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 Abstract: This article proposes estimation of population mean using factor-type (F-

T) estimator in the presence of measurement errors under systematic sampling 

scheme. The factor-type (F-T) estimator is biased and the expression of bias, MSE 

and optimum MSE of proposed estimator is obtained up to first order of 

approximation under the concept of large sample approximations and a comparative 

study of this estimator along with related pre-existing estimators is taken out. A 

simulation study has been performed to ratify the performance of proposed 

estimator in systematic sampling. The proposed factor-type (F-T) estimator is found 

better than other existing estimators as considered under in this study.  
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1. Introduction 

Systematic sampling is a structured approach that ensures that every element has an equal chance of being 

selected in the sample. So, random numbers are used initially in systematic sampling and then it follows a regular 

pattern of selection that defines the method. It ensures equal possibility for each unit in the population to be selected in 

the sample by taking first one randomly and rest units get selected automatically following a pre-defined pattern. The 

importance of this sampling strategy is due to its simplicity that emphasized it one of widely use sampling strategy. 

In other words, let a random sample of size 𝑛 is desired from a population of size 𝑁. in systematic sampling, 

the first element 𝑖 is selected randomly from the first 𝑘 elements (generally, 𝑖 (1 ≤ 𝑖 ≤ 𝑘) is known as random 

start and 𝑘  is defined as 𝑁 = 𝑛𝑘  and known as sampling interval), and thereafter every 𝑘th  element 

[𝑖 + 𝑘, 𝑖 + 2𝑘, 𝑖 + 3𝑘, … … . . , 𝑖 + (𝑛 − 1)𝑘] is selected in the sample. According to Singh and Chaudhary (2009) 

[1], systematic sampling is simple and fool proof. Apart from its simplicity, this procedure, in many situations, 

provides estimates more efficient than simple random sampling and is widely used in various surveys. 

Systematic sampling has fine features of selecting samples. Due to its simplicity and tendency to give better 

results, many authors have done their research in this scheme [2–8]. 

Non-response and measurement errors are major factors of non-sampling errors in survey sampling. However, 

it is possible that a sample may be defective by the measurement errors as well due to self-interest, failure of 

memory, fatigue, careless handling of data, etc. Measurement errors are those errors in which the recorded 

observations deviated from the true observations. For example, an income tax payee may hide his actual income 

to decrease self-tax liabilities. 
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A study by Humaidi et al. [9] of observer performance in state estimation for a rotary inverted pendulum 

system, focusing on the impact of measurement errors, reveals that Finite-Time Extended State Observers 

(FESO) generally outperform other observer types like Nonlinear Extended State Observers (NESO) and Linear 

Extended State Observers (LESO) in terms of estimation accuracy. This is particularly evident when considering 

parameter uncertainties and external disturbances, with FESO achieving a significantly lower Root Mean 

Squared Errors (RMSE).  

Measurement errors in the context of Least Squares (LS) algorithms, particularly when applied to parameter 

estimation in canonical state-space models and incorporating bias compensation principles, are a critical concern 

influencing the accuracy and reliability of the estimated parameters [10,11]. Studied measurement errors in an 

electronic throttle valve can significantly affect engine performance and drivability. These errors can arise from 

various sources, including sensor inaccuracies, actuator limitations, and environmental factors. Addressing these 

errors are crucial for precise throttle control and optimal engine operation. 

If the measurement errors occur in sampled data, then it can lead to an imprecise estimate. Several methods 

are found for controlling these types of errors like–ratio, product, regression, etc. Several authors did their 

contributions in this field to increase the precision of different estimators under diverse sampling schemes. Shalabh 

and Tsai [12] proposed a class of ratio and product method of estimation in the presence of correlated measurement 

errors. Singh et al. [13] have studied the effect of measurement errors on ratio, product, and mean estimator 

simultaneously. Singh and Vishwakarma [14] studied the simultaneous effect of measurement errors and non-

response on mean estimation. These all works used simple random sampling but not in the context of systematic 

sampling [15–21].  

