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Epidemiological information can be aggregated by combining results through a meta-analysis technique, 
or by pooling and analyzing primary data. Common approaches to analyzing pooled studies through an 
example on the effect of occupational exposure to wood dust on sinonasal cancer are described. Results 
were combined applying a meta-analysis technique. Alternatively, primary data from all studies were 
pooled and re-analyzed using mixed effect models. The combination of individual information rather than 
results is desirable to facilitate interpretations of epidemiological findings, leading also to more precise 
estimations and more powerful statistical tests for study heterogeneity.  
 
Key words: Pooled-analysis, meta-analysis, generalized linear mixed models, random effects, 
epidemiological methods 
 
 

Introduction 
 
The requirement of large samples of subjects is 
particularly important in studies of uncommon 
diseases, such as most types of cancer, and even 
in diseases with higher prevalence, such as 
asthma. Large multi-center studies, or 
combining information from multiple studies, 
are the best approaches for improving the 
information from, and overcoming lack of power 
in individual studies.  Information from multiple  
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epidemiological studies can be aggregated either 
by combining results, such as summary 
measures (for example, odds ratios), through a 
meta-analysis technique, or by pooling and 
analysing primary data. 

The combination of results, usually 
called meta-analysis, involves the compilation of 
published results from different studies 
(Thacker, 1988). Another option is to pool 
individual information from each study and to 
conduct an analysis for the entire data set, this 
being defined as meta-analysis of individual 
patient data (Stewart & Parmar, 1993). Meta-
analysis of individual patient data was originally 
applied to clinical trials, although in 
epidemiological studies this procedure is usually 
known as pooled-analysis (Checkoway, 1991).  

Both, meta-analysis of results and meta-
analysis of individual patients have advantages 
and limitations (Thacker, 1988; Friedenreich, 
1993). Meta-analysis of results has a relatively 
low cost and the appropriate statistical 
techniques are straightforward to understand and 
implement. It does not require sharing of 
primary data, because it can be performed from 
reviews of internal reports in multi-center 
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studies, or from reviews of published and 
unpublished results. In this situation, meta-
analysis of results is sensitive to publication 
bias, since unpublished results are usually 
difficult to locate or obtain. This fact must be 
taken into account, treating results with caution 
(Vanderbroucke, 1988). Practices of data 
reporting also pose difficulties when examining 
specific diseases (Checkoway, 1991). 

Meta-analysis of published results is 
limited to the information available, permitting 
usually only a meta-analysis of overall risks. 
The procedure has also been criticised since it 
can be conducted without full consideration of 
the underlying statistical assumptions and 
inferences required for this type of analysis 
(Oakes, 1990). Further, the use of a chi-square 
statistic for assessing heterogeneity in the 
original studies has been criticised due to its lack 
of power (Spector & Thompson, 1991). 

An alternative to meta-analysis is to 
pool and then re-analyse individual data. Pooled 
analysis of epidemiological studies, defined as a 
combination of primary data from published and 
unpublished studies has become common 
recently. With such an approach, rare exposures 
can be more easily studied (Clayton, 1991), and 
confounding and possible interaction effects can 
be more accurately estimated.  

Pooled analysis however, is more 
difficult to conduct since it is more labour and 
time-intensive. Common definitions for 
outcomes and other covariates must be used. 
Thus, important issues are how to accommodate 
differences in the populations and methods used 
in the original studies, and to assess their 
possible effect on the results. Friedenreich 
(1993) outlined guideline procedures on pooling 
of primary data for the integration of qualitative 
assessments of studies with quantitative 
estimates of the results. However, there are no 
clear guidelines on the statistical analysis of 
pooled data, especially if there is heterogeneity 
in the original studies.  

The objective of this article is to 
describe and compare common statistical 
techniques for analysing pooled and multi-center 
studies. Discussed are the alternative 
methodologies of performing a meta-analysis of 
results, and of pooling and re-analysing primary 
data.  

Methodology 
 

Fixed effects model 
 The meta-analysis technique is a 
straightforward process of weighting results 
under a simplistic assumption, that the true 
effect (θ) is the same for each centre, or study, 
that is an assumption of homogeneity (θi=θ for 
all i). Most meta-analyses use fixed effects 
estimates. The weighted average 
θ̂ =Σ(wi θ̂ i)/Σwi is an unbiased estimate of θ, 
where the weight wi=1/vi is determined by 
variance (vi) of the effect estimate, which 
depends on the effect size and the size of the 
study. This weighted average has the smallest 
estimated variance v̂ =1/Σwi among the 
weighted averages of θ̂ i (Cox, 1982).  

