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Abstract: This article proposes estimation of population mean using factor-type (F-
T) estimator in the presence of measurement errors under systematic sampling
scheme. The factor-type (F-T) estimator is biased and the expression of bias, MSE
and optimum MSE of proposed estimator is obtained up to first order of
approximation under the concept of large sample approximations and a comparative
study of this estimator along with related pre-existing estimators is taken out. A
simulation study has been performed to ratify the performance of proposed
estimator in systematic sampling. The proposed factor-type (F-T) estimator is found
better than other existing estimators as considered under in this study.
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1. Introduction

Systematic sampling is a structured approach that ensures that every element has an equal chance of being
selected in the sample. So, random numbers are used initially in systematic sampling and then it follows a regular
pattern of selection that defines the method. It ensures equal possibility for each unit in the population to be selected in
the sample by taking first one randomly and rest units get selected automatically following a pre-defined pattern. The
importance of this sampling strategy is due to its simplicity that emphasized it one of widely use sampling strategy.

In other words, let a random sample of size n is desired from a population of size N. in systematic sampling,
the first element i is selected randomly from the first k elements (generally, i (1 < i < k) is known as random
start and k is defined as N =nk and known as sampling interval), and thereafter every k™ element
[i +k,i+2ki+3k,......,i+(n—1)k] is selected in the sample. According to Singh and Chaudhary (2009)
[1], systematic sampling is simple and fool proof. Apart from its simplicity, this procedure, in many situations,
provides estimates more efficient than simple random sampling and is widely used in various surveys.

Systematic sampling has fine features of selecting samples. Due to its simplicity and tendency to give better
results, many authors have done their research in this scheme [2—-8].

Non-response and measurement errors are major factors of non-sampling errors in survey sampling. However,
it is possible that a sample may be defective by the measurement errors as well due to self-interest, failure of
memory, fatigue, careless handling of data, etc. Measurement errors are those errors in which the recorded
observations deviated from the true observations. For example, an income tax payee may hide his actual income
to decrease self-tax liabilities.
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A study by Humaidi et al. [9] of observer performance in state estimation for a rotary inverted pendulum
system, focusing on the impact of measurement errors, reveals that Finite-Time Extended State Observers
(FESO) generally outperform other observer types like Nonlinear Extended State Observers (NESO) and Linear
Extended State Observers (LESO) in terms of estimation accuracy. This is particularly evident when considering
parameter uncertainties and external disturbances, with FESO achieving a significantly lower Root Mean
Squared Errors (RMSE).

Measurement errors in the context of Least Squares (LS) algorithms, particularly when applied to parameter
estimation in canonical state-space models and incorporating bias compensation principles, are a critical concern
influencing the accuracy and reliability of the estimated parameters [10,11]. Studied measurement errors in an
electronic throttle valve can significantly affect engine performance and drivability. These errors can arise from
various sources, including sensor inaccuracies, actuator limitations, and environmental factors. Addressing these
errors are crucial for precise throttle control and optimal engine operation.

If the measurement errors occur in sampled data, then it can lead to an imprecise estimate. Several methods
are found for controlling these types of errors like—ratio, product, regression, etc. Several authors did their
contributions in this field to increase the precision of different estimators under diverse sampling schemes. Shalabh
and Tsai [12] proposed a class of ratio and product method of estimation in the presence of correlated measurement
errors. Singh et al. [13] have studied the effect of measurement errors on ratio, product, and mean estimator
simultaneously. Singh and Vishwakarma [14] studied the simultaneous effect of measurement errors and non-
response on mean estimation. These all works used simple random sampling but not in the context of systematic
sampling [15-21].

Singh and Shukla [22] proposed a family of factor-type (F-T) estimator yg; in simple random sampling
using the auxiliary variable. The beauty of factor-type (F-T) estimator is that this estimator provides different
estimators like, ratio, product, etc. at some specified values of its constant k;. This estimator is bias controlled
because it provides choices of constant k; for optimum mean squared errors as well. The estimator yp; is biased
and the expressions of bias, mean squared errors and optimum mean squared errors can obtain simply using the
concept of large sample approximations up to first order.

Again, Shukla and Thakur [23] developed factor-type estimator as a device of imputation used for dealing
missingness of the data. This estimator is found better than other existing methods of imputation under the simple
random sampling design. Thakur and Shukla [24] applied the factor-type (F-T) estimator for chaining of two
auxiliary variables and found that the factor-type (F-T) estimator is performed better in the same setup. A number
of manuscript available in the literature in which importance and applicability of factor-type (F-T) estimator is
proved with empirical study under different sampling strategies like, post-stratification, two-phase sampling,
stratified random sampling, etc.

