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Estimation Of Multiple Linear Functional Relationships 
 

Amjad D. Al-Nasser 
Department of Statistics 

Yarmouk University, Jordan 
 
 
This article deals with multiple linear functional relationships models. Two robust estimations procedure 
are proposed to estimate the model, based on Generalized Maximum Entropy and Partial Least Square. 
They are distribution free and do not rely (so much) on classical assumptions. The experiments showed 
that the GME approach outperforms the PLS in terms of mean squares of errors (MSE). Empirical 
examples are studied.  
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Introduction 
 
Consider a set of mathematical variables 

),...,,( 21 Kξξξ  that connected by the relation 

KKξβξβξβαη ++++= ...2211  and the 
observed values 
 
 Kkniyx iik ,...,2,1,,...,2,1),,( ==  ,n>K>1 , 

are such that  
iiiy εη +=      

                         ikikikx δξ +=                    (1) 
where 

iKKiii ξβξβξβαη ++++= ...2211  
 

which can be defined as MLFR, where α is the 
intercept, β is the slope vector Kx 1, ξ unknown, 
unobservable latent variable with dimension K x 
n, ε and δ, are mutually independent 
unobservable disturbances terms with zero 
means and finite variances. They are assumed to 
be independent of (ξik ,ηi).  
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Methodology 
 
This article considers two estimation 

approaches. One is the PLS developed by Wold 
(1975). The algorithm is presented in Helland 
(1990) and Geladi (1986). The second is a 
theoretically attractive estimation approach 
based on Shannon’s (1948) entropy, which is 
called the Generalised Maximum Entropy. It 
was developed by Golan et al. (1996) for limited 
data. Subsequently, Al-Nasser et al. (2000), 
Abdullah (2000), and Al-Nasser (2003) used it 
for estimating Errors-in-Variables models. The 
GME method is a nonlinear programming 
approach to determine the most random 
probability distribution subject to the given 
information (see (1)). Without loss of generality, 
by assuming the intercept is equal to zero, the 
model can be rewritten as  
 

( ) nixy i

K

k
ikikki ,...,2,1,

1
=+−=∑

=

εδβ    (2) 

 
Because the unknowns are not in probability 
distribution form, their possible outcomes values 
are reparametrized as convex combination 
presented as expected value of discrete random 
variable: 

2,,...,2,1,1,
11

≥=== ∑∑
==

HKkppz
H

h
hk

H

h
hkhkkβ         (3) 
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The restriction imposed on the 
parameter space through z reflects à priori 
knowledge about these parameters. However, if 
the possible values of the parameters are known 
from the theory, then z is specified accordingly. 
If not, then z is specified to be uniformly 
symmetric around 0 with high - low upper 
bounds. For example, z = (-c, 0, c), c large 
value. 

For the simulation study here, assume 
zhk = zh ∀ k = 1,2,…,K. In addition, the 
unobservable ξik can be obtained from the 
observed data values xik and the disturbance δik  
can be treated in similar fashion: 
 

* * *

1 1

,

1 , 1, 2,..., , 1, 2,... , 2

T T

ik ikt ikt ikt
t t

v w w

k K i n T

δ
= =

=

= = = ≥

∑ ∑
        (4) 

1 1

, 1 , 1,2,..., , 2
J J

i ij ij ij
j j

v w w i n Jε
= =

= = = ≥∑ ∑              (5) 

The actual bounds for *
tv  and vj depend 

on the observed sample as well as any 
conceptual or empirical information about the 
underlying error. However, if such conceptual or 
empirical information does not exist, then *

tv , vj 
may be specified to be uniformly and 
symmetrically distributed around zero. 
Chebychev’s inequality or 3-sigma rule 
Pukelsheim (1994) may be used as conservative 
means of specifying sets of error bounds. Under 
these reparameterizations, the statistical MLFR 
model (2) can be rewritten as 
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       Given the reparameterization inverse 
problem (6) involving the unknown and the 
unobservable  p, w*, w, the GME problem as 
maximizing the dual objective function may be 
stated in scalar summations with three 
nonnegative probability components: 
 

*

1 1

* *

1 1 1 1 1
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Subject to the consistency constraints (data) 
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, i = 1,2,…,n 
 
and adding-up normalization constraints 
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H
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Solving the optimization problem of the 
(HK+nJ+nKT) equations yields the optimal and 
unique solution:  
 

∑ ∑ ∑∑

∑ ∑∑

= = ==

= ==

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−−

=
H

h

n

i

T

t
ihtihtihi

K

k
hk

n

i

T

t
ihtihtihi

K

k
hk

hk

wvxz

wvxz
p

1 1 1

**

1

1 1

**

1

ˆˆˆexp

ˆˆˆexp
ˆ

γ

γ

               (7) 
 

                  
[ ]
[ ]∑

=

−

−
= n

i
iji

iji
ij

v

v
w

1

ˆexp

ˆexp
ˆ

γ

γ
         (8) 

 
 

    

