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Accurate Binary Decisions For  
Assessing Coronary Artery Disease 

 
Mehmet Ali Cengiz   

University of Ondokuz Mayıs 
Samsun, Turkey 

 
 
Generalized linear models offer convenient and highly applicable tools for modeling and predicting the 
behavior of random variables in terms of observable factors and covariates. This paper investigates 
applications of a special case of generalized linear model to improve the accuracy of predictions and 
decisions adopting Bayesian methods, in the specific context of assessing coronary artery disease. The 
basic model is developed for this application using binary response. The results clearly demonstrate the 
potential advantages offered by this approach. 
 
Key words: Bayesian methods, coronary artery disease 
 
 

Introduction 
 
The aim of this paper is to determine the 
probability of   using Bayesian inference, in 
place of Classical inference, and to compare 
these two approaches and then to present new 
approach in assessing the probability of presence 
of Coronary artery disease. Multiple logistic 
regression was used, which is a special case of 
generalized linear models. This model is 
commonly used when the independent variables 
include both numerical and nominal measures 
and the outcome variable is binary, or 
dichotomous, having only two values. It requires 
no assumptions about the distribution of the 
independent variables. 

Another advantage is that the regression 
coefficient can be interpreted in terms of relative 
risk in cohort studies or odds ratios in case-
control studies. The Bayesian inference is based 
on the famous published posthumously by the 
Rev. Thomas Bayes in 1763. In this inference 
the numerical values allotted to probabilities do 
not relate to long-run frequencies and an attempt  
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is made to account for prior knowledge by 
quantitative measurement. The process of 
inference requires the evaluation of further 
integrals and the selection of appropriate prior. 

In this paper a suitable prior 
distributions is presented. In some practical 
applications there is very little prior information 
available. In this case, the standard choice over 
recent years has been the invariant prior 
proposed by Jeffreys (1939). The other suitable 
priors may be Uniform, which is described many 
authors such as Bernardo and Smith (1994) and 
O’Hagan (1994). 

The evaluation of integrals may be 
difficult analytically but numerical methods can 
overcome this difficulty. Dunsmore (1976) 
considered an asymptotic Bayesian approach to 
prediction analysis. Percy (1993) used this 
approach in the context of generalized linear 
models. Tierney and Kadane (1989) introduced 
The Laplace approximation that can be used to 
obtain a marginal of the posterior distribution. 
The above mentioned approaches were used and 
modified to binary data. By analyzing a set of 
data relating a real surgical problem (diagnosis 
of Coronary artery disease), several questions 
and suggestions arise regarding this application. 
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Coronary Artery Disease 
Balcı et al (2000) previously 

investigated this surgical application. Their aim 
was to investigate the relationship between 
plasma insulin levels and the angiographical 
severity of coronary artery disease in male 
patients with normal glucose tolerance and 
unstable angina. The current work uses their 
data and results. Start by briefly reviewing the 
medical details that are relevant to the present 
analysis. Coronary Artery Disease is a 
progressive disease process that generally begins 
in childhood and has clinical manifestations in 
the middle to late adulthood.  

Two decades ago, Coronary Artery 
Disease was considered to be a degenerative 
process because of the accumulation of lipid and 
necrotic debris in the advanced lesions. It is now 
recognized that it is a multifactorial process, 
which, if it leads to clinical sequelae, requires 
extensive proliferation of smooth muscle cells 
within the intima of the affected artery. The 
form and content of the advanced lesions of 
Coronary Artery Disease demonstrates the 
results of three fundamental biological 
processes. 

These are: (1) proliferation of intimal 
smooth muscle cells, together with variable 
numbers of accumulated macrophages and T-
lymphocytes; (2) formation by the proliferated 
smooth muscle of large amounts of connective 
tissue matrix, including collagen and elastic 
fibbers (3) accumulation of lipid, principally in 
the form of cholesteryl esters and free 
cholesterol within the cells as well as in the 
surrounding connective tissues. The 
development of the concept of risk factors and 
their relationships to the incidence of coronary 
Artery Disease evolved from prospective 
epidemiological studies. These studies 
demonstrated a consistent association among 
characteristics observed at one point in time in 
apparently healthy individuals with the 
subsequent incidence of coronary artery disease 
in these individuals (Braunwald, 1992).  