Vishwakarma and Singh [25] presented a generalized class of mean estimators under simple random sampling
using auxiliary variable. The observations on both the study variable and the auxiliary variable are supposed to be
recorded with measurement errors. The mean square errors of the proposed class of estimators is derived and
studied under measurement errors.

To provide a brief overview, this paper organized in different sections. In Section 2, we have described the
notations and terminologies used in this paper. Also, layout of systematic random sampling has been explained in
this section. In Section 3, the focus is towards the estimators already existing in literature and then in Section 4,
we have proposed an estimator to solve the problem and its properties in case of systematic sampling in presence
of measurement errors. In Section 5, the comparative study of the proposed estimator with existing estimators is
focused. In Section 6, we have performed simulation study using R studio and has done comparison of the
efficiencies of different estimators with proposed estimator. In Section 7, a result has been made regarding the
study as obtained and finally in Section 8, we conclude and discussed over all study.

2. Notations and Terminologies

Let population U consist of N units numbered as 1,2,3, ....., N. For drawing a sample of size n, first unit
will be selected randomly between 1 and k and the other units will be selected by pre-defined interval k or we
can say element of that column in the Table 1. Let (uy, ts) and (O’Szy, 02, be the population mean and variance
of study and auxiliary variable respectively. The symbol p; be the correlation coefficient between auxiliary and
study variable. However, the auxiliary variable, X, is fully available in the complete population either due to past
experience or due to any other reasons.
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Table 1. Layout of systematic sampling.

Random Start 1 2 i k
1 1 2 i k
2 k+1 k+2 k+1 2k
f G-Dk+1 G-Dk+2 G- Dk+i ik
n m—1Dk+1 m—1k+2 m—1Dk+i nk

Suppose a systematic random sampling strategy with (y;; = Y;; + w;;, x;; = X;; + v;;) be the observed
values of study and auxiliary variables for i =1, 2, ..., k;j =1, 2, ..., n. (¥;;, X;;) be their true values of study
variable and auxiliary variable respectively and (u;;, v;;) be the deviations between observed values and true
values. The mentioned errors are stochastic in nature i.e., with zero mean and variances (62, 62,) and these errors
are uncorrelated in nature. That implies cov (X,Y) # 0 and cov (X,u) = cov (X,v) = cov (Y,u) = cov (Y,v) = cov
(u,v)=0.

Let sample mean of study and auxiliary variable will be (¥;, X5;) for the observations with measurement
errors are defined as

Vg = %z;;lyij, i=1,2, .., kj=12, .. n

_ 1

xSi =;Z7=1xij' i= 1923 9k3]: 19 2’ e N
ﬁsi = %Z;}:luif)i: 1923 ,k,]: 192’ e N
Vsi = %Z?ﬂvu,i: L2, ... kj=12,..,n

Under the concept of large sample approximations as n — N

Ysi — Usy

Vi = .usy(l +€p) = €=
Usy

Ko = tox(1 +el):el=% such that |€;] < 1;i=0,1.

E(€y) =0, E(g) =0,

2 2 2 2
Osy + O Osx T Ogy Ps Osx Osy

E(€?) = E(€g€y) =

E(€}) = , )
° k uz, k 2 K fsy sy

3. Estimators in Literature

This section includes some existing estimators for systematic sampling with measurement errors in study and
auxiliary variables. Singh and Vishwakarma (2021) [8] studied the effect of measurement errors on sample mean
estimator, ratio estimator, product estimator and the difference estimator while considering that the study and
auxiliary information both are suffering by measurement errors under systematic sampling design.

The Table 2 summarize the bias and mean squared errors along with optimum mean squared errors (if
required) of sample mean, ratio, product and difference estimators in the presence of measurement errors up-to
first order of approximation.

Table 2. Properties of existing estimators.

