVERSS

∧

µ  and BVERSS

∧

θ , which can 
be shown easily. 
Lemma (2): Under the above assumptions exist 

i. BVERSS

∧

µ and BVERSS

∧

θ  are unbiased 
estimators of µ  and θ ; respectively. 

ii. )( BVERSSVar
∧

µ
r

m

8
])[1(

2
]1)[1(

2 σσ +
= ; 

)( BVERSSVar
∧

θ
r

m

8
)](1[

2
)1](1[

2 στ +
= . 

Examples: (i) Assume that the marginal 
distribution of X is uniform on the interval 

),0( δ Then it is straight forward to show that 

1)1( +
=

m
δµ ; 

1)( +
=

m
m

m
δµ ; 

)2()1( 2

2
)(

2
)1(

2

++
==

mm
m

m
δσσ . Thus 

the efficiency of ERSS

∧

µ  with respect to the 

mean X of a simple random sample of 
equivalent size is  

            
m
mmXeff ERSS 12

)1)(2();(
2++

=
∧

µ . 

This is the same quantity reported by Samawi et 

al. (1996). From this formula, );( Xeff ERSS

∧

µ  is 
always larger than 1; its value for 

64,2 andm= are, respectively, 1.50, 3.13 and 
5.44. It can be shown that (with 1=δ ) that 
 
    112 ))1(1()1()(

)1)(1(

−− −−−= mmm
X xxmxf  

    12 2

))(1(
)1()( −−= m

X xmxf
m

 

     112 )1()(
)1)((

−− −= mmm
X xxmxf

m
 

    12 2

))((
)( −= m

X xmxf
mm

 

 
Thus, for any given m ; the mean and variance 
of each of these can be obtained easily. In the 

best situation when 1=ρ , );( Xeff MVERSS

∧

µ  
can be obtained for any value of m . The values 
of this efficiency for 64,2 andm=  are 
respectively 2.19; 4.07 and 5.95. 
(ii) Assume that the marginal distribution of X is 
exponential with mean µ   In this case, as 
shown numerically by Samawi et al. (1996), 

);( Xeff ERSS

∧

µ  is decreasing in m ; its values 
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for 64,2 andm= are respectively 1.33; 1.17 
and 0.75. It can be shown that (with 1=δ ) that 

xm
X emxf

2

)1)(1(

2)( −=  
12 )1()(

))(1(

−−− −= mmxmx
X eemxf

m
 

112 ))1(1()1()(
)1)((

−−−−− −−−= mmxmxx
X eeemxf

m

 
12 2

))((
)1()( −−− −= mxx

X eemxf
mm

 

Thus, for any given m ; the mean and 
variance of each of these can be obtained easily. 
In the best situation when 1=ρ , 

);( Xeff BVERSS

∧

µ  can be obtained for any value 
of m . Using Scientific work place, 

);( Xeff BVERSS

∧

µ  was evaluated for some 
values of m . For 64,2 andm= , the efficiency 
found to be respectively, 1.82; 1.36 and 0.78: 
Thus the estimator here doesn't perform well. 
Note that the distribution in this case is not 
symmetric and the estimator is biased. Next 
presented is a case of bivariate normal 
distribution. 

Assume next that ),( YX  has the 
bivariate normal density given by 

 

                 ),(, yxf YX =
212

1
ρτσπ −

      

        
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛ −

+⎟
⎠
⎞

⎜
⎝
⎛ −

−
−

τ
θ

σ
µ

τ
θ

σ
µ

ρ
yxyx

e

22

2 )1(2
1

 
where, µ ,θ , 2σ , 2τ  , and ρ  are, respectively, 
the mean of X, the mean of Y , the variance of X, 
the variance of Y , and the correlation between X 
and Y . Denote this bivariate normal density by 

),,,,( 22
2 ρτσθµN .  Using (2.1) above, the 

joint density of )1](1[]1)[1( ,YX  can be written as 

)(

)|()(
)(),(

]1[

)1(

)](1[)](1[])[1(

|
, yf

xyfxf
yfyxf

Y

XYX
YYX mmm

=

             3.1 
 

),|()())(1())(1( |
112

]1[
xyfxfxFyFm XYX

m
X

m
Y

−− −−=  

                                                             3.2 
 

and the joint density of )](1[])[1( , mm YX  can be 
written as 
 

)(

)|()(
)(),(

][

)(

)1]([)1]([]1)[(

|
, yf

xyfxf
yfyxf

m

m

mmm
Y

XYX
YYX =

             3.3 
 

),|()())(1())(( |
112

]1[
xyfxfxFyFm XYX

m
X

m
Y

−− −=
                                     3.4 
 

For simplicity assume 0==θµ  and 

122 ==τσ , (easily one can go back to the 
general case), then it can be shown that 

)()
2

()(2)(
]1]1[ 2

yfxxyf
mYY −=

−

−
Φ=

ρ

ρφ wh

ere φ  & Φ  are, respectively, the density and 
the cumulative distribution function of the 
standard normal distribution. Hence, 

),(
)1](1[]1)[1( , yxf YX = 

12 ))(( −−Φ mxm ),(, yxYXφ              

[ ] 1

2
)

2
()(2 −

∞−∫ −

−
Φ my

dzzz
ρ

ρφ  

),(
)](1[])[1( , yxf

mm YX = 
12 ))(( −−Φ mxm ),(, yxYXφ

[ ] 1

2
)

2
()(21 −

∞−∫ −

−
Φ− my

dzzz
ρ

ρφ  

and, 
 

)(
]1)[1(

xf X = 

12 ))(( −−Φ mxm { ),(, yxYXφ∫
∞

∞−

[ ] }dydzzz my 1

2
)

2
()(2 −

∞−∫ −

−
Φ

ρ
ρφ  
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)(
])[1(

xf
mX = 12 ))(( −−Φ mxm  

{ ),(, yxYXφ∫
∞

∞−

[ ] }dydzzz my 1

2
)

2
()(21 −

∞−∫ −

−
Φ−

ρ
ρφ  

 
The mean and variance of ])[1(]1)[1( mXandX  
can be evaluated numerically and hence the 

variance of the unbiased estimator BVERSS

∧

µ  can 
be obtained. Its efficiency with respect to the 
sample mean of a simple random sample of 
equivalent sample size can be obtained. Since 
the efficiency depends on ρ , it will be denoted 

by );( Xeff BVERSS

∧

µ . 
 
