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This research aims to compare the performance of Ordinary Least Square (OLS), 

Least Absolute Shrinkage and Selection Operator (LASSO), Ridge Regression (RR) 

and Elastic-Net in controlling multicollinearity problems between independent 

variables in multiple regression analysis using simulation data and case data. Data 

simulation uses a multiple regression model with p = 6 with a high level of 

multicollinearity (ρ = 0.99) at several sample sizes (n = 25, 50, 75). The best method 

is measured based on the smallest Average Mean Square Error (AMSE) and AIC 

values. The research results show that Elastic-Net is the best method for simulated 

data compared to LASSO and Ridge because it has the smallest AMSE and AIC 

values for each sample size studied. Similar things were also obtained when applying 

these three methods to data on stunting toddler cases in Indonesia which had high 

multicollinearity. By using the best method, namely the Elastic Net method, real data 

shows that cases of stunted toddlers in Indonesia are influenced by the percentage of 

toddlers who are malnourished  (𝒙𝟏), the percentage of toddlers who receive 

exclusive breast milk (𝒙𝟐), the percentage of toddlers whose growth is monitored 

(𝒙𝟒), coverage of health services for pregnant women (𝒙𝟔),  number of nutrition 

workers (𝒙𝟕),  percentage of households with adequate drinking water (𝒙𝟗),  

percentage of households with adequate sanitation (𝒙𝟏𝟎),  human development index 

(𝒙𝟏𝟏),  and population density (𝒙𝟏𝟑). 

 

Keywords: Ridge; LASSO; Elastic-Net; Multicollinearity; Toddler stunting.  

 

  



 

HERAWATI ET AL. 

 

3 

 

1. Introduction 

Regression analysis is a method of data analysis  that is often used in modeling  the 

relationship between the dependent variable and one or more independent variables. 

One type of regression analysis is multiple linear regression analysis. In multiple 

linear regression analysis, it is not uncommon for specific problems to arise during 

the analysis. One of them is the problem of multicollinearity. According to [1], one 

of the assumptions in the regression analysis that must be fulfilled is the absence of 

multicollinearity. Multicollinearity is a condition that appears in multiple regression 

analysis when one independent variable is correlated with another independent 

variable. Multicollinearity can create inaccurate estimates of the regression 

coefficients, inflate the standard errors of the regression coefficients, deflate the 

partial t-tests for theregression coefficients, give false, nonsignificant, p-values, and 

degrade the predictability of the model [1, 2]. Multicollinearity is a serious problem, 

where in cases of high multicollinearity, it results in making inaccurate decisions or 

increasing the chance of accepting the wrong hypothesis. Therefore it is very 

important to find the most suitable method to deal with multicollinearity [3]. 

According to [4], there are several ways to detect the presence of multicollinearity 

including looking at the correlation between independent variables and using the 

Variance Inflation Factor (VIF). As for the method to overcome the problem of 

multicollinearity, one way is by shrinking the estimated coefficients. The shrinkage 

method is often referred to as the regularization method. The regularization method 

can shrink the parameters to near zero relative to the least squares estimate. The 

regularization methods that are often used are Regression Ridge, Least Absolute 

Shrinkage and Selection Operator (LASSO), and Elastic-Net [5]. Ridge Regression 

is a technique to stabilize the value of the regression coefficient due to 

multicollinearity problems. By adding a degree of bias to the regression estimate, RR 

reduces the standard error and obtains a more accurate estimate of the regression 

coefficient than the OLS. Meanwhile, LASSO and Elastic-Net overcome the 

problem of multicollinearity by reducing the regression coefficients of the 

independent  variables  that  have a high correlation close to zero or exactly zero. 

This study will explore ridge regression, LASSO and Elastic-Net in dealing with 

multicollinearity problems in multiple regression analysis. 