These associations include an increase 
in the concentration of plasma cholesterol, the 
incidence of cigarette smoking, hypertension, 
clinical diabetes, insulin levels, obesity, age or 
male sex, and occurrence of coronary artery 
disease.  As a result of these associations, each 

characteristic has been termed a risk factor and 
this terminology has been generally accepted 
and has become part of the scientific literature 
associated with this problem. The aim here is to 
develop a generalized linear model to calibrate 
coronary arterial stenoses against some risk 
factors, so that disease severity can be assessed 
with using some risk factors. 

 
Bayesian Inference of Logistic Model to 
Binomial Data 

Assuming n  binomial observations of 
the form iy , i =1,..., n  where ( ) ipiy =E  and 

ip  is the success probability corresponding to 
the i th observation, the linear logistic model for 
the dependence ip  on the values of the k 
explanatory variables kixixix ...,,2 ,1 , 
associated with that observation, is 

 
( ) ( )( )

kixkix
ipipip

βββ +++=

−=

110

1/loglogit
               (1)  

 
In order to fit a linear logistic model to a given 
set of data, unknown parameters must be 
estimated first. In Classical approach, these 
parameters are estimated using the methods of 
maximum likelihood. The likelihood function is 
given by 
 

        ( )iyiL ;β = ( ) iy
ip

n

i
iy

ip −−∏
=

11
1

                (2) 

 
The problem is to obtain estimations of 
parameters, which maximise the 

( ) =iyil ;β ( ) ( ) ( )∑
=

−−+
n

i
ipiyipiy

1
1log1log . 

 
Bayesian inference is used to obtain parameter 
estimations. 

Assuming some training data 
( ){ }D Z y i ni i= =, ; ,...,1  which consist of 

observed response vectors yi  and matrices of 
explanatory variables Zi , typically one will 
observe Zn+1  for a new individual, and our aim 
is to predict the response vector yn+1 . The 
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conditional distribution of yi  given Zi  is 
assumed known as a function of unknown 
parameters contained in a vectorβ . The 
posterior predictive distribution of yn+1  given  
Zn+1  and the data D  is given by                             

 ( ) ( ) ( ) βββ
β

d|,|,| 1111 DfZyfDZyf nnnn ∫ ++++ =     (3) 

In the third equation (3), 
( ) ( ) ( )f D L D fβ β β| ;∝ ×   where L  is the 

likelihood and f represents the prior density. 
The likelihood function is given in equation (2). 
If information about parameters before 
observing the data is vague, the use of the 
uniform prior distribution for a location 
parameter is supported by several researchers. 
The task of finding logically consistent realistic 
representations of prior ignorance meets some 
difficulties. In particular the uniform distribution 
may not represent ignorance. Jefferys (1967) 
proposed a solution using Fisher information 
matrix. There are different Jeffreys prior to the 
binomial experiments, so that posterior inference 
using the Jeffreys prior will violate the 
Likelihood Principle. So uniform and Jeffreys 
prior distributions for our application are used.   

The required integrations in equation (3) 
and (5) are not feasible analytically and 
approximation methods are needed. Dunsmore 
(1976) considered an asymptotic Bayesian 
approach to prediction analysis. If we expand 
( )f y Zn n+ +1 1| ,β in equation (3) about the 

maximum likelihood estimate of β  by Taylor`s 
theorem, A first order approximation and second 
order approximation to the predictive 
distribution are then obtained by truncating the 
expanded series. The following equation for first 
order approximation is obtained. 

       ( )DnZnyf ,1|1 ++ ( )β̂,| 11 ++≈ nn Zyf          (4) 
 
The Laplace approximation is useful for 

evaluating the multiple integral in equation (5) 
to predict disease severity, since the information 
matrix can be obtained without a lot of effort. 
The equation may be re-expressed (3) as 

 

( )
( ) ( ) ( )

( ) ( )∫

∫ ++

++ =

β

β

βββ

ββββ

d;

d;,|
,|

11

11 fDL

fDLZyf
DZyf

nn

nn       (5) 

 
From equation (5), the posterior expectation of 
( )DnZnyf ,1|1 ++  can be expressed as the ratio 

 

( ){ }
( ) ( ) ( )

( ) ( )∫

∫ ++

++ =

β

β

βββ

ββββ

d;

d;,|
,| 

11

11 fDL

fDLZyf
DZyfE

nn

nn

                        (6). 