Estimator Bias Mean Squared Errors
t = Js B(t;) =0 V(e = 22t o Z i
ty = Vo % B(t,) = R? (OI-:Z;;:J/O'SZU) Ry p; Zz,;asy M(t,) = o ‘;'(0'521,1 + RZ (052,;(+ o) 2R pskasx Oy
t3 = ¥si % B(t3) = mps}(& M(ts) = %3y ;”szu LB (crs%;: k) | 2Rs ps:sx o5y
ty=ysi t d(.usx - fsi) B(t4) =0 M(t4)0pt = Uszy;Uszu - kl()iszzsziiz.);)
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4. Proposed Estimator

Singh and Shukla [22] proposed a family of factor-type (F-T) estimator in simple random sampling using the
auxiliary variable. The factor-type estimator of Singh and Shukla (1987) is

_ (A1+A3)X+fAxx

Yer = Y G tfapX+asz

n

where A, = (ky — D(ky —2),4, = (ky — D) (ky — 4),A3 = (ky —2)(ky = 3)(k; — 4), f = 5 and k,; = constantsuch
that 0 < k; < oo.

Vishwakarma and Singh (2020) [25] proposed a generalized class of estimators for the estimation of
population mean, when both study, as well as auxiliary variables, are commingled with measurement errors as

Yu = yM(v); where, v = #i is such that M(v) is continuous and bounded in R. Also, its first and second-order

derivative are existing. Ratio, Product, unbiased estimator and some other pre-existing estimators can be the
members of this family as well.

Motivated by Vishwakarma and Singh (2020) [25] and Singh and Shukla (1987) [22], we decided to
experiment on a new estimation strategy in systematic sampling while considering that the data collected in the
sample is suffering with measurement errors due to many reasons. The proposed new factor type (F-T) estimator
under the same strategy is:

_ - Eg; Ay+ A3)pisx + fAz %
to = V.. ex (#sx Tsi (A1+ 43 si_ 1)
Fr Ysi €Xp Usx + Xsi (A1+fA2)Usx + A3Xs; (1)
where A; = (k; — 1)(ky — 2),4, = (ky — 1) (ky — 4),
Az = (ky —2)(ky —3)(ky —4), f = % and k; is a constant such that 0 < k; < oo.
_ fA, _ A _n _ _ HBsy
Define, 6, = ArATAT 0, = AT 0 =6,—0, and R, = .
Then, Equation (1) can be expressed in terms of errors as-
_ Usx = Usx(1+€1) (A1+ Ag)psx + fA2 hsx(1+€4) _
tFT - #Sy(l + EO) exp [llsx + pUsx(1+€4) (A1+fA2)Hsx + Az Hsx(1+€4) ]
1 1 1\2 €2 1
= Usy [1 + ¢+ (9 _E) €+ (9 _E) €g €11+ (9 —E) > + (Z_ 992) E%] (2)
1 1 1\2 €2 1
tFT_#sy = /lsy[eo‘l‘ (9 _E) €+ (9 —E) €g €1+ (9 —E) > + (2—992) E%]
To obtain bias of estimator tpr, take expectations on both sides of Equation (2),
B(tpr) = E(ter — Hsy)
1\ Ps Osx Os 1 1\? (02 + 03 1 (0% + &)
Blter) = by [ (0-2) 2200 2 (9 — 1) Shtebd o (1 gy, el
( FT) :usy 2/ k psx sy 2 2 ke Hszx 4 z k Msz'x
B(ter) = (6 —2)fetextr 4 1 (p 1) Malohtah) (1 gg )Re(chtoh) (3)
FT 2/ kpsx 2 2 k psx 4 2 k psx

(9 -2zt [1 (6- 1)2 $io 992] Rs (0% + o)

2 K Usx 2 2 k psx

Squaring on both sides of Equation (2) along with ignoring higher terms of O(n™!) and then taking
expectation, we get the mean squared errors of tpp as

2
Mtrr) = B(ter — 1)’ = B [? €3+ (6-2) et +2(0-1) ey e

_ 5 [ (63 +02) ( 1)2 (62 + 62) ( 1) Ds Osx asy]
= oyt om) | (g 1) loxtom) 4o L)PLsOx Ty
Msy [ k l‘?y 2 k l‘gx 2/ K Usx Usy (4)

— (U.szy"'aszu) + (9 _ 1)2 RZ (62 + 0%) +2 (9 _ l) Rs ps Osx Osy
k 2 k 2 k

Differentiating Equation (4) w.r.t. 8 and equating that equation to zero for getting minimum MSE
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2 k k
(%)
_1 - _ Ps Osx Osy :l_ Ps Tsx Osy -
= (6 2) Rs(0% + 0%) =9 2 Rs(0% + 02)) GOPt (let)
By replacing the value of 6,,, in Equation (4), we have minimum MSE of tpr
2 2 2 p2 2 2
. _ 05y t o5y _ 1 Rg (U'sx + O'sv) _ 1 Rs ps 0sx Osy
mlnM(tFT) - Kk + (Hopt E) Kk + 2 (Qopt E) Kk
2 2 2 2 -2 (6)
3 _ 05yt 05y _ Ps Osx0sy
M (ter) = =5 T a2