There are different versions of this 
estimator, differing either in the scale of the 
effect (log or untransformed odds ratio) or in the 
approximation of the variance used. The Mantel-
Haenszel (Mantel & Haenszel, 1959) method 
weights the untransformed odds ratios 
approximately proportional to their sample sizes. 
In Woolf’s method (Woolf, 1955), the log odds 
ratio are weighted inversely according to their 
estimated variances from a 2x2 table or 
asymptotically from a logistic regression. 
Finally, Peto’s method (Peto et al., 1977) uses 
the observed minus expected values over their 
variances as an approximation to the log odds 
ratio. Among these, Woolf’s method is the most 
frequently used. Although Peto’s method has 
been recommended to analyse experimental 
studies other authors suggest using Woolf’s 
method for any type of study (Greenland, 1987). 
 
Testing heterogeneity 
 An overall test of heterogeneity of the 
original studies is provided by calculating 
Q=Σwi( θ̂ i- θ̂ )2 following a 2

1k−χ  distribution 
under the homogeneity assumption, where k is 
the number of studies to pool. The lack of power 
of this test has been well established (Spector & 
Thompson, 1991), and the absence of formal 
statistical significance need not imply true 
homogeneity. Graphically, heterogeneity can 
also be assessed in first instance from a Forrest 
plot (Light et al., 1994), although other methods 
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have been developed to complement this test and 
also to detect sources of heterogeneity. Among 
these, the Galbraith plot (Galbraith, 1988) has 
been more frequently recommended (Thompson, 
1993) than others, such as the l’Abbé plot 
(l’Abbé et al., 1987) or the odd man-out 
procedure (Walker et al., 1988), which will not 
be discussed further.  
 
Random effects model 
 An alternative method suggested by 
DerSimonian and Laird (1986) considers that the 
heterogeneity between studies is unexplained. 
This is known as a random effects model where, 
θ̂ i~N(θi,vi), and θi~N(θ,σ2). Here the θi effects 
have some dispersion around the overall 
estimate θ, indicated by the between-study 
variance σ2. An estimate σ̂ 2 of σ2 must 
therefore be derived from the results. Then, the 
inverse variance weights become wi

*=1/(vi+σ2), 
where vi is the variance within the ith original 
study and σ2 and is the variance between studies. 
The combined estimate of the effect is defined 
by θ̂ =Σ(wi

* θ̂ i)/Σwi
* with variance v̂ =1/Σwi

*. 
 Among the standard packages, Stata, S-
Plus and SAS have available macros to perform 
meta-analysis, which can be downloaded from 
http://www.prw.le.ac.uk/epidemio/personal/ajs2
2/meta/. However, meta-analysis formulae could 
be easily programmed in other standard 
packages or even in a simple spreadsheet. 
 

Pooled analysis of primary data 
 
Fixed-effects model and testing heterogeneity 
 The analysis of pooled data does not 
present any difficulty if a fixed effect model is 
considered, that is assuming that all the effects 
are fixed for study. For example, if the outcome 
variable is dichotomous (i.e., case-control status) 
standard logistic regression can be used. Test for 
heterogeneity by comparing the model that 
includes the interaction between study and the 
exposure of interest and the previous model 
without the interaction, using the likelihood ratio 
test. From the statistical point of view, the most 
important question is to consider or not the 
presence of heterogeneity. If statistical 
heterogeneity is presented mixed effects models 
must be used (Breslow & Clayton, 1993).  

Mixed-effects model 
 Mixed effects model differs from 
conventional fixed effects model in that, as well 
as modelling location parameters, they also 
model the underlying covariance structure of the 
data. The simplest way to model covariance is 
by specifying random effects in the model. 
Briefly, a Normal Mixed Model is defined as 
y=Xα+Zβ+e, where X is a design matrix for 
fixed effects and Z is a design matrix for random 
effects, then β~N(0,G), V(e)=R and 
V(y)=ZGZ'+R, where G is a diagonal matrix of 
variance parameters, R is the residual variance 
matrix, and e is the residual error.  

However, when the dependent variable 
is non-linear, define a Generalised Linear Mixed 
Model as follows: y=µ+e, g(µ)=Xα+Zβ, with 
β~N(0,G), V(e)=R and V(y)≈BZGZ'B+R, where 
the new parameter µ are the expected values, g 
is the link function, and B is the diagonal matrix 
of variance terms. An extended notation about 
mixed models can be found in Brown and 
Prescott (1999). 

