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A Generalized Quasi-likelihood Model 
Application To Modeling Poverty Of Asian American Women  

 
Jeffrey R. Wilson 

School of Health Management and Policy 
W. P. Carey School of Business 

Arizona State University 
 

 
A generalized quasi-likelihood function that does not require the assumption of an underlying distribution 
when modeling jointly the mean and the variance, is introduced to examine poverty of Asian American 
women living in the West coast of the United States, using data from U.S. Census Bureau. 
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Introduction 
 
All systems of social inequality create poverty. 
In 1998, the U.S. Census Bureau (1998) states 
that 12.7% of the U.S. population is poor. Racial 
minorities are more likely to live in poverty than 
whites (U.S. Census Bureau, 1999).  Previous 
studies on poverty have focused on whites and 
other racial minorities and few studies have 
modeled the poverty for Asian Americans. This 
research is useful since in recent years Asian 
Americans have increased significantly and are 
very diverse in socioeconomic status and 
country of origin. Poverty among Asian 
Americans has increased rapidly as a result of a 
large influx of Asian immigrants from many 
different countries, many of whom face 
difficulties in economic opportunities as a result 
of poor English fluency and low educational 
attainment.  Data from the 1998 Current 
Population Survey were examined to study the 
effects of certain variables on the poverty level 
among Asian American women living in the 
Western region of the United States. 
 
 
Jeffery R. Wilson is a Professor of Biostatistics 
and Director of the School of Health 
Management and Policy at Arizona State 
University, Tempe AZ 85287-4506.  
 
 

Because the use of ordinary least 
squares regression to predict binary response 
would violate the assumptions of a constant 
variance (homoscedasticity) and normal 
distribution (Allison 1999), it  is common 
practice to model binary random variables using 
logistic regression models. As several variables 
of interest in social sciences and medical 
research are binary, logistic regression models 
have been used widely in these areas. Such 
models require a logistic transformation on the 
probability in such a way that the odds is 
modeled and thus the predicted probabilities are 
not outside the bounds for probability.  

However, there may be times when the 
fitted logistic regression model does not 
adequately describe the observed proportions, 
because of the presence of extravariation or 
overdispersion as it is often referred to. The 
presence of overdispersion results in the 
assumption of binomial variability to be invalid 
(Collett, 1991). When overdispersion occurs, it 
may be necessary to consider other binary 
models. One such approach is to consider a 
quasi-likelihood model thus negating the need 
for the binomial variation assumptions. A quasi-
likelihood model does not make any 
distributional assumption about the random 
variable in the mean modeling.  

Modeling the mean of a binary response 
model consists of several approaches. Some 
approaches have been proposed where the 
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parameters of the distribution are allowed to 
vary based on some known distribution 
(Williams, 1982; Crowder, 1978; Wilson, 1989; 
Wilson & Koehler, 1991). Other methods have 
made use of a mean-variance relation 
(Wedderburn, 1974; McCullagh, 1983; Firth, 
1987; Moore & Tsiatis, 1991) and so the 
knowledge of an underlying distribution is not 
required.  

These methods assume that the variance 
is related to the mean through the variance 
function, which is a function of the mean. 
Neither of these approaches considered 
modeling the variance of the distribution. 
Analyzing the poverty data among Asian 
Americans showed that through there is 
sufficient extravariation that needs to be 
modeled.  A review of a binary logistic function 
is follows.  

Generalized linear models (Nelder & 
Wedderburn, 1972) encompass a wide range of 
models. These models include linear regression, 
analysis of variance, logit and probit models for 
binary response data, and log-linear and 
multinomial response models for count data. A 
generalized linear model has three components. 
The random component specifies the distribution 
of the response variable from the exponential 
family of distributions. The systematic 
component defines a linear predictor based on 
some set of known covariates and the link 
component combines the random component 
and the systematic component. The link function 
is a monotonic twice-differentiable function that 
provides a relation between the mean of the 
response variable and the covariates. 