∑∑ ∑

∑

= = =

=

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎦

⎤
⎢
⎣

⎡
−

=
n

i

H

h

K

k
hkhkti

K

k
hkhkti

iht

pzv

pzv
w

1 1 1

*

1

*

*

ˆˆexp

ˆˆexp
ˆ

γ

γ
  (9) 

 



AMJAD D. AL-NASSER 
 
217 

where nii ,...,2,1ˆ =γ  are Lagrangian 
multipliers. The estimated parameters can be 
obtained by substitute (7) in (3);  
                                      

             Kkpz
H

h
hkhkk ,...,2,1ˆˆ

1
==∑

=

β  

 
Similarly, by substitution of (8) and (9) in (4) 
and (5) respectively, the estimated values of the 
unobservable variables may be obtained. 
 
Sampling Experiments 

Now, consider the performance of the 
GME and PLS method in estimating the 
parameters of the MLFR models in (2). Some 
experiments are carried out to choose the 
supported weights of the unknown elements 
under the following conditions: 

 
(i) Generate 500 samples each of size n = 

15 observations with K = 3 parameters.  
(ii) ikξ  are initialled to be in the interval 

⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡−

2
,

2
nKnK

 with increment 1, 

where [*] is the greater number less than 
or equal to *. 

(iii) Assume that Kkk ,...,2,1,1 =∀=β . 

(iv) The disturbance ikδ and εi are generated 
from Standard Normal distribution. 

(v) Simulate the observed values from the 
following equations: 

 
Kknix kiikik ,...,2,1,,...,2,1, ==+= δξ  

Kkniy iiki ,...2,1,,...,2,1, ==+= εξ . 

 
Choice of the index parameters space 
(Experiment 1) 
 The aim of this experiment is to chose 
the disturbance index by varying its values as J, 
T = 3, 4, 5, 6, 7. The support space of the 
parameters kβ  are fixed to be indexed into 5 
values in the interval [-c, c] for c = 10. The 
results of this experiment are tabulated as 
follows: 
 

Table 1. Choice of residual indices for GME-

MLFR model. 

 
Method MSE( 1β̂ ) MSE( 2β̂ ) MSE( 3β̂ ) 

PLS 0.0672 0.0659 0.0668 
GME ( J & T =3 ) 0.0242 0.0224 0.0203 
GME (J & T =4 ) 0.0243 0.0223 0.0203 
GME (J & T =5 ) 0.0246 0.0222 0.0202 
GME (J & T =6 ) 0.0248 0.0221 0.0201 
GME (J & T =7 ) 0.0250 0.0220 0.0201 

 
 In the same way, an experiment is 
carried out to choose the index value of the 
parameter space z. The values of z fixed to be 
located in the interval  [-10,10]. The results are 
tabulated as follows: 
 
Table 2. Choice of parameters index in GME-

MLFR model.  
 

Method MSE( 1β̂ ) MSE( 2β̂ ) MSE( 3β̂ ) 

PLS 0.0672 0.0659 0.0668 
GME ( M=3 ) 0.0249 0.0221 0.0201 
GME (M=4 ) 0.0249 0.0221 0.0201 
GME (M=5 ) 0.0247 0.0222 0.0202 
GME (M=6 ) 0.0245 0.0222 0.0203 
GME (M=7 ) 0.0244 0.0223 0.0203 
 
 This experiment suggests that regardless 
of the index values of parameter supports space 
the GME is superior than PLS estimates and 
more robust. 
 
Choice of parameter space values 
 (Experiment 2) 

Under the above conditions and by 
fixing five index values for the parameters in the 
interval [-10,10], this experiment is carried out 
to find the suitable parameter space of the 
disturbance part. The choice of the supported 
values was obtained depending on Chebyshev’s 
inequality, and the following table shows the 
simulated results: 
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Table 3 Choice of residuals space values for 

GME-MLFR model. 
Method MSE( 1β̂ ) MSE( 2β̂ ) MSE( 3β̂ ) 

PLS 0.0672 0.0659 0.0668 
GME 

 {[-3S,3S]} 
0.0246 0.0222 0.0202 

GME 
 {[-4S,4S]} 

0.0241 0.0224 0.0205 

GME 
 {[-5S,5S]} 

0.0237 0.0226 0.0208 

GME 
 {[-6S,6S]} 

0.0235 0.0226 0.0210 

GME 
 {[-7S,7S]} 

0.0233 0.0227 0.0213 

 
 

Table.4 Choice of parameter space values of 

GME-MLFR model. 
Method MSE(

1β̂ ) 

MSE( 2β̂ ) 
MSE(

3β̂ ) 

PLS 0.0672 0.0659 0.0668 
GME 

{z : [-5,5] } 
0.0234 0.0226 0.0211 

GME 
{z:[-10, 10]} 

0.0246 0.0222 0.0202 

GME 
{z: [-50, 50]} 

0.0288 0.0203 0.0194 

GME 
{z: [-100, 100]} 

0.0293 0.0201 0.0194 

GME 
{z: [-500, 500]} 

0.0294 0.0200 0.0193 

GME 
{z:[-1000, 1000]} 

0.0294 0.0200 0.0193 

 
This experiment confirms the 

superiority of the GME over the PLS in all 
choices of the support values. Note that the 3-
sigma choice gives better estimates with respect 
to both parameters as shown in Table 3. 
 