There are no clear rules to define if the 
variables included in the model should be 
defined as fixed or random effects. Pooled 
analyses in epidemiology are usually carried out 
because insufficient subjects are available for 
the study at any one centre. Thus, there will be 
extra variability in the risk factor estimates, 
which can usually be due to differences between 
studies (for example different investigators, 
types of patients, etc.) This extra variability can 
be taken into account by including study and 
interaction between study and risk factor in the 
model. When study and interaction between 
study and risk factor are taken as random, 
allowance is made for variability in the 
magnitude of risk factor estimates between 
studies.  

The choice will depend on whether risk 
factor estimates are related to the set of studies 
used in the pooled analysis. Thus, local risk 
factor estimates for the sampled set of individual 
studies will be obtained fitting the study and 
interaction between study and risk factor 
variables. To obtain a global risk factor estimate 
the study and interaction between study and risk 
factor should be fitted as random. When this is 
done the standard error of the risk factor 
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estimate is increased to reflect the heterogeneity 
across studies. Taking study as a random effect 
can increase the accuracy of risk factor estimates 
since information from the study error stratum is 
used in addition to that from the residual stratum 
(Brown & Prescott, 1999).  

In a pooled analysis of epidemiological 
studies there are other factors that differ at the 
study level that can help to explain differences 
in results between studies. These may be 
sensible to be included as random effects in a 
mixed model and reduce the variability of the 
interaction between study and risk factor, 
leading to more precise estimates. 

Mixed effects for linear models are 
available in standard packages: SAS (GLM and 
MIXED procedures), Stata (xtreg) and S-Plus 
(lsfit). To fit a mixed effects model for non-
linear data, specific macros for Stata (gllamm) 
and SAS (GLIMMIX) have been recently 
developed. However, mixed-effects models can 
also be fitted in other specialised software such 
as MLnWin. 

 
 

 
 

Analysis of 8 case-control studies on sinonasal 
cancer 
 The aim of the investigation was to 
reanalyse data available from eight previously 
published case-control studies focused on the 
differential effect that occupations exposed to 
wood dust have on the major histological types 
of sinonasal cancer. The reanalysis was done 
within each individual study, and pooling them 
after that to obtain a summary measure of the 
exposure effect. This research formed part of a 
wider project on occupational cancer in Europe 
by the International Agency for Research on 
Cancer.  

Primary data from 8 case-control studies 
from Germany, Netherlands, France, Sweden, 
and four studies in Italy (Vigevano, Brescia, 
Biella, Siena) were available. These studies 
examined the association of occupational wood 
dust exposures and sinonasal cancer, taking into 
account histological types. A detailed 
description of  the process  for  selection of  the  

 
 
 
 
 

 

Table 1. Description of eight published case-control studies on the association between occupational wood 
dust exposures and sinonasal cancer.  
 

 Sex Age 
 
Study 

Male 
n (%) 

Female 
n (%) 

< 55 
n (%) 

55-65 
n (%) 

> 65 
n (%) 

    
Germany 59 (59.6) 40 (40.0) 25 (25.3) 23 (23.2) 51 (51.5) 
Netherlands 286 (100.0) 0 (0.0) 87 (30.4) 87 (30.4) 112 (39.2) 
France 487 (79.1) 129 (20.9) 216 (35.1) 191 (31.0) 209 (33.9) 
Sweden 585 (100.0) 0 (0.0) 190 (32.5) 129 (22.0) 266 (45.5) 
Italy   
Siena  238 (71.9) 93 (28.1) 83 (25.1) 79 (23.9) 169 (51.0) 
Biella  110 (83.9) 21 (16.3) 32 (24.4) 48 (36.7) 51 (38.9) 
Brescia  93 (68.4) 43 (31.6) 41 (30.1) 21 (15.4) 74 (54.4) 
Vigevano  31 (77.5) 9 (22.5) 10 (21) 11 (27.5) 19 (47.5) 
   
TOTAL 1889 (84.9) 335 (15.1) 684 (30.8) 589 (26.5) 951 (42.8) 
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studies and classification of exposures can be 
found elsewhere (Mannetje et al., 1999). The 
pooled data set includes cases includes 538 cases  
and 1,686 controls. The cases also includes 238 
squamous cell carcinomas, 155 
adenocarcinomas, 79 other histologies, and 59 
unknown histology. However, the studies 
differed in the methods for recruitment and 
interview of the subjects. Table 1 presents a 
description of the studies by sex, age, smoking 
status and occupational wood dust exposures to 
sinonasal cancer. 
 