Generalized linear models differ in their 
underlying distribution and in their link function. 
The systematic component of these models has a 
linear structure. Generalized linear models 
reduce the problem of scaling and do not require 
the assumption of normality and constancy of 
variance. For linear regression and analysis of 
variance models the distribution is normal with 
an identity link. For logit and probit models the 
distribution is binomial with logistic and 
cumulative distribution function of normal 
distribution as link functions, respectively. Log-
linear models have a multinomial distribution 
with a log link. Estimation of these regression 
parameters in the systematic function can be 

done through maximum likelihood procedure 
(Finney, 1952). However, for exponential family 
distributions, the maximum likelihood 
estimation is equivalent to the weighted least 
squares method (Bradley, 1973). Thus, 
generalized linear models lead to a unified 
method for estimating the parameters for a wide 
range of models. They provide a method for 
modeling the mean of the distribution. 

The modeling of the mean and the 
dispersion jointly through two sub models using 
a generalized linear model framework was first 
suggested by Pregibon (1984) and later 
addressed by Efron (1986), Aitkin (1987) and 
Smyth (1989). In the joint modeling of the mean 
and the variance, three components similar to 
the mean sub model are required for modeling 
the variance. The response variable for the 
dispersion submodel is the deviance obtained 
from the mean submodel. The extended quasi-
likelihood function (Nelder & Pregibon, 1987; 
McCullagh & Nelder, 1989) and the pseudo 
likelihood function (Carroll & Ruppert, 1982) 
are useful for joint modeling of the mean and the 
dispersion, when only the relation between mean 
and variance has been specified for the mean 
submodel.  

Extended quasi-likelihood and pseudo 
likelihood functions can be used for comparison 
of the link and the variance function. Further 
generalizations and modifications of the 
extended quasi-likelihood functions have been 
presented by Yanez and Wilson (1995). 

 
Binary logistic function 

Consider 
i

Y for ;,........1 ni =  to denote 
the i th observation for each of the Asian 
women with mean ip where ip  is the 
probability that an Asian woman falls below the 
poverty level. A linear logistic model for 
poverty level based on martial status, 
educational attainment, residence, employment 
status, and number of children for each of these 
women is  
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where kix is the value of the k th variable on the 
i  th woman. Thus the probability of an event is:  
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and the variance function is defined by 

var( )y p
p

i

i

=
−

Φ
1

. In most cases Φ  is one. 

When 1≠Φ , it is usually common to use quasi-
likelihood models (McCullagh & Nelder, 1989). 
For  modeling the poverty data pertaining to 
Asian Americans, both the mean and variance 
parameters are modeled using a quasi-likelihood 
function.  
 

Methodology 
 

A generalized quasi-likelihood model (GQL) for 
poverty among Asian American women is now 
proposed. The model is simple and less 
restricted in that it does not require the 
assumption of an underlying distribution, when 
modeling either the mean or the variance jointly. 
The generalized quasi-likelihood function 
assumes that the distributional form for both the 
mean and the dispersion submodels are not 
known and relies on a mean-variance relation. In 
the dispersion submodel the mean and the 
variance of the response variable are αφ i  and 

2 2φ α
i  respectively, where α  is a nonlinear 

parameter.  
Thus, the variance function is assumed 

to be a squared function of the mean in the 
dispersion submodel, with a dispersion 
parameter of value two. In the analysis of these 
data the link and variance functions used for the 
mean submodel is quasi and log-root, 
respectively, whereas the link and variance for 
the variance submodel is quasi and square root, 
respectively.  

For a single observation yi  with mean 
µi  i = 1, 2, . . ., n; a generalized quasi-
likelihood function is defined as 
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∫2 , φi  is the 

dispersion parameter for the mean submodel, 
( )V yiτ is the variance function evaluated at yi , 

and α  and τ  are nonlinear parameters. The 
generalized quasi-likelihood model has a mean 
submodel with random, systematic, and link 
components as Yi ∼( )µ φ µα

