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The purpose of this paper is to present an analytically easy to use procedure for estimating of 
extreme quantiles of continuous random variables using the Peak Over Threshold approach, 
and a statistically sound approach to the problem of threshold selection that needs to be 
resolved in this context. A web link included in the text points to a ready-to-use 
implementation of the proposed method in the popular programming language Python. 
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1. Introduction 

Estimating the probability of very rare events is an important task in many scientific fields, 
including hydrology, climate science, engineering, insurance mathematics, and finance. The 
origins of the corresponding sub-field of statistics, named Extreme Value Analysis (EVA) go 
back more than 100 years, and a large variety of related methods exist and have been discussed 
in several specialist books and articles, including (but by no means limited to) the works by  
Dixon (1950), Gumbel (1935), Pickands (1975),  Castillo (1988), Smith (1989), Hosking 
(1990), Coles (2001) Beirlant et al (2004), Castillo et al. (2005), McNeil et al. (2005), and Reiss 
and Thomas (2007). A key advantage of EVA is that, in general, the original parent distribution 
of the random variable under investigation does not have to be known, because the distribution 
of the extremes approaches a known distribution as the sample size goes to Infinity. 

EVA is often performed by expressing the conditional distribution of the data points located 
beyond a given threshold as a mathematical function of a limited number of unknown 
parameters, which then need to be estimated numerically, either by applying the method of 
Maximum Likelihood or by using a Weighted Generalized Method of Moments approach. This 
is particularly true when considering that the choice of the threshold value beyond which an 
observation is considered “extreme”, must also be made with computational means. Against 
this background, the purpose of this paper is to present an analytically tractable, statistically 
well-founded solution approach to the problem of threshold determination and the issue of 
parameter estimation. The proposed solution is based on a set of statistics termed L-moments, 
each of which constitutes a specific linear combination of order statistics of the underlying 
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variable. The proposed procedure is based on earlier work by Hosking (1990), Hamdan (2009) 
and Simkova (2017), who have shown that such statistics can be used to estimate extreme 
quantiles of a univariate, continuous, real-valued random variable X based on a sample of 
identically and independently distributed realizations x1, …, xN, in an analytically convenient 
and tractable manner. The remainder of this paper is organized as follows: Section 2 describes 
a simple estimator of the cumulative distribution function of a continuous, univariate random 
variable, which is based solely on the available sample of actual observations and does not 
require the introduction of any further, potentially restrictive, assumptions. Section 3 
summarizes some basic properties of the Peak Over Thresholds approach, a popular method for 
estimating the probability of extreme events on which the following considerations are based. 
In Section 4, details of the parameter estimation and threshold selection procedures are 
presented. The feasibility of the proposed approach is demonstrated in Section 5. Section 6 
concludes. 
 

1. Estimating the cumulative distribution function of X  
Let 𝑥𝑖

(𝑠)
, i = 1,…N,  denote the i-th order statistic (i.e. the i-th smallest realisation of X) in 

the sample. Then, a consistent nonparametric estimate of the unknown cumulative distribution 
function 𝐹̂(𝑥𝑖

(𝑠)
) at point 𝑥𝑖

(𝑠)
  can be calculated as 

𝐹̂(𝑥𝑖
(𝑠)
) =

∑ 𝐼(𝑥𝑗
(𝑠)
≤𝑥𝑖

(𝑠)
)𝑁

𝑗=1

𝑁+1
                                            

(1) 

(see, e.g., Maakonen, 2005), where I(.) is an indicator function that is set to 1 if the condition 
in brackets is fulfilled and to zero otherwise. The denominator in (1) has been set to (N + 1) 
rather than N in order to keep the estimates for all observed data points in the interior of the 
interval [0, 1].  