Results 
 
Meta-analysis of results 
 Initially the odds ratio was obtained 
(OR) by each study using logistic regression 
adjusted by age, sex and smoking status. Results 
for each study are showed in a Forrest plot 
(Figure 1). Note that the logistic regression 
model for the study from Vigevano (Italy) did 
not converge because no cases were exposed. 
However, a crude odds ratio for Vigevano using 
a Mantel-Haenzsel estimate or thorough an 
exact-method could be obtained, but that 
estimate may be seriously biased since it would 
be  unadjusted   by  the   potential  confounding  
variables considered in the logistic regression 
models. Results are presented for 7 of the 
studies. The Forrest plot gives a first indication 

 
 
that there is heterogeneity between studies. 

Thus, as a first approach to obtain a 
summary measure of the exposure effect, 
combined the results of each study applying a 
meta-analysis technique, weighting by the 
inverse of variance (OR=2.93, 95% CI: 2.24 to 
3.83). The Forrest plot gives an initial indication 
that there is heterogeneity between studies. 
Heterogeneity of effects between studies was 
tested using the Q-statistic (Table 2), which 
confirms that there is a considerable amount 
heterogeneity between studies (χ2=45.357, df=6, 
p<0.001). Finally, a random effects model was 
applied using DerSimonian and Laird’s method 
(OR=2.43, 95% CI: 1.06 to 5.59). Analyses were 
done using Stata, release 7.0, statistical software. 
 
Pooled analysis of individual data 
 Primary data from all studies were 
pooled and first analysed using a fixed effects 
model (Table 2). Thus, standard logistic 
regression was applied adjusting again by sex, 
age and smoking status, providing different risk 
estimates with a narrowness confidence interval 
than meta-analysis (OR=3.05, 95% CI: 2.36 to 
3.95). This difference is mainly due to the fact 
that in the pooled-analysis the data from 
Vigevano study are included, while in the meta-
analysis they were not, because no risk estimates 
can be estimated for this study. 
 

Table 1 continued. 
 

Smoking status Controls Cases 
non 

n (%) 
ex 

n (%) 
Current 
n (%) 

(exposed/ 
non-exposed) 

(exposed/ 
non-exposed) 

     
46 (46.5) 11 (11.1) 42 (42.4) 1/53 2/43 
16 (5.6) 108 (37.8) 91 (27.6) 35/160 25/66 

234 (38.0) 237 (38.5) 145 (23.5) 46/363 99/108 
215 (36.6) 136 (23.2) 234 (40.0) 272/269 20/24 

     
113 (34.1) 127 (38.4) 91 (27.5) 26/228 16/62 
38 (29.0) 45 (34.3) 48 (36.6) 7/98 7/19 
64 (47.1) 35 (25.7) 37 (27.2) 7/95 3/31 
12 (30.0) 11 (27.5) 17 (42.5) 4/23 0/13 

     
738 (33.2) 710 (31.9) 776 (34.9) 398/1288 176/366 
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Table 2. Results from eight published case-control studies on the association between occupational wood 
dust exposures and sinonasal cancer, analysed combining results (meta-analysis using fixed and random 
effects model), and combining individual patient data (pooled analysis using a fixed effects model). 
 

 Occupational dust wood esposure Test for heterogeneity 
Model              β (se)   OR        (95% CI) χ2          df         p-value 
       
Meta-analysis       

Fixed effects 1.074 (0.136) 2.93   (2.24, 3.83) 45.357 6 <0.001 
Random effects 0.891 (0.424) 2.43   (1.06, 5.59)    

       
Fixed effects pooled 
analysis 

      

Including all studies 1.116 (0.132) 3.05   (2.36, 3.95) 51.317 7 <0.001 
Excluding 
Vigevano study 

1.079 (0.131) 2.94   (2.28, 3.80) 44.374 6 <0.001 

       
 

Figure 1. Results from eight published case-control studies on the association between occupational wood 
dust exposures and sinonasal cancer. Odds ratios for each study are adjusted by sex, age, and smoking status. 
 