τi i iV, ( ) ,η βi i= ′x , 

and ( )η µi ig= , respectively.   
Its dispersion submodel has response 

variable di ∼( )φ φα α
i i,2 2 ,η γi i

* = ′v , and 

( )η φ αi ih* ,= as the random, systematic, and 
link function component, respectively. The 
estimating equations for the linear parameters 
β β β β= ( , ,... )1 2 p , in the mean submodel based 
on the GQL function are  
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Similarly, the estimating equations for 

the linear parameter γ γ γ γ γ= ( , , ,... )1 2 3 p  in the 
dispersion submodel are 
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A simultaneous iterative weighted least squares 
procedure is used to solve these estimating 
equations as β  and γ  are orthogonal. The 
orthogonality of µi  and φi , leads to the 

orthogonality between β  and γ  which follows 
since the expected partial derivatives,  
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Thus holding α τ,  and φi  fixed, the maximum 

quasi-likelihood estimator, β are obtained for 

the function Q1
*  through  ′ = ′X WX X Wz( )β m ,   

where  W = diag ⎟
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diag ( )t denotes the diagonal elements of the 
matrix T and z  is a vector of order n with 
elements  
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The maximum quasi-likelihood estimates for the 
regression parameters, γ , in the dispersion 
submodel are estimated from                            
′ = ′V W V V W z* ( ) * *γ m   
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by fixing φi  and β  and estimates of the 
nonlinear parameters α  and τ  at known value. 
The process is continued until   convergence is 
achieved. 

The variance of β  under the 
generalized quasi-likelihood function is 
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Results 
 
The major interest is to determine which social 
factors contribute if any to Asian American 
women living in poverty. These social factors 
included whether she is married, her years of 
schooling, residence, whether she works, and 
how many children she has. These data are 
confined to those women living in the western 
region of the United States (i.e. California, 
Washington, Oregon, Arizona, etc.). There are a 
total of 639 Asian American women in our 
sample. 

Studies on poverty have focused on 
whites and other racial minorities and few 
studies examine the likelihood of poverty for 
Asian Americans. In this study, the definition of 
an Asian American living in poverty follows the 
definition given by the U.S. Census Bureau. A 
woman is considered to live in poverty if she 
lives on her own with family income less than 
$7,500, if a woman lives with another family 
member with family income less than $10,000, 
if a woman lives with two other family members 
with family income less than $15,000, etc. This 
definition is based on 1998 figures and takes 
into account the family size. Of all the poor 
people eighteen and older, 62% are women and 
38% are men (U.S. Census Bureau, 1999). The 
motivating factor that brought these data into 
focus is in part due to an emerging belief that 
there is a trend by which women represent an 
increasing proportion of the poor. 

Previous research on other racial groups 
reveals that marital status, educational 
attainment, area of residence, employment 
status, and number of children are strong 
predictors of poverty. The increases in poverty 
among women are partly as a result of increases 
in unmarried women, and families headed by 
single mothers (Macionis, 2001).  

Although people living in central cities 
are most likely to live in poverty, people living 
in suburban areas are least likely to live in 
poverty (Macionis, 2001). Asian American 
women living in metropolitan areas are less 
likely to live in poverty as compared to those 
living in non-metropolitan areas, although Asian 
Americans are least likely to live in non-
metropolitan areas. Educational attainment and 
employment status are as expected significant 
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predictors: the more educated women the less 
likely they live in poverty; no jobs translate into 
more poverty (Wilson, 1996). The number of 
children also has a positive impact on poverty: 
the more children a woman has it is more likely 
for her to live in poverty (Wilson, 1996). 

In the binary models used to model 
poverty, variables are coded as follows. Marital 
status is coded 1 if a woman is unmarried 
(widowed, divorced, separated, or never 
married) and 0 if a woman is married. 
Educational attainment has four categories: “1” 
denotes less than high school; “2” denotes high 
school; “3” denotes some college; and “4” 
denotes college graduate and above. Area of 
residence is coded 1 if a woman lives in 
metropolitan areas and 0 if a woman lives in 
non-metropolitan areas. Employment status is 
coded 1 if a woman worked for pay and 0 
otherwise.  

There are three categories for number of 
children: “1” denotes no children; “2” denotes 1 
to 3 children; and “3” denotes more than 3 
children. Table 1 provides a percentage 
distribution of women living in poverty and the 
tabulation between poverty and each of the 
predictors. 