Singh and Shukla [22] proposed a family of factor-type (F-T) estimator 𝑦̅𝐹𝑇  in simple random sampling 

using the auxiliary variable. The beauty of factor-type (F-T) estimator is that this estimator provides different 

estimators like, ratio, product, etc. at some specified values of its constant 𝑘1. This estimator is bias controlled 

because it provides choices of constant 𝑘1 for optimum mean squared errors as well. The estimator 𝑦̅𝐹𝑇  is biased 

and the expressions of bias, mean squared errors and optimum mean squared errors can obtain simply using the 

concept of large sample approximations up to first order. 

Again, Shukla and Thakur [23] developed factor-type estimator as a device of imputation used for dealing 

missingness of the data. This estimator is found better than other existing methods of imputation under the simple 

random sampling design. Thakur and Shukla [24] applied the factor-type (F-T) estimator for chaining of two 

auxiliary variables and found that the factor-type (F-T) estimator is performed better in the same setup. A number 

of manuscript available in the literature in which importance and applicability of factor-type (F-T) estimator is 

proved with empirical study under different sampling strategies like, post-stratification, two-phase sampling, 

stratified random sampling, etc. 

Vishwakarma and Singh [25] presented a generalized class of mean estimators under simple random sampling 

using auxiliary variable. The observations on both the study variable and the auxiliary variable are supposed to be 

recorded with measurement errors. The mean square errors of the proposed class of estimators is derived and 

studied under measurement errors. 

To provide a brief overview, this paper organized in different sections. In Section 2, we have described the 

notations and terminologies used in this paper. Also, layout of systematic random sampling has been explained in 

this section. In Section 3, the focus is towards the estimators already existing in literature and then in Section 4, 

we have proposed an estimator to solve the problem and its properties in case of systematic sampling in presence 

of measurement errors. In Section 5, the comparative study of the proposed estimator with existing estimators is 

focused. In Section 6, we have performed simulation study using R studio and has done comparison of the 

efficiencies of different estimators with proposed estimator. In Section 7, a result has been made regarding the 

study as obtained and finally in Section 8, we conclude and discussed over all study.  

2. Notations and Terminologies  

Let population 𝑈 consist of 𝑁 units numbered as 1, 2, 3, … . . , 𝑁. For drawing a sample of size 𝑛, first unit 

will be selected randomly between 1 and 𝑘 and the other units will be selected by pre-defined interval 𝑘 or we 

can say element of that column in the Table 1. Let (𝜇𝑠𝑦 , 𝜇𝑠𝑥) and (𝜎𝑠𝑦
2 , 𝜎𝑠𝑥

2 ) be the population mean and variance 

of study and auxiliary variable respectively. The symbol 𝜌𝑠 be the correlation coefficient between auxiliary and 

study variable. However, the auxiliary variable, X, is fully available in the complete population either due to past 

experience or due to any other reasons.  
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Table 1. Layout of systematic sampling. 

Random Start 1 2 

….. 

i 

….. 

k 

1 1 2 i k 

2 k + 1 k + 2 k + i 2k 

…
 

…
 

…
 

j (j − 1) k + 1 (j − 1) k + 2 (j − 1) k + i jk 

…
 

…
 

…
 

n (n − 1) k + 1 (n − 1) k + 2 (n − 1) k + i nk 

Suppose a systematic random sampling strategy with (𝑦𝑖𝑗 = 𝑌𝑖𝑗 + 𝑢𝑖𝑗 , 𝑥𝑖𝑗 = 𝑋𝑖𝑗 + 𝑣𝑖𝑗) be the observed 

values of study and auxiliary variables for i = 1, 2, …, k; j = 1, 2, …, n. (𝑌𝑖𝑗, 𝑋𝑖𝑗) be their true values of study 

variable and auxiliary variable respectively and (𝑢𝑖𝑗, 𝑣𝑖𝑗) be the deviations between observed values and true 

values. The mentioned errors are stochastic in nature i.e., with zero mean and variances (𝜎𝑠𝑢
2 , 𝜎𝑠𝑣

2 ) and these errors 

are uncorrelated in nature. That implies cov (X,Y) ≠ 0 and cov (X,u) = cov (X,v) = cov (Y,u) = cov (Y,v) = cov 

(u,v) = 0.  