 
 
 
 
 
 
 

 

If 0=ρ , then );(0 Xeff BVERSS

∧

µ = 

);( Xeff ERSS

∧

µ . In this case the efficiency was 
reported by Samawi et al. (1996). For 

64,2 andm= , it is, respectively, 1.47; 2.03; 
2.39. 

If 1=ρ , it can be shown that 

)()()( 12 2

)1)(1(
xxmxf m

X φ−Φ= −
  

                                     3.9 
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m x x xφ− −

=

−Φ − Φ −
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The variance of ))(1()1)(1( mXandX  were 
obtained using Scientific Work Place. Based on 

these values );( Xeff BVERSS

∧

µ  is calculated for 
some values of m . The results are given in the 
following table. 
 
 
 
 

 

Table 1. Efficiency of );(1 Xeff BVERSS

∧

µ  with respect to X for 1,0=ρ . 
 

m  2
)1)(1(σ  2

))(1( mσ  );(1 Xeff BVERSS

∧

µ );(0 Xeff BVERSS

∧

µ = );( Xeff ERSS

∧

µ  
2 0.4989 0.4389 2.15 1.47 
4 0.2949 0.1996 4.04 2.03 
6 0.2344 0.1295 5.05 2.39 
     

Table 2. Efficiency of BVERSS

∧

µ  with respect to X  based on 5000 simulation. 
m  10.0=ρ  30.0=ρ 50.0=ρ 70.0=ρ 90.0=ρ  
2 1.49 1.51 1.59 1.74 1.98 
4 2.10 2.12 2.33 2.62 3.34 
6 2.34 2.54 2.82 3.45 4.42 
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For other values of ρ , the marginal 

densities of ])[1(]1)[1( mXandX  given by (3.7 
and 3.8 ) can't be simplified further. Based on 
simulation with 5000 replications, the efficiency 
for some values of ρ  is given in Table 2. 

Next, to compare BVERSS with the 
usual BVRSS, i.e. to find the efficiency of 
BVRSS with respect to SRS for estimating µ . 
This efficiency was calculated for 32 andm=  
by Al-Saleh and Zheng (2002). Table 3 contains 
this efficiency for 64,2 andm= . 

It is clear that when 2=m  then 
BVERSS is the same as BVRSS. Table 1 and 
Table 2 show that the BVERSS is substantial 
more efficient than SRS and comparing with 
Samawi et al. (1996), it is more efficient than 
ERSS and RSS in case of bivariate normal 
distribution. Also, the efficiency of BVRSS w.r.t. 
SRS is increasing with increasing the set size m  
and the correlation coefficient ρ . Although 
Table 3 shows that BVRSS is more efficient than 
our proposed BVERSS assuming no error in 
ranking, BVERSS still more practical than 
BVRSS and less prone to ranking error. 
 

 
 
 
 

 

 

 
Results 

 
The BVERSS estimation procedure is illustrated 
using a real data set which consists of the height 
(Y) and the diameter (X) at breast height of 399 
trees. See Platt et al. (1988) for a detailed 
description of the data set. The summary 
statistics of the original data are reported in 
Table 4. Note that the correlation coefficient 

908.0=ρ . 
In this article, ranking is performed on 

the both variables exactly measured. However, 
in practice ranking is done before any actual 
quantification. Using a set size 4=m  and cycle 
size 4=r , bivariate SRS, BVRSS and BVERSS 
of size 16 are drawn. The analysis to the tree 
data showed that the distributions of X and Y 
have skewed to the right shape. So to compare 
between BVERSS and BVRSS  the means for the 
transformed data by using the natural logarithm 
were estimated. Table 5 contains all the above 
proposed estimators using the drown samples. 
Also, provided are estimates for the efficiency 
based on 1000 repeated sampling. 
 
Table 4. Summary statistics of trees data. 
 

Variable Mean Variance 
Height (Y) in feet 52.36 325.14 
Diameter (X) in cm 20.84 310.11 
 

 

Table 3. Efficiency of BVRSS

∧

µ  with respect to X  based on 5000 simulation. 
m  00.0=ρ  10.0=ρ  30.0=ρ  50.0=ρ  70.0=ρ  90.0=ρ  
2 1.47 1.49 1.51 1.59 1.74 1.98 
4 2.30 2.54 2.60 2.74 3.13 4.17 
6 3.05 3.16 3.43 3.67 4.84 6.92  

 
Table 5. Results of the selected samples of transformed trees data. 

 

Variable Mean 
( ; )
eff
BVRSS SRS ( ; )

eff
BVERSS SRS

 

Ln (Height (Y)) 3.39 5.02 4.97 

Ln (Diameter (X)) 2.61 4.82 4.88 
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Conclusion 
 
From the above results, support exists that 
BVERSS procedure can be, in some situations, 
much better than the bivariate SRS, ERSS and 
RSS (using concomitant variable) sampling 
methods for estimating the distribution means of 
multiple characteristics. Also, BVERSS provides 
unbiased estimators for distribution means in 
case of symmetric marginal distributions. 
Finally, BVERSS is more practical than BVRSS 
and less prone to ranking error. 
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