Bivariate analyses of poverty and each 
predictor reveal that of 639 Asian American 
women in the sample, 23.2% live in poverty. A 
higher percentage of unmarried Asian American 
women lived in poverty compared to married 
Asian American women (26.5% vs. 19.9%). 
Women with high school education have the 
highest percentage living in poverty (41.3%). 
Women with college education and above have 
the lowest percentage living in poverty. Fewer 
Asian American women lived in non-
metropolitan areas than in metropolitan areas 
(56 vs. 583). Those living in metropolitan areas 
have higher percentage living in poverty than 
those living in non-metropolitan areas (37.5% 
vs. 21.8%). Of employed women, only 18.8% 
lived in poverty while 30% of unemployed 
women lived in poverty. The number of children 
is not significant at the 0.05 level. 

 
 
 
 

These bivariate results are consistent with 
those obtained from previous literature on 
poverty for other racial groups. However, 
simultaneous effects of these predictors on 
poverty are more informative if one is to 
adequately assess the different impacts. Thus a 
multivariate logistic regression model suitable 
for a 2 x 4 x 2 x 2 x 3 contingency table is 
required. The logistic regression model and the 
generalized quasi-likelihood function were 
compared in their use to analyze the data from 
U.S. Census Bureau’s 1998 Current Population 
Survey.   
 
Applications of Binomial Logistic Regression 
Model 

A logistic regression model with a 
binomial distribution and a logit link function 
was fitted to the 2 x 4 x 2 x 2 x 3 contingency 
table. This model was presented to determine the 
simultaneous impact of marital status, 
educational attainment, area of residence, 
employment status, and number of children on 
the probability that Asian American women live 
in poverty. Table 2 provides a summary of the 
results from the fit of such a maximum 
likelihood binomial logistic regression model. 
The odds ratios are obtained from the 
exponentiation of the parameter estimates. 
Unmarried Asian American women are 1.75 
times as likely to be poor than married Asian 
American women. Educational attainment has a 
negative effect on poverty: It also seems that 
more educational years reduced the odds of 
living in poverty by 33.9%.  

Asian American women living in 
nonmetropolitan areas are 1.63 times as likely to 
be poor than those living in metropolitan areas. 
Evidently, whether a woman has a job affects 
the likelihood of being poor: those without jobs 
are 1.56 times as likely to be poor than those 
with jobs. The impact of number of children on 
poverty is not significant. This could be due to 
the fact that poverty measure (whether a person 
lives in poverty) is adjusted by the family size.  
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Table 1. Percentage Distributions of Asian American Women Living in Poverty by Marital Status,  
Educational Attainment, Type of Residence, Employment, and Number of Children. 

 
     Variable % in poverty Number of Cases 
Total 23.2% 639 
   
Marital Status**   
Married 19.9% 326 
Unmarried 26.5% 313 
   
Educational   
Less Than High School 22.5% 111 
High School 41.3% 150 
Some College 21.7% 184 
College Graduate and 10.8% 194 
   
Area of Residence***   
Metropolitan 21.8% 583 
Nonmetropolitan 37.5% 56 
   
Employed?***   
Yes 18.8% 389 
No 30.0% 250 
   
Number of Children   
No children 21.5% 311 
1-3 children 23.7% 296 
4 and more children 34.4% 32 
  

Note: **, significant at the .05 level and ***, significant at the .01 level (Pearson chi-square test). 
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It is imperative to know, prior to 

accepting the odds ratios as obtained, whether or 
not there is a good fit with the model: the extent 
to which the fitted values of the response 
variable under the model compare with the 
observed values. If the agreement between the 
observations and the corresponding fitted values 
is good, the model may be acceptable (Collett, 
1991). To examine the fit, the likelihood ratio 

with the covariates in the model, Lc

^
, is 

compared with the likelihood ratio with the 

saturated model, Lf

^
.  The deviance, 

D L L L Lc f c f= − = − −2 2log( / ) [log log ]
^ ^ ^ ^

,  

where Lc

^
is obtained based on the predicted 

probability of the event under the model with 

covariates while Lf

^
 is obtained based on the 

observed proportions of the event provides such 
a measure.  

The deviance from the model with 
covariates is 138.81 with 74 degrees freedom. 
The ratio of the deviance to the degrees of 
freedom (1.87) is substantially greater than one. 
Thus,  there   is  a  strong  likelihood  that  over- 

 

 
dispersion is present and the assumption of the 
binomial variability may not be valid (Collett, 
1991). Such results suggest that the data exhibit 
overdispersion. Thus there is a significant 
amount of variation unaccounted for. This 
indicates that Φ is greater than 1 in the variance 

function where var( )y p
p

i

i

=
−

Φ
1

. Thus, the 

assumption that Φ  is equal to 1 in the logistic 
regression model is not valid. Thus it is evident 
that the data are over-dispersed. 