Let sample mean of study and auxiliary variable will be (𝑦̅𝑠𝑖 , 𝑥̅𝑠𝑖) for the observations with measurement 

errors are defined as 

𝑦̅𝑠𝑖 =
1

𝑛
∑ 𝑦𝑖𝑗

𝑛
𝑗=1 , i = 1, 2, …, k; j = 1, 2, …, n.  

𝑥̅𝑠𝑖 =
1

𝑛
∑ 𝑥𝑖𝑗

𝑛
𝑗=1 , i = 1, 2, …, k; j = 1, 2, …, n.  

𝑢̅𝑠𝑖 =
1

𝑛
∑ 𝑢𝑖𝑗

𝑛
𝑗=1 , i = 1, 2, …, k; j = 1, 2, …, n.  

𝑣̅𝑠𝑖 =
1

𝑛
∑ 𝑣𝑖𝑗

𝑛
𝑗=1 , i = 1, 2, …, k; j = 1, 2, …, n.  

Under the concept of large sample approximations as 𝑛 ⟶ 𝑁  

𝑦̅𝑠𝑖 = 𝜇𝑠𝑦(1 +∈0) ⇒ ∈0=
𝑦̅𝑠𝑖 − 𝜇𝑠𝑦

𝜇𝑠𝑦

  

𝑥̅𝑠𝑖 = 𝜇𝑠𝑥(1 +∈1) ⇒ ∈1=
𝑥̅𝑠𝑖−𝜇𝑠𝑥

𝜇𝑠𝑥
  such that |∈𝑖 | ≤ 1; i = 0,1.  

     𝐸(∈0) = 0, 𝐸(∈1) = 0, 

𝐸(∈0
2) =  

𝜎𝑠𝑦
2  +  𝜎𝑠𝑢

2  

𝑘 𝜇𝑠𝑦
2

,           𝐸(∈1
2) =  

𝜎𝑠𝑥
2  +  𝜎𝑠𝑣

2  

𝑘 𝜇𝑠𝑥
2

,        𝐸(∈0∈1) =
𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘 𝜇𝑠𝑥 𝜇𝑠𝑦

 
 

3. Estimators in Literature 

This section includes some existing estimators for systematic sampling with measurement errors in study and 

auxiliary variables. Singh and Vishwakarma (2021) [8] studied the effect of measurement errors on sample mean 

estimator, ratio estimator, product estimator and the difference estimator while considering that the study and 

auxiliary information both are suffering by measurement errors under systematic sampling design.  

The Table 2 summarize the bias and mean squared errors along with optimum mean squared errors (if 

required) of sample mean, ratio, product and difference estimators in the presence of measurement errors up-to 

first order of approximation. 

Table 2. Properties of existing estimators. 

Estimator Bias Mean Squared Errors 

𝑡1 = 𝑦̅𝑠𝑖 𝐵(𝑡1) = 0 𝑉(𝑡1) =  
𝜎𝑠𝑦

2  +  𝜎𝑠𝑢
2  

𝑘
 

𝑡2 = 𝑦̅𝑠𝑖

𝜇𝑠𝑥

 𝑥̅𝑠𝑖
 𝐵(𝑡2) =  

𝑅𝑠
2 (𝜎𝑠𝑥

2  + 𝜎𝑠𝑣
2 ) 

𝑘 𝜇𝑠𝑦
− 

𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘 𝜇𝑠𝑦
  𝑀(𝑡2) =  

𝜎𝑠𝑦
2  + 𝜎𝑠𝑢

2  

𝑘
+

𝑅𝑠
2 (𝜎𝑠𝑥

2  + 𝜎𝑠𝑣
2 ) 

𝑘
−  

2𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
  

𝑡3 = 𝑦̅𝑠𝑖

 𝑥̅𝑠𝑖

𝜇𝑠𝑥
 𝐵(𝑡3) =

2𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
  𝑀(𝑡3) =  

𝜎𝑠𝑦
2  + 𝜎𝑠𝑢

2  

𝑘
+

𝑅𝑠
2 (𝜎𝑠𝑥

2  + 𝜎𝑠𝑣
2 ) 