Remark 1: Bias control estimator tgr:
The condition of optimality provides from Equation (5)
A1Bope + (Oopt + 1)f Ay + (Bope —1)A3 =0

(Bope + 1)K + ((Bope — 1)f — Bope — 9) kF + (2300pc + 26 = 5(Bope — 1)f Yy +

4(0ppt — 1)f — 220, —24 =0 ... (%)
This equation (*) is an equation of degree 3 in terms of k.
Obviously, at most three values of ki (kq1, kqi2, kq3) are possible for which mean squared error is optimum.
The choice criteria for best estimation is
(i) Compute

|B(tFT)kU.| for =123

(ii) From computed values, choose k; as

|B(tFT)k1]-| = min [|B(tFT)k1j ] ;=123

So, it is clear that the estimator tpr is bias control at the optimum level of MSE.

5. Comparative Study with Other Existing Estimators

Here, we have compared the proposed estimator tpr with existing estimators in literature as discussed in
Section 3 of this paper.

When the relative efficiency of two estimators T; and T, are compared for the same population parameter
under similar conditions, then in that case their variances are compared by us. If the variance of T, is greater than
T,, then the estimator T; will be better than T,.

Using this concept of theoretical comparison between two estimators, we have derived the conditions of
better performance of tp; as follows:

2 2 2 2 2,2 .2
: _ Osyt0su 05y + 05y Ps Osx0sy
V(t,) — minM(tpr) = — = < T
oéx + &)
o} o'szxo'szy (7)
= ———=>0
k(g + &)
=p? 0402, > 0(always)
So, the estimator tg; performs better than t;.
M(t;) — minM (tpr)=
2,2 ;2
_GSZY + GSZH + RE (Uszx + 0'521;) _ 2R ps Osx Osy _ Uszy + 0'521;, _ Ps O5x05y
k k k k k(aéy + %))
2 2 2 (3)
RZ (03 +9&y) _ 2Rs ps Osx Tsy Ps O5x05y
k k k(0 + 0%)

2
(Rsz (Oszx + 0_5217) — Ps Osx O_sy) >0 (always)
So, the estimator tpr performs better than t,.
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M(t3) — minM (tpr)=

2 2 -2
70-523’ + USZ“ R.? (o'szx + 0'521;) 2Rs ps Osx Osy _ Uszy + O'SZu _ Ps Osx0sy
, k k k k(g + 0dy)
2 52 2 9
_RE (0% +03) + 2Rs ps Osx Osy Ps Os5x0sy
k k k(ady + &)
2
—(DP2 (2 2
=(RZ (02 + 0%)+ ps 05 05y) >0  (always)
So, the estimator tg; performs better than t;.
M(t4) - mlnM(tFT) =
2 2 2 -2 2 2 2 2 0-2 0.2
__ o5y togy _ _Ps9sx0sy <o‘sy+0'5u _ Ps Osx0sy ) (10)
k k(dd; + o) k k(o0& + o)

=0

So, the estimator tz; performs better than ¢,.

6. Simulation Study

Using R studio [visit R-Core Team [26], a comparative study of the proposed estimator and other estimators
listed in Section 3 has been performed in this section. The characteristics of population regarding study and
auxiliary variables are:

sy = 15, psy = 13, 03, =30, 03, =2, 05 =20, 04, =2

The following steps are performed under simulation:

(1) Generate N = 1000 sized population data related to variables X, Y on R studio using multivariate normal
distribution with mean and covariance matrix and measurements errors u and v.

(2) Draw n = 25 sized sample using systematic sampling.

(3) Compute mean and variance of random sample drawn.

(4) Calculate mean squared errors for all estimators under consideration.

(5) Repeat steps 1 to 4 for 40,000 times.

(6) Now, calculate efficiency, i.e., e(t) = ‘1/\4(_;)) X 100

Under above procedure of simulation for p; = 0.9 the mean squared errors and efficiency of the estimators
under consideration are shown in Table 3.