Referring to Tierney and Kadane (1986), it may 
be written 

( ){ } ( ) ( ){ }E g n l lβ β β≈
⎛

⎝
⎜

⎞

⎠
⎟ −⎡

⎣⎢
⎤
⎦⎥

det ~

det
exp ~ ~

/
Σ
Σ

1 2

 

where 
~β  and β  maximize 

( ) ( )~ log log log /l g f L nβ = + + and 

( ) ( )l f L nβ = +log log / , respectively, and 
~Σ and Σ  are minus the inverse Hessians of 

( )~l β and ( )l β  evaluated at 
~β  and β , 

respectively and n  is the sample size for which 
data have been observed. 
 

Methodology & Results 
 
The data for the analyses were collected in 1996 
– 1997 and presented in Table 1, at University 
Hospital in Erzurum, Turkey. One hundred 
consecutive men undergoing elective coronary 
angiography formed the study population. 
Eligible patients met the following criteria: (1) 
no history of diabetes; (2) normal fasting blood 
glucose; (3) no treatment with lipid lowering 
drugs (4) no antecedent history of myocardial 
infarction, coronary bypass, or angioplasty. 
Cardiovascular medications including β  
blockers, calcium antagonists, nitrates, aspirin, 
angiotensin-converting enzyme inhibitors were 
not discontinued before the study. A standard 
oral glucose tolerance test was performed 3 days 
before coronary angiography. Selective coronary 
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angioraphy was performed by Judkins technique 
in the right and left oblique views. 3 observers 
unaware of the laboratory results examined 
angiograms.  

The luminal percent diameter narrowing 
was estimated by a consensus of the observers or 
by the mean of different measurements. 
Diameters stenos ≥ 50% were considered 
significant and these patients (68 patients) were 
assigned to the diseased one.  Stepwise logistic 
regression was performed to evaluate the 
independence of risk factor effects on presence 
of Coronary Artery Disease.  

For patient ni , ,1=  expert 
judgments were used to classify each patient as 
healthy ( )0=iy  or diseased ( )1=iy as 
mentioned above. After performing stepwise 
regression, Patient i  has also has three 
covariates: 

ix1 :  age for patient i  
:2ix  Log fasting insulin level for patient i :3ix   

Log Lp(a) ( Lp(a): Lipoprotein (a)) 
Now consider the following model with 

using different prior distributions and different 
numerical approaches. 

 
( ) ( )( )

ixixix
ipipip

32110

1/loglogit

32 ββββ +++=

−=
 

 
where ( ) ipiy =E  and ip  is the success 
probability corresponding to the i th patient.  
Considered is the same model as above with 
following cases.  

1. case: the model above with Uniform 
prior and First Order approximation 
(corresponding to Classical approach using 
Likelihood method). 

2. case: the model above with Uniform 
prior and Laplace approximation. 

3. case: the model above with Jeffreys 
prior and First Order approximation. 

4. case: the model above with Jeffreys 
prior and Laplace approximation. 

The main aim for this section is to show 
how Bayesian inference in Bernoulli response 
models can be used to improve predictive 
accuracy in practice. Adopting a Bayesian 
approach to the analysis, a vague prior is used, 

which is multiple uniform, and Jeffrey’ prior 
because no specific prior information is 
available. Furthermore, we are merely 
demonstrating the potential of this model with 
different approaches in this paper; the goal is to 
develop a suitable informative prior in the 
future, to judge how sensitive the predictions are 
to the choice of prior.  

Consequently, the joint posterior 
distribution, on which all predictive inference is 
based, is proportional to the likelihood function. 
In particular, the posterior predictive distribution 
for a new patient, with ages in vector 1x , Log 
fasting insulin levels in vector 2x  and Log 
Lp(a)’s in vector 3x , is  

 
( )Dyp ,x,x,x| 321 =

( ) ( ) βββ
β

d| ,,,| 321 Dfxxxyp∫    (7) 

 

where  ( )β,x,x,x| 321yp  is the binomial 
sampling distribution defined by equation (1) 
and ( )Df |β  is the joint posterior density, 
which is maximum likelihood function and prior 
distribution.  