𝑘
+  

2𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
  

𝑡4 = 𝑦̅𝑠𝑖 + 𝑑(𝜇𝑠𝑥 −  𝑥̅𝑠𝑖) 𝐵(𝑡4) = 0 𝑀(𝑡4)𝑂𝑝𝑡 =  
𝜎𝑠𝑦

2  + 𝜎𝑠𝑢
2  

𝑘
− 

𝜌𝑠
2 𝜎𝑠𝑥

2  𝜎𝑠𝑦
2

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
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4. Proposed Estimator  

Singh and Shukla [22] proposed a family of factor-type (F-T) estimator in simple random sampling using the 

auxiliary variable. The factor-type estimator of Singh and Shukla (1987) is  

𝑦̅𝐹𝑇 =  𝑦̅  
(𝐴1+𝐴3)𝑋̅+𝑓𝐴2𝑥̅

(𝐴1+𝑓𝐴2)𝑋̅+𝐴3𝑥̅
  

where 𝐴1 = (𝑘1 − 1)(𝑘1 − 2), 𝐴2 = (𝑘1 − 1)(𝑘1 − 4), 𝐴3 = (𝑘1 − 2)(𝑘1 − 3)(𝑘1 − 4), 𝑓 =
𝑛

𝑁
 and 𝑘1 = constant such 

that 0 < 𝑘1 < ∞.  

Vishwakarma and Singh (2020) [25] proposed a generalized class of estimators for the estimation of 

population mean, when both study, as well as auxiliary variables, are commingled with measurement errors as 

𝑦̅𝑀 = 𝑦̅𝑀(𝑣); where, 𝑣 =
𝑋̅

𝜇𝑥
 is such that 𝑀(𝑣) is continuous and bounded in R. Also, its first and second-order 

derivative are existing. Ratio, Product, unbiased estimator and some other pre-existing estimators can be the 

members of this family as well. 

Motivated by Vishwakarma and Singh (2020) [25] and Singh and Shukla (1987) [22], we decided to 

experiment on a new estimation strategy in systematic sampling while considering that the data collected in the 

sample is suffering with measurement errors due to many reasons. The proposed new factor type (F-T) estimator 

under the same strategy is: 

𝑡𝐹𝑇 = 𝑦̅𝑠𝑖 exp (
𝜇𝑠𝑥 − 𝑥̅𝑠𝑖 

𝜇𝑠𝑥 + 𝑥̅𝑠𝑖
 +  

(𝐴1+ 𝐴3)𝜇𝑠𝑥 + 𝑓𝐴2𝑥̅𝑠𝑖

(𝐴1+𝑓𝐴2)𝜇𝑠𝑥 + 𝐴3𝑥̅𝑠𝑖
 −  1)  (1) 

where 𝐴1 = (𝑘1 − 1)(𝑘1 − 2), 𝐴2 = (𝑘1 − 1)(𝑘1 − 4), 

𝐴3 = (𝑘1 − 2)(𝑘1 − 3)(𝑘1 − 4), 𝑓 =
𝑛

𝑁
 and 𝑘1 is a constant such that 0 < 𝑘1 < ∞.  

Define, 𝜃1 =
𝑓𝐴2

𝐴1+𝑓𝐴2+𝐴3 
, 𝜃2 =

𝐴3

𝐴1+𝑓𝐴2+𝐴3 
, 𝜃 = 𝜃1−𝜃2 and 𝑅𝑠 =

𝜇𝑠𝑦

𝜇𝑠𝑥
.  