Table 3. MSEs and efficiency of proposed and existing estimators when p; =0.9.

Estimator MSE Efficiency
t 32.5738 100
15} 32.59393 99.93823
5] 21.59877 150.8132
ty 10.01299 325.3154153
tpr (k11 = 4.37589) 13.21567 246.47854
trr (k1 = 0.63069) 4.633612 702.9894
ter (k13 = 9.97968) 9.9981237 325.7991297

From the above Table 3, we have obtained that zrr (ki2) is the best estimators among all the estimators
considered in this study. And estimator #rr (k13) gives almost same results as estimator # that is obtained in
comparison Section 5 but between these two estimators #7r(k13) have less MSE than estimator #.

The Figure 1 represents the diagrammatic representation of comparison of the performance of all estimators
from the figure again it is clear that ¢7r(k12) is the best among all the estimators considered in this study. While #r
(k13) gives approximate same result as estimator #4.
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Figure 1. Histogram for Table 3.

Again, we considered correlation between study and auxiliary variable as pg; = 0.5 and study the performance
of estimators. The Table 4 shows the MSE and the efficiency of estimators.

Table 4. MSEs and efficiency of proposed and existing estimators when p; =0.5.

Estimator MSE Efficiency

t 33.5125 100

15} 33.5832 99.78947807

t 20.9877 159.6768584

ta 11.1095 301.6562402
tpr (ki = 4.13125) 12.0215 278.771368
trr (ki = 0.56658) 4.5312 739.5943679
trr (k13 = 9.75988) 10.9425 306.2599954

From the above Table 4, we have obtained that ##r (ki2) is the best estimators among all the estimators
considered in this study. And estimator ##r (k13) gives close results as estimator #4 that is obtained in comparison
Section 5 but between these two estimators #77 (ki3) have less MSE than estimator 4.

The Figure 2 represents the diagrammatic representation of comparison of the performance of all estimators
from the figure again it is clear that #rr(ki2) is the best among all the estimators considered in this study. While ¢7r
(k13) gives approximate same result as estimator /.

mtl
t2
mt3
| R
tFtl
tFt2
W tFt3

Estimators

40

35
30

25

20

MSE

15

10

5

0

Figure 2. Histogram for Table 4.

Here, we considered correlation between study and auxiliary variable as p; = 0.1 and study the performance
of estimators. The Table 5 shows the MSE and the efficiency of estimators.
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Table 5. MSEs and efficiency of proposed and existing estimators when pg =0.1.

Estimator MSE Efficiency

t 33.9584 100

15) 34.1452 99.45292457

f 18.8157 180.479068

ta 11.9891 283.2439466
tpr (ki1 = 4.02154) 13.3042 255.2457119
tpr (ki = 0.45368) 3.8232 888.2192927
ter (ki3 = 9.71258) 11.8458 286.6703811

From the above Table 5, we have obtained that ¢#7(ki2) is the best estimators with efficiency (888.2192927)
among all the estimators considered in this study. And estimator ¢rr (k13) gives close results as estimator ¢, but
between these two estimators 777 (ki3) have high efficency than estimator #.

The Figure 3 represents the diagrammatic representation of comparison of the performance of all estimators
from the figure again it is clear that #r (ki2) is the best among all the estimators considered in this study. While #7r
(k13) gives approximate same result as estimator #4.

40
35
mtl
30
t2
25
" mt3
L 20
= mt4
15
tFtl
10 tFt2
5 W tFt3
0
Estimators
Figure 3. Histogram for Table 5.
Here, we considered correlation between study and auxiliary variable as py; = —0.1 and study the
performance of estimators. The Table 6 shows the MSE and the efficiency of estimators.
Table 6. MSEs and efficiency of proposed and existing estimators when p; =—0.1.
Estimator MSE Efficiency
t 33.5514 100
15 34.1524 98.2402408
1 18.5714 180.6616626
t4 11.0011 304.982229
ter (k1 = 4.13459) 12.0402 278.661484
ter (ki = 0.51429) 3.9012 860.0276838
trr (ki3 = 9.84567) 10.9808 305.546044

From the above Table 6, we have obtained that 77 (k12) is the best estimators with minimum MSE (i.e., 3.9012)
among all the estimators considered here. And estimator ¢#r (ki3) gives nearly close results as estimator 4 but
between these two estimators ##7(ki3) have less MSE than estimator #.