The assessment of diagnostic 
performance is now dealt with. Applied is the 
First order approximation and Laplace method 
using Fortran computer programs and 
subroutines from the NAG library to obtain 
approximate posterior predictive distributions as 
given by equation (7). 

Two criteria to assess our predictive 
accuracy for each case were used. These are a 
binary loss function, corresponding to the 
percentage of correct classifications based on 
cross-validation of the training data set with a 
default classification threshold of 0.5 and the 
linear loss function  

 

( ) ( ){ }∑
=

−+−=
100

1
1 ˆ1ˆ1 

i
iiii pypys  
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Table 1.  Coronary Artery Disease 
 

Patient i  iy  ix1  ix2  ix3  Patient i iy  ix1  ix2  ix3  
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

45 
57 
38 
37 
35 
49 
49 
55 
45 
50 
48 
48 
50 
43 
53 
50 
42 
45 
45 
55 
62 
57 
33 
50 
49 
60 
43 
46 
60 
38 
43 
58 
64 
47 
48 
42 
40 
58 
65 
60 
63 
42 
43 
33 
45 
65 
50 
69 
60 
60 

0.9542 
1.8261 
1.7404 
1.8129 
1.9031 
2.0934 
1.9912 
1.9243 
1.6021 
1.7634 
1.9031 
2.2355 
1.5315 
1.6021 
1.8325 
2.1703 
1.4472 
1.6021 
1.6021 
1.8129 
1.6021 
1.9031 
1.7404 
1.8129 
1.5051 
1.8195 
1.8976 
0.8451 
1.7781 
1.8261 
1.7324 
1.5563 
1.4771 
1.5315 
1.9777 
2.3617 
1.9445 
1.6021 
1.8062 
2.4232 
2.2041 
2.1732 
2.1614 
2.1987 
1.7243 
1.4771 
1.9542 
1.6989 
1.8451 
1.6532 

1.6128 
1.3222 
0.4771 
0.3010 
1.2304 
1.9868 
1.0414 
1.4149 
0.8451 
1.2787 
1.0414 
1.2041 
1.5682 
0.7781 
1.7634 
1.6434 
1.3979 
0.9031 
1.6335 
1.9445 
0.8451 
1.2304 
0.6989 
1.3010 
1.5682 
1.7634 
0.3010 
1.5682 
0.6021 
1.3424 
1.2041 
0.7781 
1.2553 
1.6989 
1.6127 
0.4771 
1.9085 
1.1461 
2.1643 
1.4400 
0.0000 
1.5563 
1.1461 
1.2787 
1.2304 
1.4149 
2.2355 

1.59116 
1.7482 
1.9191 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

56 
57 
57 
63 
45 
63 
51 
60 
77 
58 
50 
65 
55 
50 
55 
44 
50 
58 
53 
60 
55 
64 
56 
63 
53 
53 
60 
40 
65 
65 
50 
58 
65 
46 
55 
65 
60 
59 
64 
46 
54 
63 
46 
62 
42 
42 
42 
51 
38 
63 

2.0334 
2.0792 
2.0128 
1.8921 
1.9031 
2.0000 
1.7634 
1.6812 
2.1461 
1.4771 
1.9031 
1.9031 
1.8062 
1.9031 
1.8325 
1.8195 
1.5798 
1.6021 
1.7482 
1.9243 
1.8062 
2.1461 
2.0492 
2.1399 
1.6532 
1.9345 
2.0086 
2.0253 
1.7781 
2.2878 
2.0792 
1.8195 
1.8808 
1.6812 
1.6021 
1.9138 
1.3424 
1.3424 
1.7634 
1.7324 
2.1367 
1.8808 
1.9031 
2.1987 
1.9138 
1.9031 
2.1461 
1.8808 
2.1004 
2.1367 

2.0294 
1.7482 
1.2553 
0.9542 
1.7160 
1.2041 
1.0792 
1.5563 
2.2695 
2.4502 
1.6902 
2.0212 
1.9731 
2.0212 
1.5563 
0.4771 
2.4885 
0.9031 
2.5752 
0.6021 
2.4265 
1.8976 
1.4771 
1.5185 
0.0000 
1.3979 
1.3424 
1.6721 
0.4771 
1.2787 
1.6232 
1.1461 
1.5315 
1.6532 
2.4048 
1.5911 
1.3802 
2.0453 
1.6021 
1.2787 
1.5911 
1.6628 
2.3345 
1.2787 
1.8751 
1.4771 
2.4149 
1.9345 
1.6532 
1.4771 
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Table 2. Posterior predictive probabilities for the model with Laplace approximation and Jeffreys prior. 
 