Then, Equation (1) can be expressed in terms of errors as- 

𝑡𝐹𝑇 = 𝜇𝑠𝑦(1 +  ∈0) exp [
𝜇𝑠𝑥 − 𝜇𝑠𝑥(1+∈1) 

𝜇𝑠𝑥 + 𝜇𝑠𝑥(1+∈1)
+

(𝐴1+ 𝐴3)𝜇𝑠𝑥 + 𝑓𝐴2 𝜇𝑠𝑥(1+∈1)

(𝐴1+𝑓𝐴2)𝜇𝑠𝑥 + 𝐴3 𝜇𝑠𝑥(1+∈1)
 − 1]  

= 𝜇𝑠𝑦 [1 + ∈0+ (𝜃 −
1

2
) ∈1 + (𝜃 −

1

2
) ∈0 ∈1+  (𝜃 −

1

2
)

2 ∈1
2

2
 + (

1

4
− 𝜃𝜃2) ∈1

2]  

𝑡𝐹𝑇 − 𝜇𝑠𝑦 = 𝜇𝑠𝑦 [ ∈0+ (𝜃 −
1

2
) ∈1 + (𝜃 −

1

2
) ∈0 ∈1+ (𝜃 −

1

2
)

2 ∈1
2

2
 + (

1

4
− 𝜃𝜃2) ∈1

2]  

(2) 

To obtain bias of estimator 𝑡𝐹𝑇, take expectations on both sides of Equation (2),  

𝐵(𝑡𝐹𝑇) = 𝐸(𝑡𝐹𝑇 − 𝜇𝑠𝑦)  

𝐵(𝑡𝐹𝑇) = 𝜇𝑠𝑦 [(𝜃 −
1

2
)

𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘 𝜇𝑠𝑥 𝜇𝑠𝑦
+

1

2
 (𝜃 −

1

2
)

2 (𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 ) 

𝑘 𝜇𝑠𝑥
2  + (

1

4
− 𝜃𝜃2)

(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 ) 

𝑘 𝜇𝑠𝑥
2 ]  

𝐵(𝑡𝐹𝑇) = (𝜃 −
1

2
)

𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘 𝜇𝑠𝑥 
+

1

2
 (𝜃 −

1

2
)

2 𝑅𝑠 (𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 ) 

𝑘 𝜇𝑠𝑥
 + (

1

4
− 𝜃𝜃2)

𝑅𝑠 (𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 ) 

𝑘 𝜇𝑠𝑥
  

      =(𝜃 −
1

2
)

𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘 𝜇𝑠𝑥 
+ [

1

2
 (𝜃 −

1

2
)

2

+
1

4
− 𝜃𝜃2]

𝑅𝑠 (𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 ) 

𝑘 𝜇𝑠𝑥
  

(3) 

Squaring on both sides of Equation (2) along with ignoring higher terms of 𝑂(𝑛−1)  and then taking 

expectation, we get the mean squared errors of 𝑡𝐹𝑇 as 

𝑀(𝑡𝐹𝑇) =  E(𝑡𝐹𝑇 − 𝜇𝑠𝑦)
2

= 𝐸 [𝜇𝑠𝑦
2 {∈0

2+ (𝜃 −
1

2
)

2

∈1
2 + 2 (𝜃 −

1

2
) ∈0 ∈1}]  

= 𝜇𝑠𝑦
2 [ 

(𝜎𝑠𝑦
2  + 𝜎𝑠𝑢

2 ) 

𝑘 𝜇𝑠𝑦
2 + (𝜃 −

1

2
)

2 (𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 ) 

𝑘 𝜇𝑠𝑥
2  + 2 (𝜃 −

1

2
)

𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘 𝜇𝑠𝑥 𝜇𝑠𝑦
]  

=
(𝜎𝑠𝑦

2  + 𝜎𝑠𝑢
2 ) 

𝑘
+ (𝜃 −

1

2
)

2 𝑅𝑠
2 (𝜎𝑠𝑥

2  + 𝜎𝑠𝑣
2 ) 

𝑘
 + 2 (𝜃 −

1

2
)

𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
  

(4) 

Differentiating Equation (4) w.r.t. 𝜃 and equating that equation to zero for getting minimum MSE 
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2 (𝜃 −
1

2
)

𝑅𝑠
2 (𝜎𝑠𝑥

2  + 𝜎𝑠𝑣
2 ) 

