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Kernel-Based Estimation of P(X < Y)With Paired Data

Omar Eidous
Department of Statistics
Irbid — Jordan

Ayman Baklizi
Department of Statistics
Irbid — Jordan

A point estimation of P(X <Y) was considered. A nonparametric estimator for P(X <Y) was developed

using the kernel density estimator of the joint distribution of X and Y, may be dependent. The resulting
estimator was found to be similar to the estimator based on the sign statistic, however it assigns smooth
continuous scores to each pair of the observations rather than the zero or one scores of the sign statistic.
The asymptotic equivalence of the sign statistic and the proposed estimator is shown and a simulation
study is conducted to investigate the performance of the proposed estimator. Results indicate that the

estimator has a good overall performance.
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Introduction

Let (Xl,Yl),...,(Xn,Yn) be a sample of n

independent pairs of possibly dependent jointly
distributed random variables (X,Y). The aim is
to estimate p =P(X <Y) using this
information. The problem of estimation the
stress-strength reliability arises naturally in the
context of mechanical reliability of a system
with strength X and stress Y. The system fails
any time its strength is exceeded by the stress
applied to it. Another interpretation of p is that it
measures the effect of the treatment when X is
the response for a control group and Y refers to
the treatment group. Other applications can be
found in Johnson et. al. (1994) and the
references therein.
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The sign statistic (Lehmann, 1975) is
n

defined as  S=) ¢(X;,Y;)  where
=

#(X;,Y,)=1if X, <Y; and 0 otherwise. It is

1701
readily seen that

E(S)= E(iznl:(;s(xi Y )J =nP(X <Y),

therefore an unbiased estimator for p is given by

b, =%E@¢(xi,vi)}

Develop in this article is a new estimator
for P(X <Y) using kernel methods

(Silverman, 1986). The kernel density estimators
are used instead of the true unknown density and
the estimator of p is introduced with some of

its large sample properties. A simulation study
was conducted to evaluate the performance of
the proposed estimator and compare it with the

estimator ;.

Methodology

The Kernel — Based Estimator
Let (xl'Yl)i(XZ’YZ)"”!(Xn7Yn) be
N independent pairs drawn from the distribution
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with joint probability density function f(x, y).
The desired parameter p to estimate is

p=P(X <Y)= _Hf(x,y)dxdy. (1)

—00—00

In this article a nonparametric kernel method is
used to estimate p. The kernel estimator of the

two dimensional probability density function f
at (x,y) is defined as (Scott, 1992).

- 1 X=X, y-Y,
f(x’y)‘nhlhng[ h JK( n, J
(2)

where h, and h, are positive nhumbers control
the smoothness of the fitted curve, usually called
bandwidths or smoothing parameters. K(u) is a

kernel function which is a symmetric probability
density. Comprehensive reviews of the kernel
method are available in Silverman (1986); Scott
(1992); Wand and Jones (1995). The proposed
estimator of the parameter p is constituted by
substituting formula (2) in (1) as an estimator for
f (X,y). The resulting estimator is of the form

A 1 n X X_Xi y_Yi
= i 2 KT o

_ @3)

If the two random variables X and Y are
defined on the positive real line, transform the
positive data by taking logarithms of each
observation as suggested by Silverman (1986).

To construct the kernel estimator p,
kernel function K and smoothing parameters
h, and h, must be chosen. For example, the
widely used criterion is to choose K, h, and h,
that minimize the mean integral square error

(MISE) of f(x,y). As many authors stated,
there is very little to choose between the various
kernels as they all contribute the similar amount
to the MISE (See Silverman, 1986 and Wand
and Jones, 1995). The based-data formulas to
choose h, and h, are given later in this paper.