Overdispersion arises because of 
clustering in the population (McCullagh and 
Nelder, 1989). Overdispersion could be present 
due to the fact that unobserved heterogeneity 
operates at the level of groups rather than 
individuals (Allison, 1999).  It may also be an 
account of the cost of living differences between 
metropolitan and nonmetropolitan cities.  

Given the presence of such 
overdispersion, a quasi-likelihood model was 
chosen to analyze the data. The quasi-likelihood 
model allows us to estimate the parameters in 
the model and determine its significance without 
specifying the distribution function while 
accounting for the overdispersion. The model is 
fully determined since the link and variance 

Table 2 Parameter estimates, Standard errors, and Odds Ratios For Binomial Logistic Regression Model. 
 

Covariate Parameter Standard Odds Ratios 
Intercept -.705 .557 .494 
    
Marital Status    
Unmarried .559 .239 1.749 
Married    
Educational -.273 .089 .761 
    
Area of Residence    
Metropolitan -.638 .305 .528 
Nonmetropolitan    
    
Employment Status    
Employed -.446 .201 .640 
Not Employed    
Number of Children .487 .194 1.63 
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functions are sufficient for fitting the model. 
Once these are specified, the same iterative 
procedure that is used for fitting the other 
families can be used to estimate the linear 
parameters. This is readily available in SPLUS.  

 
Applications of Generalized Quasi-Likelihood 
Function 

Using the logistic regression model to fit 
the data left indication that overdispersion was 
present. The overdispersion may be due to the 
fact that some variables tend to produce 
clustering in poverty and thus some unobserved 
heterogeneity affects the fit of the model. To 
account for any such extra variation, a joint 
modeling of the mean and the variance using the 
generalized quasi-likelihood function was used.  
Quasi-likelihood estimation makes it possible to 
estimate relationships without fully knowing the 
random component of model.   

The difference between a quasi-
likelihood function and a maximum likelihood 
function is analogous to the comparison between 
normal-theory regression models and least 
squares regression estimates. As least-squares 
estimation and normal theory models give 
identical regression parameter estimates so does 
quasi-likelihood and maximum likelihood 
procedures. However, least-squares estimation 
relies on second moment assumptions for its 
variance whereas normal-theory models rely on 
full distributional assumptions.  

Under quite general conditions, quasi-
likelihood estimates are consistent and 
asymptotically normal (Agresti, 1990). Quasi-
likelihood estimators still retain relatively high 
efficiency as long as the degree of 
overdispersion is moderate (Cox, 1983; Firth, 
1987). Thus, quasi-likelihood function allows us 
to estimate the dispersion parameter in 
moderately over-dispersed regression models. 
We applied these principles to the present data 
under investigation. 

The mean submodel has  first and 
second moments as  

E y x x x xi i k ki( | ) ...= + + + +β β β β0 1 1 2 2

 
and  var( ) ( )y Vi i= Φ µ  respectively, where  Φ  
is the overdispersion parameter. Systematic 
components consist of marital status, 

educational attainment, type of residence, 
employment status and number of children. The 
model was fitted to the data using several 
different link functions including logit, log, and 
complementary log-log. For the variance 
functions, choices were made from µ , 

),1( µµ − and the constant.  
Based on the goodness of fit statistics, 

the mean submodel with a log link and µ  as the 
variance function gave the best fit. The log link 
corresponds to multiplicative effects of the 
covariates. The ""µ  variance function is 
equivalent to Φ  as the coefficient of variation 
of the response (McCullagh & Nelder, 1989). 
The regression coefficient estimates for the 
mean and the dispersion submodel are given in 
the first two columns of Table 3.  

The dispersion submodel was also fitted 
with different link and variance functions. The 
choices for link functions included identity and 
square root and the choices for variance 
functions included the constant, µ , and µ 2 (the 
squared coefficient of variation). Based on the 
goodness-of-fit statistics (mostly, how much 
deviance relative to the degrees of freedom), the 
dispersion model with square root link function 
and µ  the variance function was chosen.   

