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Some Improvements in Kernel Estimation Using Line Transect Sampling 
 

Omar M. Eidous 
Department of Statistics, Faculty of Science 

Yarmouk University 
 

 
 
Kernel estimation provides a nonparametric estimate of the probability density function from which a set 
of data is drawn. This article proposes a method to choose a reference density in bandwidth calculation 
for kernel estimator using line transect sampling. The method based on testing the shoulder condition, if 
the shoulder condition seems to be valid using as reference the half normal density, while if the shoulder 
condition does not seem to be valid, we will use exponential reference density. Accordingly, the 
performances of the resultant estimator are studied under a wide range of underlying models using 
simulation techniques. The results demonstrate the improvements that can be obtained by applying this 
technique. 
 
Key words: Line transect method; kernel density estimation; shoulder condition 
 
 

Introduction 
 
Line transect sampling is an important technique 
to estimate population density D  of objects in a 
given region. In line transect sampling an 
experimenter moves across the region following 
a specific line with length L  looking to the right 
and to the left of the line and records the 
perpendicular distance ( iX ) from each detected 
object to the centerline. Assume that n  objects 
has been sighted and the objects on the transect 
line are seen with probability one. Burnham and 
Anderson (1976) introduced the fundamental 
relation for estimating the density of objects D  
satisfies the following relationship 
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where )(xf  is the conditional density of the 
line transect distances, given the object is 
observed. In order to estimate D , one needs to 
estimate )0(f  which is the crucial problem in 
line transect estimation. When )0(f  estimate by 

an appropriate estimator )0(f̂ , D  can be 
estimated by 

L
fnD
2

)0(ˆ
ˆ = . 

 
Hence, the key aspects in line transect sampling 
turns out to be modeling )(xf  as well as the 
estimation of )0(f . 

Various methods have been proposed to 
estimate )0(f  in literature. A parametric 
approach assuming that )(xf  is a member of a 
family of proper probability density function of 
known functional form but depend on an 
unknown parameter(s) θ , where θ  may take a 
vector value and should be estimated by using 
the perpendicular distances. Estimate θ  by θ̂  
will lead to )ˆ,0()0(ˆ θff = , and there is 
extensive literature on the use of the maximum 
likelihood techniques for estimation of )0(f . 
See for example, Burnham and Anderson 
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(1976); Pollock (1978); Burnham et al. (1980) 
and Buckland (1985). 

To remove the model-dependence of the 
estimator, nonparametric approaches to estimate 

)0(f  can be implemented. A Fourier series is a 
nonparametric method has been studied in 
details by Burnham et al. (1980). Recent works 
has focused on employing the nonparametric 
kernel method. Some initial efforts in applying 
the kernel method to line transect sampling have 
been made by Buckland (1992); Chen (1996) 
and Mack and Quang (1998). 

It has been widely regarded that the 
performance of the kernel methods depends 
largely on the smoothing parameter (bandwidth), 
and depends very little on the form of the kernel 
(Silverman, 1986), see also the latest three 
works mentioned above. In this paper we 
suggest a new estimator for )0(f .  

The estimator is developed based on the 
kernel method itself, while Mach and Quang 
(1998) recommended using the bandwidth 
referenced to half normal model; the proposed 
estimator using the bandwidth reference to half 
normal or negative exponential models depends 
on testing the shoulder condition. The bandwidth 
parameter is selected using the half-normal 
model as a reference when the shoulder 
condition is true, that is, 0)0( =′f , while the 
negative exponential model is used when the 
shoulder condition is not true, that is 0)0( ≠′f . 

 In other words, to apply the proposed 
estimator we need to test whether the dataset at 
hand satisfies the shoulder condition or not. The 
bandwidth parameter is chosen by assuming the 
half normal as the underlying model if the test is 
accepted and by assuming the negative 
exponential model if the test is rejected. This 
method is studied using the simulation technique 
and the resultant estimator is compared with 
Mack and Quang (1998)’s estimator. 