Large Sample Properties
Consider the following transformation,
X=X =Y,
= L and v= y— i
hy h,

noow (vho+Yi= X )/
:—Z _[ J'K(u)K (v)dudv .
i=1 _ —o
Since the kernel function K is a probability
density function. When hy -0 and h, -0
such that h, =O(h,) as n — oo the summand
will be either zero or one depending on whether
X, >Y, or X, <Y,. Hence the integral

approaches one if X, <Y, and zero if X, >, .

it follows that

Thus the limiting value of p, is
—EZgb(Xi,Yi) which is the estimator

based on the sign statistic. Consider,
E(f,) = ZE (X:.Y)
=—Z P(X <Y)
Nz

=P(X <Y).
Also

var(p,) = 2var (X,,Y,))

=L var(p(x,Y))

n
1

=—p@l-p).
n
Because P, and P, are asymptotically
equivalent, it follows that P, is asymptotically

unbiased. Because the variance of p, tends to
zero as N — oo, the proposed estimator is
consistent. The limiting distributions of P, and

P, are also the same.
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Small Sample Performance of the Estimators

To implement the estimator p, in
practice the kernel function K and the
smoothing parameters h, and h, need to be

chosen. Consider the following two kernel
functions. The standard normal kernel :

Kl (U) — (27[)_1/26_”2/2,

—o<U<o
The rectangular kernel :
1/2, -1<u<l
Kz(u) = . '
0, otherwise

Note here that if u = (X— X;)/h, then

X=X Z(X=X:)2/2h2
Kl[ - lj:(zﬂ_)—lﬂe (X X|) 12hy

1

—00 < X <00
and

— X, 1/2,
K,| =2 |=

h, 0,
By adopting K, it is easy to show that (3)
becomes

—-h + X, <x<h +X,
otherwise '

A

P,

h n % e-(r&twi—xi)z/ (2h22)dt-

i=1

(4)

where ®(t) is the normal distribution function
at t. The estimator P, which is given by

equation (4) cannot be written in closed form, so
derive the estimator p, corresponding to K, . If

K, is adopted in (3) then we need to study six
cases to find the double integral arises in (3). Let
a(i)=-h, +X;; b(i)=h, +X,;
c(i)=—h,+Y, and d(i)=h,+Y,, where
i=12,---,n. Notice that, a(i)<b(i) and
c(i) < d(i) . The proposed estimator is given by

P, nh 3 IZ_I:Q, , where

T e[ X=X y-Y,
Qiz_”K( h1 JK( hz jdxdy,then

Casel: If d(i) < a(i) then Q, =0
Case2: If b(i) < c(i) then Q, =hh,
Case3: If c(i) <a(i) <b(i) < d(i) then

b(i) pd (i) 1
=l g

:%(b(i)d(i)—b(i)z /2—a(i)d(i)+a(i)*/2)
Case4: If a(i) <c(i) < d(i) <b(i) then
d (i) 1
.[(.) L(i)ZdXdy
:%(d(i)z [2—a(i)d (i) —c(i)®/2+a(i)c(i)).
Case5: If c(i) <a(i) < d(i) <b(i) then
d (i) 1
I(.) L(i)ZdXdy
:%(d(i)z [2+a(i)?/2-a(i)d(i)).
Case6: If a(i) < c(i) <b(i) < d(i) then
cMpad 1 b(i)pd (i) 1
»[(|).[(|) 4 I .[ _d d
=%1(—(c(i)2 +b(i)?)/2+d(i) (0(i) —a(i))+a(i)c(i)).

On the other hand, the simulation results
are depended on the following formulas to

choose the smoothing parameters h, and h,
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which based on minimizing the asymptotic mean
integral square error and by assuming the
bivariate normal distribution and the rectangular

kernel K, (Scott, 1992)

h, =1.745(1- p°)*"? L+ p?12) °, n7V°
h2 :1-745(1_p2)5/12(1+p2 /2)_1/662 n—l/G’

where o,, o, and o are the standard

deviations and the correlation coefficient
respectively, they are estimated from the data.
The performances of the sign estimator and the
proposed estimator were investigated and
compared. The criteria of the bias and mean
squared error are used. The relative efficiency of
the proposed estimator to the sign estimator is
calculated as the ratio of mean squared errors.