Some parameter estimates from the 
generalized quasi-likelihood model from Table 3 
are similar in value to the corresponding values 
of Table 2 when the binomial logistic regression 
model was applied. In the generalized model, 
there are two variables significant at the .05 
level. Education has a negative effect on 
poverty, thus the more educated they are the less 
likely they are in poverty, while the more 
children in the  household increased  the odds of 
Asian women living in poverty. The deviance 
from the generalized quasi-likelihood model 
suggests that the overdispersion is accounted for 
and the model is a good fit.  

The response variable of the dispersion 
submodel is the square of the residual. Residuals 
are one principal tool for assessing how well a 
model fits the data. They can be used to assess 
the importance and relationship of a term in the 
model as well as to search for anomalous values. 
For generalized linear models, residuals can also 
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help assess and verify the form of the variance 
as a function of the mean response.  

There are different kinds of residuals 
that can be employed.  First the deviance 
residuals,  

r di
D

i i= −sign(yi µ )  
where di is the contribution of the ith 
observation to the deviance. The deviance is 
 

D ri i
D= ∑ ( )2  

These residuals are useful detecting observations 
with unduly large influence on the fitting 
process, since they reflect the same criterion as 
used in the fit. Secondly, there is the Pearson 
residuals,  
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 is the 

chi-square statistic.  
The dispersion submodel has as its 

response variable the squares of the residuals 
(the difference between observed values and 
fitted values). If the mean submodel fits the 
model well, then there may not be a need to 
model the deviance and none of the parameter 
estimates in the dispersion model may be 
significant. An examination of the parameter 
estimates and standard errors from the 
dispersion submodel in Table 3 suggests that the 
form of the variance as a function of the mean 
response is appropriate in our model and there 
are almost no anomalous values in our model. 
The mean deviance for the dispersion model is 
2.05. 

 
 

 
 

Table 3. Parameter estimates and (standard errors) for Generalized Quasi-likelihood model. 
 

Mean Submodel Dispersion Submodel Covariate 

Parameter 
Estimate 

Standard Errors Parameter 
Estimate 

Standard Errors 

Intercept -1.128* .504 1.698** .414 
     
Marital Status     
Unmarried .388 .220 -.034 .201 
Married     
     
Educational -.206* .084 -.104 .069 
     
Area of Residence     
Metropolitan -.412 .264 .234 .209 
Non-metropolitan     
     
Employment Status     
Employed -.315 .191 .216 .199 
Not Employed     
     
Number of Children .338* .172 -.345* .138 
  

Note: * at the .05 level, and ** at the .01 level. 
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Conclusion 
 

Generalized linear models such as binomial 
logistic regression and Poisson regression are 
very widely used in social, economic, and 
medical research. While the binomial logistic 
regression is easy to use and interpret, we need 
to look for an alternative if there is 
overdispersion in our data. 

When the data are over-dispersed, due to 
heterogeneity or the clustering effect at the 
group level, it is necessary to model the 
overdispersion. Quasi-likelihood models allow 
you to model such overdispersion as the 
estimation process assumes only a form for the 
functional relationship between the mean and 
the variance. Further they allow us to 
simultaneously model the mean and the variance 
without accounting for any distributional 
assumptions.  

Quasi-likelihood models were used to 
model the data from U.S. Census Bureau’s 1998 
Current Population Surveys. Data pertaining to 
Asian American women who lived in the 
western region of the United States showed that 
covariates such as marital status, educational 
attainment, area of residence, employment 
status, and number of children are not all 
predictors when modeling poverty, as with other 
ethnic and racial groups. Use of the binomial 
logistic regression model showed the presence 
of overdispersion. Quasi-likelihood functions 
were used to model that overdispersion. Several 
link functions and variance functions were 
examined to identify a model with the best fit. 
For these data, a mean submodel with the log as 
the link function and : as the variance function 
and a dispersion submodel with square root as 
the link function and : as the variance function 
fit well. Thus, the binomial logistic regression 
models overstated the effects of the covariates, 
in part due to the unaccounted extravariation.  
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