Patient 
i  ip̂  Patient 

i  ip̂  Patient 
i  ip̂  Patient 

i  ip̂  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0.5885 
0.0817 
0.4042 
0.5689 
0.4168 
0.0303 
0.1665 
0.0635 
0.4532 
0.2116 
0.2220 
0.0737 
0.2737 
0.4954 
0.0716 
0.0333 
0.4794 
0.4436 
0.3159 
0.0435 
0.1728 
0.0701 
0.5950 
0.1847 
0.3045 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.0248 
0.4444 
0.6152 
0.1679 
0.3822 
0.3641 
0.2685 
0.3869 
0.2100 
0.4168 
0.2768 
0.3285 
0.3196 
0.6760 
0.6978 
0.4570 
0.3948 
0.3257 
0.2109 
0.1748 
0.4347 
0.5528 
0.6109 
0.5689 
0.5246 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 

0.6241 
0.6095 
0.5062 
0.4961 
0.3533 
0.5775 
0.2610 
0.4703 
0.8436 
0.5185 
0.4316 
0.6848 
0.5217 
0.4949 
0.4558 
0.0890 
0.4463 
0.2722 
0.5749 
0.3984 
0.5974 
0.7214 
0.5434 
0.6651 
0.0854 

76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 

0.4376 
0.5620 
0.3177 
0.3940 
0.6952 
0.4931 
0.4208 
0.6125 
0.2521 
0.5172 
0.6315 
0.2795 
0.3967 
0.5700 
0.2023 
0.5658 
0.6070 
0.4929 
0.6389 
0.3406 
0.2539 
0.5435 
0.4848 
0.3159 
0.6589 

 
 
Table 3. Predictive accuracy results for the model with all cases. 
 

Case Binary 
Percentage 

Linear loss 

1 
2 
3 
4 

%79 
%81 
%81 
%83 

0.3152 
0.2955 
0.2961 
0.2622 
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where =ip̂ ( )DYP iiii ,x,x,x|1 321=  from 
equation (7). Ultimately, the binary loss function 
is of most interest in diagnosing the disease, but 
the alternatives provide more insight into the 
predictive accuracy of the model wit different 
approaches. 

To illustrate the typical output from 
which loss functions are calculated, Table 2 
presents the predictive probabilities for patients 
in the observed set of training data, based on the 
model with Jeffreys prior and Laplace 
approximation. The summary results for all 
cases investigated in Table 3.  

First, is illustrated the improved 
predictive accuracy by adopting Bayesian 
inference here, over Classical approach. In case 
1, uniform prior and First order approximation is 
used, which is the same as Classical approach 
(using the Likelihood function to obtain 
parameter estimations). Column 2 of Table 3 
demonstrates this by presenting the percentage 
of diseased patients correctly diagnosed by each 
case, if costs are such that a threshold of 0.5 is 
appropriate. Note that, without further 
information, we could correctly diagnose 50 per 
cent of patients by chance alone, and that large 
values are desirable for the percentage of 
patients correctly diagnosed. Clearly, Bayesian 
approach with different priors and 
approximations performs consistently better than 
the classical approach. 

Second, compared are the different 
priors and different approximations for the same 
model using two assessments criteria identified 
above: namely the binary and linear loss 
function. These results are presented in Table 3. 
Although large values are desirable for second 
column of these, small values are preferable for 
linear loss function. As expected, the model with 
Laplace approximation gives better results than 
the others. 

 
 
 
 
 
 
 
 
 

Conclusion 
 

This article described and discussed the 
properties and applications of multiple logistic 
regression models, suggesting simplifications 
and suitable approximations for a Bayesian 
analysis. Considered were different subjective 
priors, which are uniform, and Jeffreys, using 
different approximations, which are First order 
and Laplace approximation. It has also 
demonstrated how these prior distributions and 
approximations may be used and useful in an 
important application, relating to the diagnosis 
of coronary arterial disease. 
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