𝑘
 + 2

𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
= 0  

⇒ (𝜃 −
1

2
) = − 

𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑅𝑠(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
  ⇒ 𝜃 =

1

2
−  

𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑅𝑠(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
= 𝜃𝑜𝑝𝑡 (let) 

(5) 

By replacing the value of 𝜃𝑜𝑝𝑡 in Equation (4), we have minimum MSE of 𝑡𝐹𝑇 

𝑚𝑖𝑛𝑀(𝑡𝐹𝑇) =
𝜎𝑠𝑦

2  + 𝜎𝑠𝑢
2  

𝑘
+ (𝜃𝑜𝑝𝑡 −

1

2
)

2 𝑅𝑠
2 (𝜎𝑠𝑥

2  + 𝜎𝑠𝑣
2 ) 

𝑘
 + 2 (𝜃𝑜𝑝𝑡 −

1

2
)

𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
  

                 𝑚𝑖𝑛𝑀(𝑡𝐹𝑇) =
𝜎𝑠𝑦

2  + 𝜎𝑠𝑢
2  

𝑘
−

 𝜌𝑠
2 𝜎𝑠𝑥

2 𝜎𝑠𝑦
2

 

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
  

(6) 

Remark 1: Bias control estimator 𝒕𝑭𝑻: 

The condition of optimality provides from Equation (5) 

𝐴1𝜃𝑜𝑝𝑡 + (𝜃𝑜𝑝𝑡 + 1)𝑓𝐴2 + (𝜃𝑜𝑝𝑡 − 1)𝐴3 = 0  

(𝜃𝑜𝑝𝑡 + 1)𝑘1
3 + ((𝜃𝑜𝑝𝑡 − 1)𝑓 − 8𝜃𝑜𝑝𝑡 − 9) 𝑘1

2 + (23𝜃𝑜𝑝𝑡 + 26 − 5(𝜃𝑜𝑝𝑡 − 1)𝑓)𝑘1 +

                                                                                            4(𝜃𝑜𝑝𝑡 − 1)𝑓 − 22𝜃𝑜𝑝𝑡 − 24 = 0 … (*)  

 

This equation (*) is an equation of degree 3 in terms of k.  

Obviously, at most three values of 𝑘1 (𝑘11, 𝑘12, 𝑘13) are possible for which mean squared error is optimum.  

The choice criteria for best estimation is 

(i) Compute 

 |𝐵(𝑡𝐹𝑇)𝑘1𝑗
| for   j = 1,2,3  

  

(ii) From computed values, choose 𝑘𝑗 as 

|𝐵(𝑡𝐹𝑇)𝑘1𝑗
| = 𝑚𝑖𝑛 [|𝐵(𝑡𝐹𝑇)𝑘1𝑗

|] ;  𝑗 = 1,2,3  

So, it is clear that the estimator 𝑡𝐹𝑇 is bias control at the optimum level of MSE. 

5. Comparative Study with Other Existing Estimators 

Here, we have compared the proposed estimator 𝑡𝐹𝑇 with existing estimators in literature as discussed in 

Section 3 of this paper. 

When the relative efficiency of two estimators 𝑇1 and 𝑇2 are compared for the same population parameter 

under similar conditions, then in that case their variances are compared by us. If the variance of 𝑇2 is greater than 

𝑇1, then the estimator 𝑇1 will be better than 𝑇2. 

Using this concept of theoretical comparison between two estimators, we have derived the conditions of 

better performance of 𝑡𝐹𝑇 as follows:  

𝑉(𝑡1) − 𝑚𝑖𝑛𝑀(𝑡𝐹𝑇) =
𝜎𝑠𝑦

2  + 𝜎𝑠𝑢
2  

𝑘
− (

𝜎𝑠𝑦
2  + 𝜎𝑠𝑢

2  

𝑘
−

 𝜌𝑠
2 𝜎𝑠𝑥

2 𝜎𝑠𝑦
2

 

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
)  

= 
 𝜌𝑠

2 𝜎𝑠𝑥
2 𝜎𝑠𝑦

2
 

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
> 0  

= 𝜌𝑠
2 𝜎𝑠𝑥

2 𝜎𝑠𝑦
2

 
> 0 (always) 

(7) 

So, the estimator 𝑡𝐹𝑇  performs better than 𝑡1. 