 
Methodology 

 
Let nXXX ,...,, 21  be a random sample of 
perpendicular distances of size n  with unknown 
probability density function )(xf . The kernel 

estimator )(ˆ xf k  of )(xf  for 0≥x  is (Chen, 
1996) 
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where K  is a symmetric kernel function and h  
is the smoothing parameter usually called 
bandwidth, where both K  and h  are under the 
control of the user. Accordingly, the kernel 
estimator of )0(f  is given by 
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As many authors stated, it is very little to choose 
between the different kernel functions (See for 
example Silverman, 1986; Wand & Johns, 
1995). The crucial problem in kernel density 
estimation is to select the bandwidth parameter 
h . The bandwidth controls the smoothness of 
the fitted density curve. A larger h  gives 
smoother estimate with smaller variance and 
larger bias. A smaller h  produces a rougher 
estimate with larger variance and smaller bias. 
One of the most common methods in 
nonparametric estimation is to find h  that 
minimizing the asymptotic mean integral square 
error (AMISE) or to minimize the asymptotic 
mean square error (AMSE) which compromises 
between the variance and bias of the estimate. In 
the remaining of this section we derive the 
AMSE of )0(ˆ

kf . The expected value of )0(ˆ
kf  -

which is given by (2)- is  
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Suppose that the underlying probability density 
function )(xf  has a second-order derivative. 
Let hxu /1=  and using Taylor’s series to 
expand )(huf  around zero. Then, if 0→h  as 

∞→n , 
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Suppose that the shoulder condition is true (i.e. 

0)0( =′f ), then the bias of )0(ˆ
kf  is 

( ) )()()0()0(ˆ 3

0

22 hOduuKufhfBias k +′′= ∫
∞

, 

this indicates that the asymptotic bias of kernel 
estimator is of order )( 2hO  under assumption 
that the shoulder condition holds. If h  is related 
to n   in such a way that 0→h  and ∞→nh  
as ∞→n , then the variance of  )0(ˆ

kf  is  
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It is obvious that as ∞→nh , a 1)( −nhO  
variance is achieved. Accordingly, the AMSE of 

)0(ˆ
kf  is given by  
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where the first term in the right hand side of (3) 
is the squared bias and the second term is the 
variance.  
 
Kernel and Bandwidth Selections

 Consider the ( ))0(ˆ
kfAMSE  - that is 

given by (3) - as a function of h  (say )(hg ), 
then differentiate )(hg  with respect to h  and 
equating to zero, we get  
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If the kernel function is chosen as the standard 
normal function, that is )()(1 uuK φ= , it is at 
once apparent that Equation (4) further 
simplifies to  

      5/1
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The value of 1h  can be substituted back into (3) 
to give as the minimum achievable AMSE for 

)0(ˆ
kf  given by  

 
    [ ] [ ] 5/45/45/2 )0()0(7684.0 −′′ nff .          (6) 

 
On the other hand, if the kernel function is 
chosen as the rectangular function, that is 

 1u if , 1)(2 <−= uuK  and zero otherwise, 
(Silverman, 1986) then Equation (4) simplifies 
to  

    5/1
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Correspondingly, if the value of 2h  is 
substituted back into (3) then the minimum 
achievable AMSE for )0(ˆ

kf  is given by  
 

[ ] [ ] 5/45/45/2 )0()0(7908.0 −′′ nff .          (8) 
 
Comparing (6) and (8), the two quantities has 
the same convergence rates as ∞→n . If 

∞<n  then (6) is slightly smaller than (8). In 
other words, the efficiency that can be obtained 
when 2K  is used instead of 1K  is less than 3% 
in the basis of the AMSE.  

This conclusion supports the well 
known result that says, there is a very little to 
choose between the different kernel functions as 
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they all contribute the similar amounts to the 
AMSE. Actually, among the different five 
kernels which are given in Silverman (1986, pp. 
43) if the Epanchnikov kernel is used instead of 
the standard normal kernel then we obtain the 
maximum efficiency which is less than 4.1%.  

Silverman (1986) presented a table 
contains the efficiencies of different kernel 
functions with respect to Epanchnikov kernel. 
His comparative study is achieved on the basis 
of the AMISE instead of the AMSE (that we 
adopted here) and with data support defined on 
the entire of the real line, while in this study the 
data support is defined on the positive half of the 
real line. Accordingly, in the rest of this paper 
our derivations and computations are based on 
the standard normal kernel function ( 1K ). This 
kernel is differentiable and has all-order 
derivatives that are required.  

The value of 1h  is based on the 
parameter )0(f  that we aim to estimate it. 
Buckland (1992) and Mack and Quang (1998) 
overcame this problem by assuming the half 
normal model as the underlying model of the 
data and their formula based on minimizing the 
AMISE of the kernel estimator is given by  

 
                   -1/5  06.1 nh σ=                        (9) 

 
where σ  is estimated practically by its 

maximum likelihood estimator ∑
=

=
n

i
i nx

1

2 /σ̂ . 