Odds Ratio
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Pooled analysis, excluding the Vigevano 

study, gives a result from a fixed effects model 
much closer (OR=2.94, 95% CI: 2.28 to 3.80) to 
those from a meta-analysis. Heterogeneity was 
assessed using the likelihood ratio test 
(χ2=51.317, df=7, p<0.001). 

For the mixed-effects model the 
analyses were performed using the SAS macro 
GLIMMIX which implements the Penalised 
Quasi Likelihood (PQL) approach. Firstly, three 
different models are fit, defining study, the 
interaction between study and occupational dust 
exposure, and both study and its interaction with 
occupational dust exposure to be the random 
effects (with an unstructured covariance matrix), 
respectively.  

Also introduced are the covariates sex, 
age and smoking status, as fixed effects (Table 
3). In the first model, where only the variable 
study is defined as a random effect, occupational 
dust exposure is closer to the previous result 
using a fixed effect approach (OR=2.86, 95% 
CI: 2.21 to 3.72), although it increases the 
accuracy of the exposure estimate. However, 
when the interaction between study and 
occupational dust exposure are included as 
random effects the standard error of the 
exposure estimate is increased coming to lose 
the statistical significance (OR=2.05, 95% CI:  

 
0.99 to 4.23), due to it is reflecting the 
heterogeneity across studies. Finally, when both 
study and its interaction with occupational dust 
exposure are included as random effects, 
although the standard error of the exposure 
estimate is again increase, results are more 
accurate than previous model (OR=1.94, 95% 
CI: 0.96 to 3.93). 

However, as seen from Table 1, the 
effects of the covariates factors varied across 
studies. For this reason, it was decided to 
include these factors also as random effects, as a 
sensitivity analysis (Table 3). In this situation, 
occupational dust estimate do not change, 
although this model provides slightly more 
accurate result (OR=1.94, 95% CI: 0.96 to 3.89) 
due to inclusion of covariates sex, age and 
smoking status as a random effects. This fact is 
reflected in the variance components, being 
lower than those for previous models. 
 

 
Conclusion 

 
It is important to consider the differences 
between pooled studies using individual patient 
data and classical meta-analyses of results. The 
key point in a pooled study is to integrate 
accommodate in the populations and methods 

Table 3. Sensitivity analysis for mixed-effects models to combine individual patient data (pooled analysis) 
of eight published case-control studies on the association between occupational wood dust exposures and 
sinonasal cancer. 
 

Variables defined   Occupational wood dust exposure  Variance 
as random effects  Deviance β (se) OR (95% CI)  components

        
Study  2210.94 1.052 (0.133) 2.86 (2.21, 3.72)  0.6592 
 
Study×wood dust exposure 

  
2162.64 

 
0.718 (0.369) 

 
2.05 

 
(0.99, 4.23) 

  
0.3781 

 
Study  
Study×wood dust exposure 

  
2163.07 

 
0.662 (0.361) 

 
1.94 

 
(0.96, 3.93) 

  
0.3498 
0.3703 

 
Study  
Study×wood dust exposure 
Sex 
Age 
Smoking status 

  
2166.49 

 
0.661 (0.356) 

 
1.94 

 
(0.96, 3.89) 

  
0.3568 
0.3761 
0.0375 
0.0076 
0.0039 
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used in the original studies, and to assess their 
possible effect on the results. Friedenreich 
(1993) reported useful guidelines for pooling of 
primary data.  

The principal advantage of having 
individual patient data is that adjustments can be 
made for different covariates. However, the 
assumptions that are made in fitting the pooled 
analysis of individual patient data need to 
specified and discussed. In our analysis, the 
confounding effects of sex, age and smoking 
status must be assumed to be the same across the 
original studies. However, if the effects of the 
confounding factors varied across studies, then it 
may be sensible to include these as random 
effects.  

The main difference between a fixed 
and a random effect will depend on the intention 
of the analysis. If local estimates need to be 
provided, then a fixed effects model must be 
fitted. Moreover, if the aim of the analysis is to 
report a global estimate, then always define the 
study and its interaction with the risk factor as 
random effects. Thus random effects are sources 
of variation in a model due to individuals or 
groups over above the individual error term 
(Campbell, 2001). For these reasons, one should 
consider that combining individual patient data 
from different sources is complex, and in 
practice, various assumptions need to be made. 
Various models with a variety of combinations 
of fixed and random effects should be fitted to 
assess the sensitivity of the chosen model. 