 

2. Regulized Regression 

One method that can be used to estimate parameters is Ordinary Least Squares 

(OLS). This method requires the absence of multicollinearity between independent 

variables. If the independent variable has multicollinearity, the estimate of the 

regression coefficient may be imprecise. This method is used to estimate 𝛽 by 

minimizing the sum of squared errors. If the data consists of n observations 
{𝑦𝑖, 𝑥𝑖}𝑖=1

𝑛   and each observation i includes a scalar response 𝑦𝑖 and a vector of p 

predictors (regressors) 𝑥𝑖𝑗 for j=1,…,m, a multiple linear regression model can be 

written as n the matrix form the model as 𝑌 =  𝑋𝛽 +  𝜀 where 𝑌𝑛𝑥1 is the vector 
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dependent variable, 𝑋𝑛𝑥𝑚 represents the explanatory variables, 𝛽𝑚𝑥1 is the 

regression coefficients to be estimated, and 𝜀𝑚𝑥1 represents the errors or residuals. 

�̂�𝑂𝐿𝑆 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌  is estimated regression coefficients using OLS by minimizing 

the squared distances between the observed and the predicted dependent variable [2, 

4]. To have unbiased OLS estimation of the model, some assumptions should be 

satisfied. Those assumptions are that the errors have an expected value of zero, that 

the independent variables are non-random, that the independent variables are linearly 

independent (non-multicollinearity), that the disturbance are homoscedastic and not 

autocorrelated. If the independent variables have  multicollinearity the estimates of 

coefficient regression may be imprecise. 

2.1 Ridge Regression 

Ridge regression introduced by [6] is one method for deal with multicollinearity 

problems. The ridge regression technique is based on addition the ridge parameter (λ) 

to the diagonal of the X'X matrix forms a new matrix (X'X+λI). is called ridge 

regression because diagonal one in the correlation matrix can be described as ridge 

[7].  The ridge regression coefficients estimator is 

�̂�𝑅 = (𝑋𝑇𝑋 + λ𝐼)−1𝑋𝑇𝑌,     𝜆 ≥  0  

when 𝜆 = 0, the ridge estimator become as the OLS. If  > 0 the ridge estimator will 

be biased against the �̂�𝑂𝐿𝑆 but tends to be more accurate than the least squares 

estimator. Ridge regression can also be written in Lagrangian form: 

�̂�𝑅𝐼𝐷𝐺𝐸 = arg  min
𝛽

‖𝑦 − 𝑋𝛽‖2
2 + λ‖𝛽‖2

2 

Ridge regression has the ability to solve problems multicollinearity by limiting the 

estimated coefficients, hence, it reduces the estimator's variance but introduces some 

bias [8]. 

2.2 Least Absolute Shrinkage and Selection Operator 

Least Absolute Shrinkage and Selection Operator (LASSO) introduced by [9] is a 

method that aims to reduce the regression coefficients of independent variables that 

have a high correlation with errors to exactly zero or close to zero. LASSO 

regression can also be written in Lagrangian form: 

�̂�𝐿𝐴𝑆𝑆𝑂 = arg  min
𝛽

‖𝑦 − 𝑋𝛽‖2
2 + λ‖𝛽‖1 

with the condition ‖𝛽‖1 ≤ λ, where 𝜆 is a tuning parameter that controls the 

shrinkage of the LASSO coefficient with λ ≥ 0. If  𝜆 < 𝜆0 with  it will 

cause the shrinkage coefficient to approach zero or exactly zero, so LASSO helps as 

a variable selection [9, 13]. Like ridge, the absolute value penalty of the. LASSO 

coefficient introduces shrinkage towards zero. However, on ridge regression, some 

of the coefficients are not shrinks to exactly zero. 
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2.3 Elastic-Net 

According to [10], the Elastic-Net method can shrink the regression coefficient 

exactly to zero, besides that this method can also perform variable selection 

simultaneously with Elastic-Net penalties which are written as follows: 

∑[𝛼|𝛽𝑗| + (1 − 𝛼)𝛽𝑗
2]