Moreover, estimates of the unknown cumulative distribution for arbitrary values 𝑥 of 𝑋 can 
be calculated by means of log-linear interpolation between adjacent observations as follows: 
 

𝐹̂𝑋(𝑥) =  

{
 
 

 
 𝐹̂(𝑥𝑖

(𝑠)
) exp (1(𝑥 − 𝑥1

(𝑠)))   𝑖𝑓 𝑥 < 𝑥1
(𝑠)

𝐹̂(𝑥𝑖
(𝑠)
)exp (𝑖(𝑥 − 𝑥𝑖

(𝑠)
))   𝑖𝑓 𝑥𝑖

(𝑠)
≤ 𝑥 < 𝑥𝑖+1

(𝑠)

1 − [1 − 𝐹̂(𝑥𝑁
(𝑠)
)]  exp (𝑁(𝑥 − 𝑥𝑁

(𝑠)))   𝑖𝑓 𝑥  𝑥𝑁
(𝑠)

       

(2) 

with       𝑖 ≔

{
 
 

 
 ln 𝐹̂(𝑥𝑖+1

(𝑠)
)−𝑙𝑛𝐹̂(𝑥𝑖

(𝑠)
)

𝑥𝑖+1
(𝑠)

−𝑥𝑖
(𝑠)             if i = 1,… , N − 1

ln[1− 𝐹̂(𝑥𝑁
(𝑠)
)]−𝑙𝑛[1− 𝐹̂(𝑥𝑁−1

(𝑠)
)]

𝑥𝑁
(𝑠)
−𝑥𝑁−1

(𝑠)        if 𝑖 = N

   

A difficulty associated with the estimation procedure sketched above is that whenever 
values near the upper and lower ends of the range of X are observed only rarely, substantial 
uncertainty prevails as to the true profile of the cumulative distribution in these regions. This is 
of high relevance whenever it is precisely the likelihood of extreme events, for which few or 
no data on historical precedents may be available, that is to be estimated.   

24 



Estimating Extreme Quantiles of Unknown Distributions using the 
Peak Over Thresholds Method1 

 
. 

 
2. Estimating the Likelihood of Extreme Events 

Reliably estimating extreme quantiles of an unknown distribution based on a finite sample 
is by no means trivial, given that the particular regions of the range of the related variable where 
such extreme values tend to be located are often only thinly populated with data points, and that 
the possibility of observations that lie beyond the observed sample extrema often needs to be 
taken into consideration.  

Among practitioners, the Peaks Over Threshold (POT) method has become the most popular 
solution approach to this problem. The POT method models the distribution of the excesses 
over a given size threshold by the Generalized Pareto Distribution (GPD); see Pickands (1975).  

The theoretical basis for the POT method is the Pickands-Balkema-de Haan theorem (see 
Balkema and de Haan, 1974, and Pickands, 1975). It deals with the distribution of the excess 

(Y := X -  ) of a random variable X over a threshold   conditional on the X exceeding   

This conditional excess distribution can be expressed as 

𝐹𝑌(𝑦)  = Pr(𝑋 −   ≤ 𝑦 | 𝑋 > )                     (3) 
                                                                     =

𝐹𝑋(𝑦+ )−𝐹𝑋()

1−𝐹𝑋()
 

The authors show that for a large variety of continuous cumulative distribution functions 
𝐹𝑋, given a sufficiently high value of the threshold parameter  and a sufficiently large sample 
size, the above distribution is well approximated by a Generalized Pareto Distribution (GPD). 
The GPD is a continuous probability distribution characterized by three parameters: location 

(), scale (), and shape (); its cumulative distribution function reads 

  (𝑦;  ,, ) =   {
1 − [1 +  ·

𝑦−


]
−
1


  𝑖𝑓   0

1 − 𝑒𝑥𝑝 (−
𝑦−


)   𝑖𝑓  = 0

 ,     (4) 

while the corresponding probability density function is 

  (𝑦;  ,, ) =   {

1


[1 +  (

𝑦−


)]
−(

1


+1)

  𝑖𝑓   0

1


𝑒𝑥𝑝 (−

𝑦−


)   𝑖𝑓  = 0

                 

(5) 

and the related quantile function equals 

                             −1 (𝑢;  ,, ) =   {
+




(𝑢− − 1)  𝑖𝑓   0

−  𝑙𝑛(𝑢)  𝑖𝑓  = 0
                  (6) 

 

3. Parameter Estimation for the Generalized Pareto Distribution 

4.1 Preliminaries: L-Moments 
Description 
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Traditionally, central moments such as the mean, the variance, skewness and kurtosis, have 
been used to describe univariate distributions. An alternative to this way of proceeding was 
introduced by Hosking (1990). This alternative approach is based on L-moments, which are 
certain linear combinations of order statistics. According to Šimková (2017), their main 

advantage, as compared to “conventional” central moments, is that if the mean of the underlying 
distribution is finite, their existence of L-moments all orders can be taken for granted. 