It is usually desirable to work with 
individual information rather than combined 
results to facilitate interpretations of 
epidemiological findings (Blettner et al. 1999), 
although others (Steinberg et al., 1997) 
suggested that meta-analysis of results is 
adequate under certain circumstances. The 
obvious advantages in a pooled-analysis pertain 
to increases in the study size, both of the overall 
and the reference populations used in the 
analysis. This leads to more precise estimations 
and more powerful statistical tests for 
heterogeneity. Furthermore, there may be studies 
that are difficult or impossible to incorporate 
into a meta-analysis because of zero counts, as 
was the case with the study in Vigevano 
presented in the example for instance, which can 
be included in the pooled analysis. Their 

absence from the meta-analysis produces bias 
that the pooled analysis does not suffer from. 
However meta-analysis of results is much less 
costly (Steinberg et al., 1997). 

The accuracy with which variance 
components are estimated is dependent on the 
number of studies included in the analysis. 
Problem arise when only few studies are 
available, which means that there will be 
considerable uncertainty in the estimate of the 
between study variance. Also mixed effects 
models, rather than classical fixed effects 
models, make more assumptions.  

In consequence, there could be problems 
of bias or lack of convergence of the model 
fitting process for complex models, such as 
fitting fixed effects within a random effect, 
modelling repeated measurements, or dealing 
with small to moderate samples (Breslow & Lin, 
1995; Kuk, 1995). Nevertheless potential 
solutions such as bootstrapping or full Bayesian 
analysis are available (Brown & Prescott, 1999), 
but these methods require very large amount of 
computer power and time. The main difference 
between a Bayesian analysis and a maximum 
likelihood method (as PQL approach used in our 
analysis) is that techniques are used to evaluate 
the likelihood surface, rather than estimate the 
parameters that maximise it. 

In absence of heterogeneity, both meta-
analysis and pooled analysis produce close 
results, in terms of estimates and variances. This 
is done because the meta-analysis estimate is a 
weighted mean of the means by each centre, and 
the pooled analysis estimate from a regression 
model is also a weighted mean. So, both 
methods are estimating the same quantity. In a 
meta-analysis technique, a random effects model 
will produce same estimates as a fixed effects 
model, and in a pooled analysis fixed and mixed 
effects models will produce similar results. 

Whenever heterogeneity is assessed one 
approach is to look for possible sources of it. 
Meta-analyses should incorporate a careful 
investigation of potential sources of 
heterogeneity (Thompson, 1994), because 
statistical tests for heterogeneity may fail to 
detect moderate degrees of it. Graphical 
techniques, like Galbraith plots, are useful in 
searching for sources of heterogeneity. 
Statistical heterogeneity may be caused by 
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known clinical differences between populations 
or by methodological characteristics between 
studies. Interpretation of possible sources of 
heterogeneity requires caution because analyses 
are post-hoc (Spector & Thompson, 1991). 

Frequently, heterogeneity is related to 
unknown causes. Then the formal approach 
should be to fit a random effects model -in a 
meta-analysis-, or a mixed effects model -in a 
pooled analysis-. The choice between these fixed 
and random, or mixed, effects rarely affect the 
conclusions obtained (Spector & Thompson, 
1991). The greater is the amount of 
heterogeneity, the greater will be differences 
between estimates from fixed and random/mixed 
effects models. However, variances from 
random, or mixed, effects model will always be 
higher than those from fixed effects model, 
because in the former models both variances, 
between and within studies, are taken into 
account. Independently of whether fixed or 
random/mixed effects models are used, 
estimates from pooled analyses are more precise 
than those from meta-analyses. 

When dealing with pooled or multi-
centre studies, results for have to be evaluated 
for the researcher. Then, if an individual analysis 
for each centre, or study, is done, a meta-
analysis can quickly and easily be performed. 
This result should be compared, as a sensitivity 
analysis, with the result from the model using 
individual data, due to conflicting results 
possibly being found.  

For example, Harrison and Waterbor 
(1999) found disagreeing results in the 
relationship between dietary fat and breast 
cancer if primary study results were 
heterogeneous. In that way, it was seen in the 
study that if the two methods (meta-analysis and 
pooled analysis) produce marked different 
results then a possible source of divergence, 
such as absence of exposed cases, should be 
considered in further analysis. This implies that 
meta-analysis techniques are still useful; 
according to Spector and Thompson (1991), 
“Meta-analysis is here to stay. Epidemiologists, 
statisticians, and clinicians should all be aware 
the uses and limitations of the technique”.  
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