Increasing the sample size and the number of 
parameters (Experiment 3)   

Consider increasing the sample size n = 
15,20,30,40, and varying number of parameters, 
i.e., K= 2,3,4. The parameters index is fixed to 
be three, with support values [-3S,0,3S] for the 
disturbance parts and [ -10, 10 ] for the slopes. 
The results were obtained and are displayed in 
Tables 5 and 6.The tabulated results demonstrate 

that the GME approach performs better than the 
PLS with respect to their MSE for any sample 
size and any number of unknown parameters. 

 
Empirical Example 

The data were collected via interviews 
with seventeen customers in order to gain a 
better understanding of service loyalty and 
identify salient factor affecting its development 
Al-Nasser (2000). Two types of services, i.e., 
cellular phone and TV stations, were selected for 
the study. For this example, the model is  

 
17,...,2,1,2211 =+= iiii ξβξβη  

such that     
 
                          111 iiix δξ +=  

222 iiix δξ +=  
and  

 
iiiy εη +=  

 
where iη  = Customer Loyalty, 1iξ  = Service 
Image, and 2iξ  = Customer Satisfaction. 

This model is solved by using both 
approaches (GME and PLS). The results are 
shown in Table 7. In addition, Figure 1 depicts a 
distinction between the observed error of the 
customer loyalty by using both methods with the 
observed errors closely centred around zero. 
This appears to support that the notion that GME 
is a more robust alternative than PLS.  

 
TABLE.7 Estimated values of the parameters 
using the PLS and GME for customer 
satisfaction data. 
 

Method 
1β̂  

2β̂  
PLS 0.3523 0.3682 

GME 1.8746 1.0876 
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Table. 5 Performance of the GME-MLFR for various sample sizes and number of 

parameters. 

 
 

                                     N 
K 

15 20 30 40 

2 MSE( 1β̂ ) 

MSE( 2β̂ ) 

0.0267 
 

0.0197 

0.0199 
 

0.0144 

0.0105 
 

0.0120 

0.0075 
 

0.0092 

3 MSE( 1β̂ ) 

MSE 2β̂ ) 

MSE( 3β̂ ) 

0.0236 
 

0.0226 
 

0.0208 

0.0157 
 

0.0168 
 

0.0183 

0.0114 
 

0.0107 
 

0.0110 

0.0083 
 

0.0080 
 

0.0086 
4 MSE( 1β̂ ) 

MSE( 2β̂ ) 

MSE( 3β̂ ) 

MSE( 4β̂ ) 

0.0229 
 

0.0221 
 

0.0232 
 

0.0215 

0.0140 
 

0.0162 
 

0.0186 
 

0.0188 

0.0113 
 

0.0096 
 

0.0142 
 

0.0102 

0.0079 
 

0.0071 
 

0.0116 
 

0.0077 
 
 
 
Table.6 Performance of the PLS MLFR for various sample sizes and number of 

parameters. 

 
                           N 
K 

15 20 30 40 

2 MSE( 1β̂ ) 

MSE 2β̂ ) 

0.0651 
 

0.0651 

0.0448 
 

0.0448 

0.0325 
 

0.0326 

0.0244 
 

0.0244 

3 MSE( 1β̂ ) 

MSE( 2β̂ ) 

MSE( 3β̂ ) 

0.0672 
 

0.0659 
 

0.0668 

0.0448 
 

0.0449 
 

0.0449 

0.0333 
 

0.0334 
 

0.0333 

0.0249 
 

0.0250 
 

0.0250 
4 MSE( 1β̂ ) 

MSE( 2β̂ ) 

MSE( 3β̂ ) 

MSE( 4β̂ ) 

   0.0651 
 

0.0651 
 

0.0651 
 

0.0651 

0.0449 
 

0.0449 
 

0.0449 
 

0.0449 

0.0325 
 

0.0236 
 

0.0325 
 

0.0325 

0.0244 
 

0.0244 
 

0.0244 
 

0.0244 
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Conclusion 

 
The results presented in this article provide 
strong evidence about the robust performance of 
the GME compared with the traditional methods 
that have been used to deal with the MLFR. In 
fact, the PLS that has become the conventional 
approach in measurement error model fails to 
outperform the GME in all the cases studied. 

From the simulation study, it is evident 
that with various sample sizes and number of 
parameters, the MSE of GME estimates are 
smaller than those of the PLS. Therefore, the 
GME should provide a better alternative for the 
MLFR compared with the other methods.  
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FIGURE 1 Comparison of the observed errors of customer loyalty using GME and PLS. 
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