𝑀(𝑡2) − 𝑚𝑖𝑛𝑀(𝑡𝐹𝑇)= 

=
𝜎𝑠𝑦

2  + 𝜎𝑠𝑢
2  

𝑘
+

𝑅𝑠
2 (𝜎𝑠𝑥

2  + 𝜎𝑠𝑣
2 ) 

𝑘
−

2𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
− (

𝜎𝑠𝑦
2  + 𝜎𝑠𝑢

2  

𝑘
−

 𝜌𝑠
2 𝜎𝑠𝑥

2 𝜎𝑠𝑦
2

 

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
)  

=  
𝑅𝑠

2 (𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 ) 

𝑘
−

2𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
+

 𝜌𝑠
2 𝜎𝑠𝑥

2 𝜎𝑠𝑦
2

 

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
 

= (𝑅𝑠
2 (𝜎𝑠𝑥

2  +  𝜎𝑠𝑣
2 ) −  𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦)

2
> 0 (always) 

(8) 

So, the estimator 𝑡𝐹𝑇  performs better than 𝑡2. 
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𝑀(𝑡3) − 𝑚𝑖𝑛𝑀(𝑡𝐹𝑇)= 

=
𝜎𝑠𝑦

2  + 𝜎𝑠𝑢
2  

𝑘
+

𝑅𝑠
2 (𝜎𝑠𝑥

2  + 𝜎𝑠𝑣
2 ) 

𝑘
+

2𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
− (

𝜎𝑠𝑦
2  + 𝜎𝑠𝑢

2  

𝑘
−

 𝜌𝑠
2 𝜎𝑠𝑥

2 𝜎𝑠𝑦
2

 

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
)   

    =
𝑅𝑠

2 (𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 ) 

𝑘
+

2𝑅𝑠 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦

𝑘
+

 𝜌𝑠
2 𝜎𝑠𝑥

2 𝜎𝑠𝑦
2

 

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
 

    =(𝑅𝑠
2 (𝜎𝑠𝑥

2  +  𝜎𝑠𝑣
2 ) + 𝜌𝑠 𝜎𝑠𝑥 𝜎𝑠𝑦)

2
> 0 (always) 

(9) 

So, the estimator 𝑡𝐹𝑇  performs better than 𝑡3. 

𝑀(𝑡4) − 𝑚𝑖𝑛𝑀(𝑡𝐹𝑇) =  

                                  =
𝜎𝑠𝑦

2  + 𝜎𝑠𝑢
2  

𝑘
−  

𝜌𝑠
2 𝜎𝑠𝑥

2  𝜎𝑠𝑦
2

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
− (

𝜎𝑠𝑦
2  + 𝜎𝑠𝑢

2  

𝑘
−

 𝜌𝑠
2 𝜎𝑠𝑥

2 𝜎𝑠𝑦
2

 

𝑘(𝜎𝑠𝑥
2  + 𝜎𝑠𝑣

2 )
)  

                                  =  0  

(10) 

So, the estimator 𝑡𝐹𝑇  performs better than 𝑡4. 

6. Simulation Study  

Using R studio [visit R-Core Team [26], a comparative study of the proposed estimator and other estimators 

listed in Section 3 has been performed in this section. The characteristics of population regarding study and 

auxiliary variables are: 

𝜇𝑠𝑦 = 15,  𝜇𝑠𝑥 = 13, 𝜎𝑠𝑦
2 = 30, 𝜎𝑠𝑢

2 = 2,   𝜎𝑠𝑥
2 = 20, 𝜎𝑠𝑣

2 = 2  

The following steps are performed under simulation: 

(1) Generate 𝑁 = 1000 sized population data related to variables 𝑋, 𝑌 on R studio using multivariate normal 

distribution with mean and covariance matrix and measurements errors 𝑢 and 𝑣.  