𝑝

𝑗=1

 

with  𝛼 =  
𝜆1 

𝜆1+𝜆2
 , 0 ≤ 𝛼 ≤ 1  

The coefficient estimator on Elastic-Net can be written as follows:
 

�̂�𝑛𝑒𝑡 = ∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗

𝑝

𝑗=1

)

2

+ 𝜆2 ∑ 𝛽𝑗
2

𝑝

𝑗=1

+ 𝜆1 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑛

𝑖=1
 

Elastic-Net can be used to solve problems from LASSO. Where the LASSO 

Regression has disadvantages include; when p > n then LASSO only chooses n 

variables included in the model, if there is a set of variables with high correlation, 

then LASSO only tends to choose one variable from the group and doesn't care 

which one is selected, and when p < n, LASSO performance is dominated by Ridge 

Regression.Multicollinearity is the existence of a linear relationship  between 

independent variables. where multicollinearity can occur in either some or all of the 

independent variables in the multiple linear regression model [1]. One way to detect 

multicollinearity is to use the Variation Inflation Factor (VIF). VIF value can be 

calculated by the following formula: 

𝑉𝐼𝐹𝑗 =  
1

1 − 𝑅𝑗
2 

if the VIF value > 10, it can be concluded significantly that there is multicollinearity 

between the independent variables and one way to overcome multicollinearity is 

using the Ridge Regression, LASSO and Elastic-Net. 

2.4 Measurement of Performance 

To assess performance on the method studied in multicollinearity handling, will be 

evaluated using Average Mean Square Error (AMSE) of regression coefficient 𝜷 is 

measured. AMSE is defined as: 

𝐴𝑀𝑆𝐸 (�̂�) =  
1

𝑛
 ∑‖�̂�(𝑗) −  𝛽‖

2
𝑚

𝑗=1

 

where �̂�(𝑗) denotes the estimated parameter in the j-th simulation. AMSE value close 

to zero indicates that the slope and intercept are correctly estimated [11]. Akaike 

Information Criterion (AIC) is also used as the performance criterion with formula : 

𝐴𝐼𝐶𝐶 = 2𝑘 − 2 ln(�̂�) 
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Where, �̂� = 𝑝(𝑥|𝜃, 𝑁), 𝜃 are the parameter values that maximize the likelihood 

function, x = the observed data, n = the number of data points in x, and k = the 

number of parameters estimated by the model [14]. The best model is indicated by 

the lowest values of AIC. 

 

3. Materials and Methods 

The data used in this study are simulated data and real data. Research with simulated 

data is done by 𝑝 = 6, with sample size 𝑛 =  25, 50, 75 and 𝛽0 =  0;   𝛽1  =  𝛽2 =
 …  =  𝛽6  = 1 with the true model as  𝑌 =  𝑋𝛽 +  𝜀.  Following [12], to obtain the 

multicollinearity in each data set, 𝑋𝑝 is generated using Monte Carlo’s simulation 

using formula: 

𝑋𝑖𝑗 = (1 − 𝜌2)
1

2⁄ 𝑢𝑖𝑗 + 𝜌𝑢𝑖(𝑝+1),𝑖 = 1,2, … , 𝑛, 𝑗 = 1.2, … , 𝑝 

Where 𝑢𝑖𝑗 are independent standard normal pseudo-random numbers and 𝜌 is 

specified so that the theoretical correlation between any two independent variables is 

given by 𝜌2. Dependent variable (𝒀) for each 𝑝 independent variables is from 𝑌 =
 𝑋𝛽 +  𝜀 with 𝛽 parameters vectors are chosen arbitrarily for p= 6 and 𝜀~𝑁 (0, 1).  