A simulation study was conducted to
investigate the performance of the estimators.
The indices of our simulations are:
n =10, 20,40 p: the true value of p=p(X<Y)
and is taken to be 0.1,0.3,..., 0.9.

The distribution from which the data are
generated: two cases were considered:;

1) The bivariate normal
distribution (X,Y)~ BVN(0, 1,1,1, p) where
p s taken as -.8, -0.4, 0, 0.4, 0.8 and u is
chosen such that we get p=p(X<Y) as chosen
above.

2) The Gumbel bivariate
exponential distribution (Johnson & Kotz, 1970)
with probability density function

g(x,y)=e I (1+a(2e* ~1)2¢e7 -1)),
x>0,y >0.

The parameter « is chosen such that
the correlation (r) between X and Y is -0.4, -
0.2, 0, 0.2, 0.4. The variable X is transformed
such that we get p=p(X<Y) as chosen above.
For each combination of n and p, 1000 samples
were generated for (X,Y). The estimators are
calculated and the following quantities are
obtained for both estimators:

The bias of the estimators,
l 1000( ( ) )

Bias=—— ) (p,’ —

1000 & Pz =P
Mean squared errors,

1 1000, )
MSE, = M _p),j=1,2
J 1000 ) (pl p) J
.. MSE

Efficiency = SE, . The results are presented

2
in Tables 1 - 2.

Conclusion

Because the results for both kernels are similar,
only the results for the uniform kernel are given.
The results are presented in Table 1. In both
cases of bivariate normal parent distribution and
the bivariate exponential case, it is clear that the
efficiency of the proposed estimator relative to
the sign estimator is greater than one in all cases
considered. Concerning the bias performance, it
appears that the proposed estimator is almost
unbiased. Overall it appears that the proposed
estimator has a good performance, this
performance may be improved when using more
sophisticated types of kernels, bandwidth
selection rules, and bias corrections.
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Table 1: Mean Squared Errors and Efficiencies of the Estimators in the Bivariate Normal Case

n | p D Var Bias MSE EFF | N P D var Bias MSE  EFF

10 | .0.80 0.10 | 0.009 0.003 0.009 1.052 0.40 0.10 | 0.005 0.006 0.004 1.128
-0.80 0.30 | 0.021 0.001 0.021 1.027 040 0.30 | 0.011 0.003 0.009 1.129
-0.80 0.50 | 0.025 -0.011 0.025 1.032 040 0.50 | 0.013 0.005 0.010 1.174
-0.80 0.70 | 0.021 0.005 0.020 1.042 040 0.70 | 0.011 0.002 0.009 1.152
-0.80 0.90 | 0.009 -0.001 0.009 1.045 0.40 0.90 | 0.005 0.000 0.004 1.128
-0.40 0.10 | 0.009 0.001 0.008 1.132 0.80 0.10 | 0.005 0.002 0.004 1.114
-0.40 0.30 | 0.021 -0.005 0.019 1.083 0.80 0.30 | 0.011 -0.003 0.009 1.109
-0.40 0.50 | 0.025 -0.002 0.023 1.101 0.80 0.50 | 0.013 -0.004 0.011 1.102
-0.40 0.70 | 0.021 0.003 0.019 1.099 0.80 0.70 | 0.011 0.000 0.009 1.080
-0.40 0.90 | 0.009 0.002 0.008 1.120 0.80 0.90 | 0.005 0.000 0.004 1.175
0.00 0.10 | 0.009 -0.002 0.007 1.188 |40 |.0.80 0.10 |0.003 0.000 0.002 1.037
0.00 0.30 |0.021 0.000 0.019 1.135 -0.80 0.30 | 0.006 -0.001 0.005 1.023
0.00 0.50 |0.025 -0.002 0.023 1.132 -0.80 0.50 | 0.007 0.002 0.006 1.032
000 0.70 | 0.021 0.005 0.018 1.126 -0.80 0.70 | 0.006 0.003 0.005 1.034
0.00 0.90 | 0.009 -0.003 0.008 1.123 -0.80 0.90 | 0.003 0.000 0.002 1.030
0.40 0.10 | 0.009 0.007 0.007 1.184 -0.40 0.10 | 0.003 0.001 0.002 1.074
040 0.30 | 0.021 0.003 0.018 1.147 -0.40 0.30 | 0.006 0.006 0.005 1.079
0.40 050 | 0.025 -0.002 0.020 1.129 -0.40 0.50 | 0.007 -0.003 0.006 1.109
040 070 | 0.021 -0.004 0.019 1.178 -0.40 0.70 | 0.006 0.000 0.005 1.115
040 0.90 | 0.009 -0.001 0.007 1.134 -0.40 0.90 | 0.003 -0.001 0.002 1.106
0.80 0.10 | 0.009 0.002 0.007 1.154 0.00 0.10 | 0.003 0.002 0.002 1.112
0.80 0.30 | 0.021 0.001 0019 1.144 0.00 0.30 | 0.006 0.004 0.005 1.132
0.80 0.50 | 0.025 0.002 0.023 1.147 0.00 0.50 | 0.007 0.000 0.005 1.104
080 0.70 | 0.021 -0.004 0.019 1.106 0.00 0.70 | 0.006 0.001 0.004 1.124
0.80 0.90 | 0.009 0.006 0.008 1.145 0.00 0.90 | 0.003 -0.004 0.002 1.164