(2) Draw 𝑛 =  25 sized sample using systematic sampling.  

(3) Compute mean and variance of random sample drawn. 

(4) Calculate mean squared errors for all estimators under consideration. 

(5) Repeat steps 1 to 4 for 40,000 times. 

(6) Now, calculate efficiency, i.e., 𝑒(𝑡) =
𝑉(𝑡1)

𝑀(𝑡)
× 100  

Under above procedure of simulation for 𝜌𝑠 = 0.9 the mean squared errors and efficiency of the estimators 

under consideration are shown in Table 3.  

Table 3. MSEs and efficiency of proposed and existing estimators when 𝜌𝑠 = 0.9. 

Estimator MSE Efficiency 

t1 32.5738 100 

t2 32.59393 99.93823 

t3 21.59877 150.8132 

t4 10.01299 325.3154153 

𝑡𝐹𝑇 (𝑘11 = 4.37589) 13.21567 246.47854 

𝑡𝐹𝑇 (𝑘12 = 0.63069) 4.633612 702.9894 

𝑡𝐹𝑇 (𝑘13 = 9.97968) 9.9981237 325.7991297 

From the above Table 3, we have obtained that tFT (k12) is the best estimators among all the estimators 

considered in this study. And estimator tFT (k13) gives almost same results as estimator t4 that is obtained in 

comparison Section 5 but between these two estimators tFT (k13) have less MSE than estimator t4. 

The Figure 1 represents the diagrammatic representation of comparison of the performance of all estimators 

from the figure again it is clear that tFT (k12) is the best among all the estimators considered in this study. While tFT 

(k13) gives approximate same result as estimator t4.  
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Table 5. MSEs and efficiency of proposed and existing estimators when 𝜌𝑠 = 0.1. 

Estimator MSE Efficiency 

t1 33.9584 100 

t2 34.1452 99.45292457 

t3 18.8157 180.479068 

t4 11.9891 283.2439466 

𝑡𝐹𝑇 (𝑘11 = 4.02154) 13.3042 255.2457119 

𝑡𝐹𝑇 (𝑘12 = 0.45368) 3.8232 888.2192927 

𝑡𝐹𝑇 (𝑘13 = 9.71258) 11.8458 286.6703811 

From the above Table 5, we have obtained that tFT (k12) is the best estimators with efficiency (888.2192927) 

among all the estimators considered in this study. And estimator tFT (k13) gives close results as estimator t4 but 

between these two estimators tFT (k13) have high efficency than estimator t4. 

The Figure 3 represents the diagrammatic representation of comparison of the performance of all estimators 

from the figure again it is clear that tFT (k12) is the best among all the estimators considered in this study. While tFT 

(k13) gives approximate same result as estimator t4. 
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comparison Section 5 but between these two estimators tFT (k13) have less MSE than estimator t4. 
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Table 8. MSEs and efficiency of proposed and existing estimators when 𝜌𝑠 = −0.9. 

Estimator MSE Efficiency 

t1 33.1597 100 

t2 33.1993 99.88072038 

t3 22.5877 146.8042342 

t4 10.1059 328.122186 

𝑡𝐹𝑇 (𝑘11 = 4.31489) 12.0157 275.9697729 

𝑡𝐹𝑇 (𝑘12 = 0.61038) 4.3612 760.3343117 

𝑡𝐹𝑇 (𝑘13 = 9.85988) 9.9847 332.1051208 

From the above Table 8, we have obtained that tFT (k12) is the best estimators among all the estimators 

considered in this study. And estimator tFT (k13) gives almost same results as estimator t4 that is obtained in 

comparison Section 5 but between these two estimators tFT (k13) have less MSE than estimator t4. 

The Figure 6 represents the diagrammatic representation of comparison of the performance of all estimators 

from the figure again it is clear that tFT (k12) is the best among all the estimators considered in this study. While tFT 

(k13) gives approximate same result as estimator t4. 

 

Figure 6. Histogram for Table 8. 
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estimators under study. Thus, it can be used in the estimation of parameters of mean when the data under study 

are observed with measurement error. 
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