Application to real data used in this study is data on cases of stunting toddlers in 

Indonesia with the number of observations n = 34 and the number of independent 

variables p = 13. The variables used in the original data are the percentage of 

toddlers who are malnourished  ( 𝑥1), the percentage of children under five receiving 

exclusive breastfeeding (𝑥2), the percentage of children receiving complete basic 

immunization (𝑥3), the percentage of children under five being monitored for growth 

(𝑥4), the percentage of children receiving DPT-HB-Hib3 immunization (𝑥5), 

coverage of health services for pregnant women (𝑥6), number of nutrition workers 

(𝑥7), number of hospitals (𝑥8), percentage of households with proper drinking water 

(𝑥9), percentage of households with proper sanitation (𝑥10), development index 

human population (𝑥11), the number of poor people (𝑥12), and population density 

(𝑥13).  To quantify the amount of multicollinearity in the data set, the inflation factor 

variance (VIF) is examined. Cross validation is used to find the value of  λ for Ridge, 

LASSO and Elastic-Net. The performance of the OLS, Ridge, LASSO and Elastic-

Net methods was compared based on the AMSE and AIC  values. 

 

4. Results and Discussion 

The initial VIF values of simulated data is designed to have a high correlation (𝜌 = 

0.99) between 2, 3, and 6 independent variables. Consequently, the VIF value of the 

corresponding variable greater than 10 indicates there is a problem of 
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multicollinearity in these variables. The experiment was repeated 1000 times to get 

accurate estimation results. The simulation results can be seen in Table 1. 

 

Table 1. VIF between variables 

Multicollinearity Variables VIF 

Between 2 variables x1 40.746.478 

 x2 41.988.552 

 x3 1.335.763 

 x4 1.364.037 

 x5 1.138.785 

 x6 1.117.702 

Between 3 variables x1 43.820.829 

 x2 56.075.303 

 x3 42.204.721 

 x4 1.455.187 

 x5 1.472.338 

 x6 1.376210 

Between 6 variables x1 60.10378 

 x2 86.63088 

 x3 44.82822 

 x4 81.03695 

 x5 104.1332 

 x6 72.46558 

 

A comparison of the AMSE of the four methods is presented in Table 2. In this table 

it can be seen that OLS has the highest AMSE value compared to the other three 

methods at each level of multicollinearity followed by LASSO. On the other hand, 

ridge gives a lower AMSE score than OLS and LASSO but still higher compared to 

Elastic-Net. Lowest AMSE given by Elastic-Net at every case. The same results can 

be seen in the comparison of AIC values in Table 3. This clearly shows that Elastic- 

Net is the most accurate estimator when there is a severe multicollinearity problem. 

The results also show that the sample size has an effect on the AMSE and AIC score. 

The higher it is the larger the sample size used, the lower the respective AMSE and 

AIC value estimator. One of them can be seen in the simulation data with 2 

independent variables which contain high multicollinearity, where the AMSE value 

decreases when n gets bigger. From Table 2 and Table 3, it can also be seen that 

Elastic-Net has the lowest AMSE and AIC value compared to OLS, Ridge, and 

LASSO. 
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Table 2. Average Mean Square Error of OLS, Ridge, Lasso, and Elastic-Net 

Number of 

Multicollinearity 
n 

AMSE 

OLS Ridge LASSO Elastic-Net 
 25 3.233 0.600 2.347 0.004 

2 50 1.304 0.300 1.130 0.003 
 75 1.099 0.200 1.001 0.002 
 25 6.252 1.200 4.229 0.018 

3 50 2.963 0.500 2.428 0.013 
 75 1.890 0.300 1.766 0.003 
 25 16.659 1.624 8.966 0.013 

6 50 5.831 0.795 4.684 0.011 
 75 4.116 0.622 3.552 0.006 

 

Table 3. Akaike Information Criterion (AIC) of OLS, Ridge, Lasso, and Elastic-Net 

 

To make it easier to understand the AMSE comparison of the four methods, the 

AMSE values are also presented graphically and can be seen in Figures 1 – 3. 

