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 Abstract: This research evaluates the performance of the ARIMA method in 
forecasting hierarchical time series data of tourist arrivals in Australia from 1998 to 
2016 using a bottom-up strategy. A comparative analysis is conducted between the 
predicted results and the actual data for both short-term and long-term periods, as 
well as with various normalization methods for each hierarchical level. The study 
concludes that ARIMA generally performs better in short-term forecasting at a 
hierarchical level. However, the evaluation results indicate that SMAPE 
(Symmetric Mean Absolute Percentage Error) values fluctuate across different 
forecasting periods, influenced by prediction data generated from various ARIMA 
models. This study does not determine whether one normalization method is 
superior to another, as the evaluation results show no significant differences. 
Nevertheless, this research provides insights into the effectiveness of hierarchical 
time series forecasting using the ARIMA method and a bottom-up strategy at each 
hierarchical level for both short-term and long-term periods. It also assesses the 
performance of various normalization methods used. 

 Keywords: ARIMA; Australia; bottom-up; forecasting; hierarchical time series; 
normalization 

1. Introduction 

Accurate predictions of tourist arrivals are essential for making informed decisions within the industry [1]. 
Additionally, forecasting tourist arrivals is important due to their impact on the social and cultural aspects of 
tourism at the destination and within the local community [2]. Tourist arrivals in most countries can fluctuate over 
time due to various factors such as social and economic conditions, natural disasters, and more. Therefore, accurate 
predictions are vital to address the uncertainty about tourist arrivals and to assist in the effective management and 
planning of the tourism sector. 

Tourist arrivals can be depicted as hierarchical time series data due to various geographical differences such 
as regions and states, as well as based on the purpose of the visit. While there has been extensive research on 
forecasting hierarchical time series data, previous studies often have limitations and primarily focus on evaluating 
prediction results using the Mean Absolute Percentage Error (MAPE) [3,4]. According to [5], MAPE can face 
challenges when data values are close to or equal to zero. Moreover, many studies often were concentrated on 
forecasting and comparing different hierarchical forecasting methods [6–8], but often without addressing the 
impact of normalization on forecasting accuracy. 

Normalization is a crucial aspect in hierarchical time series forecasting, as it helps to address differences in 
scale and value ranges across various hierarchical levels. By standardizing data, normalization can enhance model 
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performance and ensure more consistent results across different levels of the hierarchy. Despite its importance, 
many studies have not thoroughly examined how normalization methods interact with hierarchical forecasting 
techniques. This study not only evaluates the performance of the Autoregressive Integrated Moving Average 
(ARIMA) model using a bottom-up strategy but also explores the impact of various normalization methods on 
forecasting accuracy. The bottom-up approach involves forecasting each disaggregated series at the lowest 
hierarchical level and aggregating these forecasts to predict higher levels [6]. 

Moreover, this research seeks to bridge the gap in understanding how different normalization techniques 
affect the performance of hierarchical time series forecasting models. By comparing several normalization 
methods, including Z-Score, Min-Max, and Total-Sum normalization, this study aims to provide insights into 
which techniques offer the best performance for maintaining consistency across hierarchical levels. The findings 
are expected to contribute to more accurate and reliable forecasting practices, offering valuable guidance for 
researchers and practitioners in the field of tourism forecasting. 

2. Method 

This study utilizes data sourced from Kaggle on tourist arrivals in Australia. The data consists of quarterly 
records from January 1998 to December 2016 and has a hierarchical structure. It includes the number of overnight 
trips (in thousands) across Australia. The hierarchical levels in the data are represented by state, region, and 
purpose of travel. The analysis process begins with identifying the levels in the data. At the top of the hierarchy is 
“Total” denoted as 𝑌𝑌𝑡𝑡 , which represents level 0 and the fully aggregated series. Level 1 is the first level of 
disaggregation, with the hierarchy extending down to level K, which contains the most detailed, disaggregated 
time series. The data in this study shows a hierarchical structure with 4 levels. The top level of the hierarchy in 
this study represents the total tourist arrivals within the country (level 0). Levels 1 to 3 represent the tourist arrivals 
at the state, region, and purpose of travel level, respectively. 

The bottom-up strategy analyses data from the lowest level and then aggregates each series at each level to obtain 
forecasts at higher levels. By performing the analysis at the lowest level first, the risk of losing information can be 
minimized [9]. For example, for the top level, the bottom-up strategy can be represented mathematically as follows: 

𝑌𝑌�𝑡𝑡 = �𝑌𝑌�𝑖𝑖,𝑡𝑡 = 𝑌𝑌�1,𝑡𝑡 + 𝑌𝑌�2,𝑡𝑡 + ⋯+ 𝑌𝑌�𝑛𝑛,𝑡𝑡

𝑛𝑛

𝑖𝑖=1

.  