20 | 080 0.10 | 0.005 0.000 0.004 1.048 0.40 0.10 | 0.003 0.000 0.002 1.145
-0.80 0.30 | 0.011 0.002 0.011 1.027 0.40 0.30 | 0.006 -0.002 0.004 1.144
-0.80 0.50 | 0.013 0.004 0.012 1.030 040 0.50 | 0.007 -0.001 0.006 1.130
-0.80 0.70 | 0.011 0.000 0.011 1.022 040 0.70 | 0.006 0.001 0.005 1.165
-0.80 0.90 | 0.005 0.001 0.004 1.049 0.40 0.90 | 0.003 -0.003 0.002 1.161
-0.40 0.10 | 0.005 -0.002 0.004 1.093 0.80 0.10 | 0.003 -0.001 0.002 1.093
-0.40 0.30 | 0.011 0.000 0.009 1.097 0.80 0.30 | 0.006 0.000 0.005 1.090
-0.40 0.50 | 0.013 0.000 0.011 1.092 0.80 0.50 | 0.007 -0.001 0.006 1.094
-0.40 0.70 | 0.011 0.003 0.009 1.113 0.80 0.70 | 0.006 -0.004 0.005 1.082
-0.40 0.90 | 0.005 0.000 0.004 1.111 0.80 0.90 | 0.003 -0.001 0.002 1.090
0.00 0.10 | 0.005 0.001 0.004 1.178
0.00 0.30 | 0.011 0.004 0.009 1.148
000 050 |0.013 -0.001 0.011 1.152
000 0.70 | 0.011 -0.003 0.009 1.110
0.00 0.90 | 0.005 -0.001 0.004 1.120
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Table 2: Mean Squared Errors and Efficiencies of the Estimators in the Bivariate Exponential Case