Number of 

Multicollinearity 
n 

AMSE 

OLS Ridge 
LASS

O 

Elastic-

Net 
 25 43.34 12.349 14.512 1.041 

2 50 27.27 12.430 14.037 7.436 
 75 21.08 12.231 14.000 7.779 
 25 59.82 15.140 15.730 2.990 

3 50 68.31 11.946 14.444 3.456 
 75 61.74 11.724 14.171 3.741 
 25 84.32 22.078 17.562 24.93 

6 50 102.16 12.662 15.228 7.124 
 75 120.12 12.046 14.788 4.172 
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Figure 1. AMSE of OLS, Ridge, LASSO, and Elastic-Net Contain 
Multicollinearity in 2 Independent Variables 

 

 

Figure 2. AMSE of OLS, Ridge, LASSO, and Elastic-Net Contain 
Multicollinearity in 3 Independent Variables 

 

 

Figure 3. AMSE of OLS, Ridge, LASSO, and Elastic-Net Contain 
Multicollinearity in 6 Independent Variables 
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Analysis using data on stunted toddlers in Indonesia consisting of 13 independent 

variables found that there were 6 independent variables with VIF values > 10, which 

indicated that a multicollinearity problem was detected in them. In Table 4 it is 

shown that the variables X3, X5, X6, X7, X8, dan X12 have a correlation with each other. 

The VIF value is more than 10. Therefore, Ridge regression, LASSO, and Elastic-

Net methods will be applied so that the correlation between these variables can be 

controlled. The results of applying these three methods and when compared with the 

OLS method can be seen in Table 5. From Table 5, it can be seen that  AMSE value 

of the Elastic-Net method is the smallest compared to OLS, Ridge and LASSO. This 

means that the simulation data results are accurate enough to be applied to real data. 

The results of the differences in AMSE and AIC values can also be seen in Figure 4-

5. 

 

Table 4. VIF Value 

 

 

 

 

 

 

 

 

 

 

 

Table 5. AMSE & AIC from OLS, RIDGE, LASSO, and Elastic-Net On Real Data 

Method AMSE AIC 

OLS 23.37169 135.151 

Ridge 6.96006 93.966 

LASSO 4.58480 79.773 

Elastic-Net 4.27151 77.366 

 

 

 

Variable VIF 

X1 1,85119 

X2 2,44541 

X3 479,00167 

X4 2,22135 

X5 365,17829 

X6 38,01047 

X7 17,09611 

X8 42,36026 

X9 1,94832 

X10 1,59373 

X11 4,26647 

X12 35,73663 

X13 2,07855 
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Figure 4. AMSE from OLS, Ridge, LASSO, and Elastic-Net on Real Data 

 

 

Figure 5. AIC from OLS, Ridge, LASSO, and Elastic-Net on Real Data 

 

 

From Figures 4-5, it can be seen that Elastic-Net is the best method to control 

multicollinearity in stunting toddlers in Indonesia. Based on the Elastic-Net method, 

an analysis was carried out of the variables that influence stunting toddlers in 

Indonesia. The results show that percentage of toddlers who are malnourished  ( 𝒙𝟏),  

percentage of toddlers who receive exclusive breast milk (𝒙𝟐), percentage of toddlers 

whose growth is monitored (𝒙𝟒), coverage of health services for pregnant women 

(𝒙𝟔),  number of nutrition workers (𝒙𝟕),  percentage of households with adequate 

drinking water (𝒙𝟗),  percentage of households with adequate sanitation (𝒙𝟏𝟎),  

human development index (𝒙𝟏𝟏),  and population density (𝒙𝟏𝟑) are the variables that 

influence the stunting toddlers in Indonesia. 

 

5. Conclusions 

Based on the simulation results at p = 6 and the number of data n = 25, 50, and 75 

containing severe multicollinearity between 2, 3, and 6 independent variables, 
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Elastic-Net can solve multicollinearity problems better than the other three methods. 

As for the original data, the smallest AMSE and AIC value is obtained by using 

Elastic-Net. Overall it can be concluded, using both simulated data and real data, 

Elastic-Net is able to solve multicollinearity problems better than OLS, Ridge, and 

LASSO. 
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