In addition to having a hierarchical structure, the data used in this study also contains time series patterns at 
each hierarchical level and requires an appropriate method to analyse these patterns. The Autoregressive Integrated 
Moving Average (ARIMA) is a time series forecasting method that combines the autoregressive and moving 
average components. The general form of the ARIMA model is expressed as follows: 

�1 − 𝜙𝜙1𝐵𝐵 − 𝜙𝜙2𝐵𝐵2 − ⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝�(1 − 𝐵𝐵)𝑑𝑑𝑌𝑌𝑡𝑡 = �1 − 𝜃𝜃1𝐵𝐵 − 𝜃𝜃2𝐵𝐵2 −⋯− 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞�𝑒𝑒𝑡𝑡.  

Estimating the unknown parameters in the ARIMA model can be challenging, especially when forecasting 
multiple time series simultaneously. However, the auto-ARIMA method addresses this issue by automatically 
testing various combinations of parameters combinations to select the model with the smallest value according to 
AIC (Akaike Information Criterion). 

To measure the accuracy of the selected model and the forecast results, the Symmetric Mean Absolute 
Percentage Error (SMAPE) [10,11] is used, which is mathematically represented as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
1
𝑛𝑛
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2 �
× 100%

𝑛𝑛

𝑡𝑡=1

. 
 

Finally, data normalization is applied as an initial step. This process is used to eliminate size effects and 
differences in scale [12]. The normalization techniques employed in this study include z-score normalization [13], 
min-max normalization [9,14], and total-sum normalization [15]. 

3. Results & Discussion 

The dataset for tourist arrivals in Australia is organized into four hierarchical levels. First, at the national 
level (level 0), there is one series representing the total number of tourists across the entire country. Next, at the 
state level (level 1), there are seven series representing each state in Australia. At the regional level (level 2), the 
tourist data is divided into 77 series that represent different regions within each state, resulting in a total of 77 
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series at this level. Finally, at the purpose of visiting level (level 3), there are four series representing each purpose 
of visit within each region, resulting in a total of 308 series at this level. With each series observed over 76 quarters, 
the total number of observations at the lowest level is 23,408. 

Figure 1 displays tourist arrivals by state, highlighting significant differences between states. Figure 2 
provides a more detailed view by showing tourist arrivals across regions within each state. Each line in the panels 
represents a region, and the color variations allow comparison of their trends. The figure clearly reveals 
considerable differences between regions, with some regions consistently having higher number of tourist arrivals 
than others within the same state. However, Figure 3 presents a slight variation by showing tourist arrivals by 
purpose of visit. Within each purpose, the different colored lines represent the trends for each region. While 
differences between regions are evident, the gaps are less pronounced as compared to the state- and region-level 
variations shown in Figures 1 and 2. As a result, this study applies several normalization methods to address the 
scale differences caused by these significant variations in tourist arrivals. 

Figure 4 illustrates the series trend after applying normalization. Each normalization method shows only minor 
differences compared to non-normalized data, except for the z-score normalization, which presents more uniform 
data with smaller gaps between states. Nonetheless, a closer look reveals that normalization methods do have a 
notable impact on the tourist data, though gaps still persist in the min-max and total-sum normalization graphs. 

 

Figure 1. Plot of tourist arrivals in Australia by state. 

 

Figure 2. Plot of tourist arrivals in Australia by region and state. 
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Figure 3. Plot of tourist arrivals in Australia by purpose of visit.  

 

Figure 4. Plot of tourist arrivals in Australia before and after normalization. 

Each series of tourist arrivals at the lowest level, both before and after normalization, is divided into two 
parts: testing and training sets. Each training set consists of the first 76 quarters, while the remaining 12 quarters 
constitute the test set. The ARIMA model is built on the training set for each series, resulting in 308 different fitted 
models. The fitted models are then used to forecast each test series at the lowest level. The forecasted series are 
subsequently aggregated at the next level summing up the forecasted series from the level below. The performances 
of the predictive model are summarised using SMAPE as tabulated in Table 1. The normalization method appears 
to yield better forecasting results across all levels, particularly when utilizing the z-score method as compared to 
other normalization approaches. However, the performance shows only a slight improvement compared to results 
without normalization. Particularly at the regional level, non-normalization approach performs better for short-
term forecasts in quarters 1 and 2. In general, the model provides greater forecasting precision for short-term 
horizons, but prediction errors increase as the forecasting horizon extends, regardless of the normalization methods 
used. Additionally, the table shows that as the hierarchical level increases, the SMAPE values tend to decrease, 
indicating improved performance at higher levels. 