(r) n pl| VAR Bias MSE EFF (") n P VAR Bias MSE EFF
04 10 01 |0.009 -0019 0006 1266 | 02 10 01 0011 0032 0.009 1.158
0.4 0.3 0021 -0.028 0.014 1.303| 0.2 0.3 0.021 0.029 0017 1.268
-0.4 0.5|0.025 0004 0019 1.320| 0.2 0.5 0.024 -0.007 0.019 1.266
0.4 0.7 | 0.021 0.029 0.016 1.266 | 0.2 0.7 0.022 -0.021 0.018 1.263
-0.4 0.9 | 0.009 0.017 0.006 1.202 | 0.2 0.9 0.010 -0.024 0.009 1.150
04 20 010005 -0024 0003 1.232| 02 20 01 0.005 0.024 0.005 1.153
-0.4 0.3 0011 -0.035 0.009 1.316| 0.2 0.3 0.011 0.029 0.010 1.242
-0.4 0.5 | 0.013 -0.002 0.009 1.260 | 0.2 0.5 0.013 -0.003 0.010 1.328
-0.4 0.7 | 0011 0.034 0.009 1.334| 0.2 0.7 0.011 -0.020 0.009 1.206
-0.4 0.9 | 0.005 0.021 0.003 1.191| 0.2 0.9 0.005 -0.030 0.005 1.119
04 40 010003 -0.024 0002 1292 | 02 40 01 0003 0.025 0.003 1.056
-0.4 0.3 | 0.006 -0.036 0.005 1.319 | 0.2 0.3 0.006 0.024 0.005 1.186
-0.4 0.5 | 0.007 0.005 0.005 1.298 | 0.2 0.5 0.007 -0.003 0.005 1.300
-0.4 0.7 | 0.006 0.036 0.005 1.320 | 0.2 0.7 0.006 -0.021 0.004 1.183
-0.4 0.9 | 0.003 0.023 0.002 1.220| 0.2 0.9 0.003 -0.025 0.003 1.066
02 10 01 |0.009 -0.006 0007 1190| 04 10 01 0013 0046 0.012 1.119
0.2 0.3 0021 -0.018 0.016 1277 | 0.4 0.3 0.024 0.041 0.019 1.244
0.2 0.5 | 0.025 -0.005 0.019 1.326 | 0.4 0.5 0.025 0.001 0.019 1.294
0.2 0.7 0021 0011 0016 1.255| 0.4 0.7 0.023 -0.037 0.019 1.232
0.2 0.9 | 0.009 0.008 0.007 1.200 | 0.4 0.9 0.013 -0.047 0011 1.135
02 20 0.1 |0005 -0010 0.003 1.243| 04 20 01 0.005 0.050 0.008 1.074
0.2 0.3 0.011 -0.010 0.008 1.275| 0.4 0.3 0.011 0.043 0011 1.161
0.2 0.5|0.013 0.000 0.009 1.329 | 0.4 0.5 0.013 -0.001 0.010 1.364
0.2 0.7 0.011 0.016 0.009 1.303| 0.4 0.7 0.011 -0.040 0.010 1.204
0.2 0.9 | 0.005 0.009 0.004 1.210 | 0.4 0.9 0.005 -0.046 0.007 1.098
02 40 010003 -0010 0002 1.262| 04 40 01 0.003 0.048 0.005 0.986
0.2 0.3 0.006 -0.013 0.004 1.288 | 0.4 0.3 0.006 0.034 0.006 1.135
0.2 0.5 | 0.007 0.001 0.005 1.292| 0.4 0.5 0.007 0.000 0.005 1.302
0.2 0.7 | 0.006 0.016 0.004 1.258 | 0.4 0.7 0.006 -0.039 0.006 1.099
0.2 0.9 | 0.003 0.010 0.002 1241 | 0.4 0.9 0.003 -0.046 0.004 0.976

00 10 01 |0005 0.005 0.007 1.232
0.0 0.3]0.011 0.006 0017 1.275
0.0 0.5|0.013 0001 0.018 1.299
0.0 0.7 | 0011 -0.011 0.017 1.306
0.0 0.9 | 0.005 -0.006 0.007 1.192
0.0 20 010005 0.006 0.004 1.225
0.0 0.3]0.011 0012 0.009 1.256
0.0 0.5 | 0.013 -0.004 0.009 1.271
0.0 0.7 | 0.011 -0.007 0.008 1.257
0.0 0.9 | 0.005 -0.007 0.004 1.215
0.0 40 010003 0.005 0.002 1.179
0.0 0.3 0.006 0.006 0.004 1.235
0.0 0.5 | 0.007 -0.002 0.005 1.264
0.0 0.7 | 0.006 -0.008 0.004 1.278
0.0 0.9 | 0.003 -0.005 0.002 1.155
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