Buckland (1992) used Equation (9) for the deer 
data and reported very similar results to those 
obtained by Hermite polynomial method. Mack 
and Quang (1998) recommended the above 
formula canceling the constant term, that is, 

-1/5  nh σ=  which is slightly different from 
Equation (9). Chen (1996) stated that Equation 
(9) performs quite well when the underlying 
distribution is close to the half normal 
distribution, while when the true )(xf  is not 
close to the half normal, the result can be 
misleading. He suggested an alternative method 
called "Least Square Cross-Validation Method" 
(LSCVM).  

The primary simulation results indicated 
that the advantage of using the LSCVM over 

using Formula (9) is not significant despite the 
computer-intensive procedures that need to 
apply it. By interesting the last three works 
mentioned above and the work introduced by 
Zhang (2001) which was concerned the testing 
of the shoulder condition, we suggest to use two 
reference models to choose the bandwidth h . 
One of these two models is the negative 
exponential model which does not satisfy the 
shoulder condition at the origin, and the other is 
the half normal model which satisfies the 
shoulder condition at the origin. The criterion to 
choose between them is by testing the shoulder 
condition as illustrates in the following section.    

 
Testing the Shoulder Condition 

A motivation to assume the half normal 
or the negative exponential as the underlying 
model to apply Formula (5) is that, the first 
model has a shoulder at the origin, while the 
second one does not. In other words, we expect 
the reference model that should be used to 
choose h  is the half normal model when the 
data have a shoulder at the origin, whereas the 
negative exponential should be used when the 
data do not have a shoulder at the origin. 
Accordingly, assume that we are not sure 
whether the data have the shoulder at the origin 
or not, in this case and before we decide which 
model should be used we need to test the 
shoulder condition.  

Zhang (2001) proposed a procedure for 
testing the shoulder condition of a model based 
on line transect sampling. Assume that a random 
sample nxxx ,...,, 21  of perpendicular 
distances is drawn from a distribution with 
probability density function )(xf . Consider the 
test 0)0(:0 =′fH  vs 0)0(:1 ≠′fH , 
according to Zhang (2001), we reject 0H  for 

large value of  
∑
∑

=

== n

i i

n

i i

x

x
Z

1

1
2

. Zhang 

constructed a table of critical values of the 
sampling distribution for Z  with respect to 
different sample sizes by Monte Carlo 
simulation. For example, at level of significant 

5.0=α  we reject 0H  in favor of 1H  if 
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qZ > , where 0.0914  0.1308,  ,1880.0=q  
for 200  ,100,  ,50=n  respectively. 
Accordingly, to choose the bandwidth h  we 
consider the following two steps  
1) If 0H  is not rejected, use the half-normal 
model as a reference model and then compute 
the value of h  by using the following formula 
 
                      -1/5 ˆ 0.933 nh σ=                    (10) 

 
2) If 0H  is rejected, use the negative 
exponential model as a reference model and then 
compute the value of h  by using 
 
                     -1/5  ˆ 892.0 nh λ=                     (11) 
 
where σ̂  is as defined in Section (3) and λ̂  is 
the maximum likelihood estimator for the scale 
parameter λ  in the case of the negative 
exponential density, which is given by 

∑
=

=
n

i
i nx

1
/λ̂ . 

 
Results 

 
To assess the practical impact of our technique, 
we undertook some numerical investigations in 
which we compared our proposed estimator with 
an ordinary estimator given by Mack and Quang 
(1998). In this numerical study we considered 
several parent densities. These densities are 
those considered by Barabesi (2001) which are 
commonly used in line transect studies. The 
exponential power family (Pollock, 1978) 
 

β

β
xxf e−

+Γ
=

)/11(
1)( , 1,0 ≥≥ βx , 

 
The hazard-rate family (Hayes and Buckland, 
1983) 
 

⎟
⎠
⎞⎜

⎝
⎛ −

−Γ
=

−− β

β
xxf e1

)/11(
1)( , 

1,0 >≥ βx  
 

and the beta model (Eberhardt, 1968) 

0,0,)1)(1()( ≥≥−+= ββ β xxxf . 
 

In our simulation design, these three 
families were truncated at some distance w . 
Four models were selected from the exponential 
power family with parameter values 

5.2,0.2,5.1,0.1=β  and corresponding 
truncation points given by 

0.2,5.2,0.3,0.5=w  (Figure 1a). Four 
models were selected from the hazard-rate 
family with parameter values 

0.3,5.2,0.2,5.1=β  and corresponding 
truncation points given by 6,8,12,20=w  
(Figure 1b).  