Although it appears that a particular normalization method performs better at certain hierarchical levels, the 
differences in SMAPE values between normalization methods are not notable at each hierarchical level across all 
forecasting periods. This indicates that it cannot be conclusively determined that one normalization method is 
superior to others used in this study. Across all hierarchical levels, it is observed that as the forecasting horizon 
lengthens, SMAPE values generally increase at each level, except at the lowest level. For short-term forecasts, the 
evaluation results show lower values. This is consistent with the findings of studies [3,16], which report higher 
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SMAPE values for long-term forecasts. Thus, it can be concluded that, for the case study discussed, the 
performance of the ARIMA method with a bottom-up strategy diminishes for long-term forecasting. 

Table 1. SMAPE (%) for test set forecasting of different normalization approaches to tourist arrivals in Australia. 

Forecast Horizon (Quarter)  
 1 2 3 4 5 6 7 8 9 10 11 12 Average 

Level 0: Australia 
Non-normalization 10.56 9.83 6.92 7.68 9.71 10.21 10.33 11.44 12.88 13.12 13.27 14.16 10.84 

Z-Score 9.66 8.87 6.18 6.90 8.87 9.34 9.52 10.62 12.03 12.25 12.44 13.33 10.00 
Min-Max 10.56 9.83 6.92 7.68 9.71 10.21 10.33 11.44 12.88 13.12 13.27 14.16 10.84 
Total-Sum 10.78 9.94 6.91 7.64 9.68 10.18 10.28 11.39 12.83 13.06 13.21 14.10 10.83 

Level 1: State 
Non-normalization 10.72 11.24 10.55 10.31 12.12 12.17 12.30 13.49 15.02 15.27 15.38 16.31 12.91 

Z-Score 9.97 9.78 9.71 9.72 11.50 11.39 11.65 12.72 14.25 14.43 14.59 15.46 12.10 
Min-Max 10.72 11.24 10.55 10.31 12.12 12.17 12.30 13.49 15.02 15.27 15.38 16.31 12.91 
Total-Sum 10.82 11.29 10.62 10.35 12.15 12.19 12.31 13.49 15.02 15.27 15.37 16.30 12.93 

Level 2: Regional 
Non-normalization 21.36 19.75 19.99 19.73 20.77 20.59 21.14 21.50 22.31 22.44 22.85 23.26 21.31 

Z-Score 22.14 19.81 19.97 19.77 20.72 20.45 21.00 21.27 22.01 22.14 22.53 22.91 21.23 
Min-Max 21.36 19.75 19.99 19.73 20.77 20.59 21.14 21.50 22.31 22.44 22.85 23.26 21.31 
Total-Sum 21.39 19.76 19.99 19.73 20.77 20.59 21.14 21.49 22.30 22.43 22.84 23.25 21.31 

Level 3: Purpose of travel 
Non-normalization 54.41 50.64 50.66 49.50 48.91 48.59 48.77 48.95 48.94 48.59 48.60 48.64 49.60 

Z-Score 53.76 49.85 50.05 48.97 48.45 48.07 48.18 48.31 48.27 47.91 47.95 47.95 48.98 
Min-Max 54.41 50.64 50.66 49.50 48.91 48.59 48.77 48.95 48.94 48.59 48.60 48.64 49.60 
Total-Sum 54.38 50.62 50.65 49.48 48.90 48.58 48.76 48.94 48.93 48.58 48.59 48.62 49.59 

Values in bold represent the lowest SMAPE observed at each level. 

4. Conclusions 

This research focuses on evaluating the performance of ARIMA model using bottom-up strategy and 
normalization approaches for hierarchical time series of tourist arrivals in Australia from 1998 to 2016. The model-
building process and forecasting of future values are carried out at the lowest level, with the forecasted values then 
aggregated at higher level. The evaluation, using SMAPE, indicates that the ARIMA model performs better for 
short-term forecasting horizon. Normalization is an effective method to minimize the difference in range or unit 
when dealing with multiple time series simultaneously that may have varying scales. However, our study reveals 
that z-score normalization only slightly improves forecasting results. For future research, investigating the 
performance of other forecasting models, such as machine learning techniques or advanced time series methods, 
could be valuable to determine if they offer superior results compared to ARIMA, especially for long-term 
forecasts. 
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