The Figure 4 represents the diagrammatic representation of comparison of the performance of all estimators
from the figure again it is clear that ¢7r(k12) is the best among all the estimators considered in this study. While 77
(k13) gives approximate same result as estimator #4.
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Figure 4. Histogram for Table 6.

Here, we considered correlation between study and auxiliary variable as py; = —0.5 and study the
performance of estimators. The Table 7 shows the MSE and the efficiency of estimators.

Table 7. MSEs and efficiency of proposed and existing estimators when p; =—0.5.

Estimator MSE Efficiency

t 33.4151 100

15} 33.8342 98.76131252

f 20.7745 160.8467111

ta 11.0125 303.4288309
trr (k11 = 4.25358) 12.1011 276.1327483
trr (ki, = 0.57859) 4.1142 812.1894901
trr (ki3 = 9.75416) 10.9585 304.9240316

From the above Table 7, we have obtained that ##r (ki2) is the best estimators among all the estimators
considered in this study. And estimator #rr (k13) gives almost same results as estimator # that is obtained in
comparison Section 5 but between these two estimators #7r(k13) have less MSE than estimator .

The Figure 5 represents the diagrammatic representation of comparison of the performance of all estimators
from the figure again it is clear that #rr(ki2) is the best among all the estimators considered in this study. While ¢7r
(k13) gives approximate same result as estimator /.

mtl
t2
mt3
| R
tFtl
tFt2
W tFt3

Estimators

40

35

30

25

20

MSE

15

10

5

0

Figure 5. Histogram for Table 7.

Here, we considered correlation between study and auxiliary variable as p; = —0.9 and study the
performance of estimators. The Table 8 shows the MSE and the efficiency of estimators.
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Table 8. MSEs and efficiency of proposed and existing estimators when pg; =—0.9.

Estimator MSE Efficiency

t 33.1597 100

15) 33.1993 99.88072038

f 22.5877 146.8042342

ta 10.1059 328.122186
tpr (k1 = 4.31489) 12.0157 275.9697729
tpr (k; = 0.61038) 4.3612 760.3343117
trr (ki3 = 9.85988) 9.9847 332.1051208

From the above Table 8, we have obtained that zrr (ki2) is the best estimators among all the estimators
considered in this study. And estimator #rr (ki3) gives almost same results as estimator # that is obtained in
comparison Section 5 but between these two estimators #7r(k13) have less MSE than estimator #.

The Figure 6 represents the diagrammatic representation of comparison of the performance of all estimators
from the figure again it is clear that #r (ki2) is the best among all the estimators considered in this study. While #7r
(k13) gives approximate same result as estimator ;.

35
30
mtl
25 2
w 20 mt3
(%]
2 s mi4
tFtl
10
tFt2
5
W tFt3
0
Estimators

Figure 6. Histogram for Table 8.

7. Result

In this paper, we have proposed a factor type estimator in systematic sampling with measurement errors. The
work pertains to minimize the mean squared errors to appropriately infer about the population parameter. The
proposed factor-type estimator with measurement errors is theoretically compared with other estimators of
population mean under systematic sampling. The conditions derived are verified through data simulated from
multivariate normal distribution. The results of the simulation study are shown in above Tables 3—8. These tables
show that MSEs and efficiencies of existing and proposed estimators. The proposed estimator tp; is best estimator
having highest efficiency and superiority of factor-type (F-T) estimator, having minimum MSE.

8. Discussion and Conclusions

In this manuscript, four well-known forms of estimators, namely ratio, product, difference, and mean
estimator under systematic sampling have been proposed when study variable and auxiliary variable are observed
with measurement errors.

From our study, we conclude that MSE has always been larger when study and auxiliary variables are
commingled with measurement errors. Measurement errors highly affects the MSE as well as efficiency of the
estimator when its value is high, but the properties of estimators do not change in the presence of measurement
errors. Also, efficiency does not precisely show the effect of measurement errors as it is the ratio of two estimators,
i.e., the ratio of MSE (#) and MSE (7). By simulation study of the tables, we can infer that MSE is minimum for
proposed estimator than all other estimators and is more efficient than ratio, product and difference estimators.
Measurement errors are inherent in data observation during systematic sampling, and inference based on these
data may be misleading. The inference based on data when the amount of measurement errors is high may ruin the
purpose of the study. In the presence of measurement errors, the proposed estimator is most efficient among all
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estimators under study. Thus, it can be used in the estimation of parameters of mean when the data under study
are observed with measurement error.
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