Moreover, four models were selected 
from beta model with parameter values 

0.3,5.2,0.2,5.1=β  and 1=w  for all cases 
(Figure 1c). The considered models cover a wide 
range of perpendicular distance probability 
density functions which vary near zero from 
spike to flat. It should be remarked that the 
truncated exponential power model with 1=β  
and the beta model do not satisfy the shoulder 
condition. This choice was made in order to 
assess the robustness of the considered 
estimators with respect to the shoulder 
condition.  

For each model and for sample sizes 
200,100,50=n  one thousand samples of 

distances were randomly drawn. For each model 
and for each sample size, Table (1) reports the 
simulated value of the relative bias (RB): 
 

( )
)0(

)0()0(ˆ

f
ffERBi −

= , 2 ,1=i ; 

 
the relative mean error ( RME ) 
 

( )
)0(

)0(ˆ

f
fMSE

RMEi = , 2 ,1=i , 

for each considered estimator, and the efficiency 
( EFF ) of the proposed estimator with respect 
to Mack and Quang (1998)’s estimator,  

1
2

MSE
MSEEFF = , 
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Table (1). Relative Biases (RB) and Relative Mean Error (RME) for the proposed estimator and for 
the kernel estimator using bandwidth rule based on half normal model. 

        n β         w     RB1  RME1    RB2 RME2 EFF 

Exponential Power Model  
50   -0.245 0.283 -0.333 0.347 1.226 

100 1.0 5.0 -0.217 0.238 -0.305 0.313 1.312 
200   -0.191 0.207 -0.276 0.282 1.362 

 
50   -0.134 0.201 -0.168 0.205 1.021 

100 1.5 3.0 -0.101 0.159 -0.136 0.164 1.032 
200   -0.079 0.127 -0.114 0.135 1.065 

 
50   -0.067 0.160 -0.084 0.150 0.942 

100 2.0 2.5 -0.059 0.124 -0.071 0.119 0.961 
200   -0.044 0.099 -0.053 0.096 0.965 

 
50   -0.047 0.144 -0.055 0.137 0.949 

100 2.5 2.0 -0.022 0.119 -0.029 0.112 0.944 
200   -0.023 0.091 -0.027 0.088 0.965 

Hazard Rate Model  
50   -0.174 0.236 -0.402 0.417 1.765 

100 1.5 20.0 -0.118 0.167 -0.354 0.363 2.174 
200   -0.072 0.114 -0.306 0.311 2.730 

 
50   -0.063 0.166 -0.247 0.276 1.658 

100 2.0 12.0 -0.034 0.119 -0.206 0.225 1.890 
200   -0.012 0.086 -0.159 0.172 2.007 

 
50   -0.016 0.161 -0.119 0.173 1.077 

118 2.5 8.0 -0.001 0.121 -0.083 0.124 1.032 
119   0.009 0.094 -0.053 0.087 0.934 

 
50   0.001 0.156 -0.049 0.132 0.845 

100 3.0 6.0 0.000 0.118 -0.034 0.095 0.807 
200   0.012 0.099 -0.011 0.073 0.737 

Beta Model  

50   -0.167 0.218 -0.183 0.219 1.005 
100 1.5 1.0 -0.150 0.182 -0.163 0.186 1.023 
200   -0.128 0.149 -0.139 0.155 1.039 

 
50   -0.186 0.235 -0.208 0.239 1.018 

100 2.0 1.0 -0.158 0.193 -0.177 0.199 1.030 
200   -0.140 0.169 -0.159 0.176 1.037 

 
50   -0.205 0.247 -0.231 0.256 1.033 

100 2.5 1.0 -0.170 0.208 -0.198 0.218 1.045 
200   -0.152 0.178 -0.179 0.191 1.073 

 
50   -0.201 0.249 -0.237 0.261 1.048 

100 3.0 1.0 -0.176 0.213 -0.212 0.228 1.074 
200   -0.149 0.178 -0.187 0.199 1.118 
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where RB1, RME1 are the RB and RME of the 
proposed estimator )0(ˆ

kf  and RB2, RME2 are 
the RB and  RME for the Mack and Quang’s 
estimator )0(ˆ

Mf  say.  
Depending on the simulation results 

given in Table (1), several conclusions can be 
drawn from examining the results in regard to 
model robustness )(RB  and )(RME . The 

estimators )0(ˆ
Mf  is with large 2RB  for the 

exponential power model with 1=β  and for 
the hazard rate model with 2.0 ,5.1=β , the 
maximum 2RB   value turns out to be 0.402 for 

the hazard rate model with 5.1=β  (). For the 
exponential power and the hazard rate models, 
the 2RB  for )0(ˆ

Mf  increases as the shape 

parameter β  decreases, while it decreases as β  
increases for the beta model. On the other hand, 
the 2RME  ranges in [ ]0.417 ,132.0  if 50=n , 
in [ ]0.363 ,095.0  if 100=n  and in 
[ ]0.311 ,073.0  if 200=n .  