Population L-Moments 
For a random variable X, the Hosking (1990) defines the r-th population L-moment as 

  𝑟 = 
1

𝑟
∑ (−1)𝑘𝑟−1

𝑘=0 (
𝑟 − 1
𝑘

)𝐸(𝑌𝑟−𝑘:𝑘) , 

with (
𝑎
𝑏
) ∶=  

𝑎!

𝑏! (𝑎−𝑏)!
 ,   𝑚! ∶=  {

1 𝑖𝑓 𝑚 = 0
1 ∙ 2 ∙ …𝑚 𝑖𝑓 𝑚 > 0

                  (7)  

and   𝑌𝑚:𝑛 ∶=  the m-th smallest value in an independent sample of size n from the distribution 
of Y. 
 

Sample L-Moments 
Sample L-Moments can probably be computed most efficiently by drawing on the concept of 
probability-weighted moments introduced by Greenwood et al. (1979). Sample probability 
weighted moments, computed from order statistics 𝑦𝑖

(𝑠)
, i = 1,…N, are given by 

𝑏0
⬚: = 𝑁−1  ∑ 𝑦𝑖

(𝑠)𝑁
𝑖=1        (8)  

and 

𝑏𝑟
⬚: = 𝑁−1  ∑

(𝑗−1)∙(𝑗−2)∙…∙(𝑗−𝑟)

(𝑁−1)∙(𝑁−2)∙…∙(𝑁−𝑟)
𝑦𝑗
(𝑠)𝑁

𝑗=𝑟+1        (9) 

The sample L-moments are linear combinations of the sample probability weighted moments 
and can be calculated as follows (see Hamdan, 2009, p. 80): 

• The first-order sample L-moment equals ̂1 = 𝑏0
⬚. 

• The higher-order sample L-moments are given by ̂𝑟+1 = ∑ 𝑝𝑟,𝑘
∗𝑟

𝑘=0 𝑏𝑘 ,  

with 𝑝𝑟,𝑘
∗ ∶=  (−1)𝑟−𝑘 (

𝑟
𝑘
) (
𝑟 + 𝑘
𝑘

) 

By dividing the higher-order L-moments by the dispersion measure ̂2, we obtain the L-
moment ratios,  

̂𝑟 ∶= ̂𝑟/̂2,        (10) 

which are dimensionless, i.e. independent of the units in which the data have been measured, 
with 3 being a measure of skewness and 4 is a measure of kurtosis. 
 
 

4.2 Deriving GPD parameter estimates from sample L-moments 

In line with Hosking (1990), the sample L-moments obtained as above can be used to 
calculate estimates of the GPD distribution as follows: 

 ̂   ≔   
3̂3−1

1+̂3
        (11) 
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 ̂   ≔   (1 −  ̂) · (2 −  ̂) · ̂2     (12) 

 ̂   ≔   ̂1 − (2 −  ̂) · ̂2      (13) 

The resulting estimate of the cumulative distribution function GPD distribution then reads 

 ̂ (𝑦; . ) =   {
1 − [1 + ̂ ·

𝑦−̂

̂
]
−
1

̂   𝑖𝑓 ̂  0

1 − 𝑒𝑥𝑝 (−
𝑦−̂

̂
)   𝑖𝑓 ̂  = 0

 ,                         (14) 

 

4.3 Setting the Threshold Parameter 

Motivation 

The problem of choosing the threshold parameter   involves a tradeoff between the 
objectives of (a) setting the threshold sufficiently high for the theoretical preconditions for the 
GPD method to apply, and (b) setting it low enough to obtain a number of threshold 
exceedances that is so large that it allows for reliable estimates.  

 
Decision Rule 

A decision rule by which this tradeoff can be resolved can be set by first specifying a 
confidence level   which choices determines the range of values in which the GPD-based 
estimate of the cumulative distribution function must lie for each point above the threshold for 
the overall estimate (14) to be acceptable.  

• A comparably high value of  will allow for relatively substantial deviations between 
the nonparametric estimates and its GPD-based counterparts to be accepted, thus 
resulting in a relatively large risk of a Type 2 error (failure to reject the null hypothesis 
“GPD estimate = true” if it is actually false). 

• On the other hand, a relatively low value of  will only allow comparably small 
deviations between nonparametric and GPD-based estimates and estimates and 
therefore imply a relatively large risk of a Type 1 error (rejection of the null hypothesis 
“GPD estimate = true” that is actually true). 

The proposed decision rule for choosing the actual parameter value used for estimation can 
be summarized as follows: 

  

(i) Specify a dense grid of trial values 𝜃̃1, …, 𝜃̃𝐽 for the threshold parameters. 
(ii) Set j to 1.  
(iii) Set the candidate value of the threshold parameter to  𝜃̃𝑗 .  
(iv) Test, separately for at each data point x above 𝜃̃𝑗 , whether the GPD-based 

estimate of the cumulative distribution function of X, which reads  
̂ (𝑥 − 𝜃̃𝑗;  . ) ∙ [1 − 𝐹̂𝑋(𝜃̃𝑗)] + 𝐹̂𝑋(𝜃̃𝑗), lies inside a two-sided a  100% 
confidence interval around its empirical counterpart 𝐹̂𝑋(𝑥) 
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(v) If the condition stated in (iv) has been met for each data point above 𝜃̃𝑗 , set the 
actual trial parameter used for estimation,   to 𝜃̃𝑗 , and terminate the threshold 
selection procedure.  

(vi) If not, increase j by 1 and repeat steps (iii) to (v). 
 

 
Confidence intervals 

Pointwise confidence intervals for 𝐹̂𝑋(𝑥) are estimated using Wilson’s (1927) Score 

Interval. 

4. Application 

The example given below shows that the proposed procedure can be successfully applied to 
the problem of estimating extreme quantiles of the return distribution of the S&P 500 stock 
market index, using historical data ranging from January 1928 to November 2022 (source: 
Yahoo! Finance). The p-value below which the null hypothesis that the GPD-based estimates 
is compatible with the empirical cumulative distribution function is rejected is set to a rather 
high value (0.20) in order to ensure a rather high degree of agreement between the estimated 
and empirically observed cumulative distribution in the tails. The threshold selection procedure 
described in Section 4 led to a lower threshold of -0.07715 and an upper threshold of 0.07543, 
respectively. A graphical summary of the results obtained is given below: 

 
A csv file with the data in use, together with a commented version of the code for 

implementing the proposed procedure, prepared in the language Python, has been provided on 
the web at https://drive.google.com/drive/folders/1jfl1w00r0-
5pGnJFlyB8MzVkEfUcXwxA?usp=sharing (under the file names: S&P500History.csv and 
peakOverThreshold.ipnb , respectively). 

5. Concluding Remarks 

The method presented here provides an analytically easy to use procedure for estimating of 
extreme quantiles of continuous random variables using the Peak Over Threshold approach, 
along with a statistically sound approach to threshold selection. A weblink included in the text 
points to a ready-to-use implementation of the proposed method in the popular programming 
language Python.  

The weakness of the current approach is that it assumes the data points in use to be 
identically and independently distributed over time. In many applications to economic, social, 
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and financial data series, this premise is unlikely to be fulfilled. Future research efforts could 
therefore be directed at integrating extreme value models into a framework capable of capturing 
complex, possibly nonlinear dependence patterns between successive realisations of a given 
random variable, and/or allowing for changes in the nature of the data-generating process during 
the passage of time. 
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