As to our proposed estimator )0(ˆ
kf , it 

generally produces rather small 1RB s, the 

maximum 1RB  value turns out to be 0.283 for 

the exponential power model with 0.1=β . 

Comparing the 2RB s of )0(ˆ
Mf  with that of 

)0(ˆ
hf , the simulation results demonstrated 

clearly that the 1RB s of )0(ˆ
kf  are smaller 

than the corresponding 2RB s of )0(ˆ
Mf , 

especially for the exponential power model with 
1.5 ,0.1=β  (in which the shapes are spike and 

has a moderate shoulder respectively); the 
hazard rate model with 2.0 ,5.1=β  (in which, 
the two shapes have the shoulder at 0=x  but 
when 0.2=β  the curve drops sharply –but less 
than that of 5.1=β - when we move far from 

0=x ) and for the beta model with different 
values of β  (the shapes do not have the 
shoulder at 0=x ). The different shapes of these 
models are depicted in Figure 1.  

On the other hand, the 1RME  ranges in 
[ ]0.283 ,144.0  if 50=n , in [ ]0.238 ,118.0  if 

100=n  and in [ ]0.207 ,086.0  if 200=n . 
Regarding the stability of the accurate of the two 
estimators, the performance of )0(ˆ

kf  is more 
stable and hence its performance is better than 
that of )0(ˆ

Mf . The efficiency (EFF) values in 
Table 1  show that, for some of the models 
investigated, a considerable gain in the accuracy 
of the proposed estimator is achieved. The 
efficiency values increase as the sample size n 
increases for the exponential power model with 

2.0 1.5, ,0.1=β ; the hazard rate model with 
2.0 ,5.1=β  and for the beta model with 

different values of β , in the cases where the 

proposed estimator performs better than )0(ˆ
Mf . 

In the other cases where the shoulder condition 
is -in some sense- large the efficiency is less 
than one which indicates the performance of 

)0(ˆ
Mf  is better than )0(ˆ

kf  but the efficiency 
remains acceptable in these cases. 

 
Numerical Example 

We apply the proposed estimator to the 
classical wooden stakes data set, given in 
Burnham et. al. (1980, p:61). The data are 
collected from line transect survey to estimate 
the density of stakes in a given area. The stakes 
data are the perpendicular distances (in meters) 
of detected a stake to the transect line, in which 
150 stakes were placed at random in an area of 
1000 meters long. Out of 150 stakes, 68 stakes 
are detected using line transect technique. The 
true form of )(xf  is unknown, but the true 
value of )0(f  is known which equals 

110294.0)0( =f , thus the actual density of 
stakes was 37.5 stakes/ha. Calculation shows 
that 1624.0=Z , the empirical critical value for 

05.0=α  and 68=n   is 0.1605 ( Zhang , 
2001), so the shoulder condition is rejected. In 
this case, the formula -1/5  ˆ 892.0 nh λ=  should 
be used, where the computed value of 

115.6ˆ =λ , so 346.2=h . In turn, the resulting  
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Figure (1). (a) Exponential power model for 5.2,2,5.1,1=β . (b) Hazard-rate model for 
3,5.2,2,5.1=β  and (c) Beta model for 3,5.2,2,5.1=β .  
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estimate is 10463.0)0(ˆ =kf  and 6.35ˆ =D  
stakes/ha. By adopting the Mack and Quang’s 
estimator, -1/5 ˆ 0.933 nh σ= , computation gives 

19.8ˆ =σ   and 522.3=h . In turn the resulting 
estimate is 10005.0)0(ˆ =Mf  and 01.34ˆ =D  
stakes/ha. Burnham et. al. (1980) analyze the  
same data by using a cosine series estimator, and 
they obtain an estimate for )0(f  given by 
0.1148 with corresponding density estimate 

00.39ˆ =D  stakes/ha. It should be remarked 
that the cosine series estimator employs an exact 
value for the maximum perpendicular distance 
(take to be 20 meters for this example), that is, 
more information is used in this case. 
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