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Abstract  

We propose and develop the four-parameter Harris Extended Fréchet distribution. It is obtained by 

inserting the two-parameter Frechet distribution as the baseline in the Harris family and may be a 

useful alternative method to model income distribution and could be applied to other areas. We 

demonstrate that the new distribution can have decreasing, increasing and upside-down-bathtub 

hazard functions and that its probability density function is an infinite linear combination of 

Frechet densities. Some standard mathematical properties of the proposed distribution are derived, 

such as the quantile function, ordinary and incomplete moments, incomplete moments, Lorenz and 

Bonferroni curves, Gini index, Renyi and 𝛽-entropies, mean residual life and mean inactivity time, 

probability weighted moments, stress-strength reliability, and order statistics. We also obtain the 

maximum likelihood estimators of the model. The potentiality/flexibility of the new distribution 

is illustrated by means two applications to failure and waiting time data sets 

Keywords: Gine index, Bonferroni curve, Probability Weighted Moments, Strength-Stress  

  Reliability. 
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1.0 Introduction  

Statistical distributions are useful tool in describing and predicting real life data. Although many 

flexible distributions have been developed and studied widely. However, there are always 

techniques for developing a more robust and flexible distributions which are adaptable for fitting 

specific real-life data. This technique involves the addition of one or more additional shape 

parameters to an existing standard probability (say, a baseline model). This study focused on 

extending the Fréchet distribution which has been widely applied in extreme value theory. It is an 

important distribution in extreme value theory and found applications in many fields of applied 

statistics and this includes: Seismography, life testing, insurance, earthquakes, flood, sea waves, 

rainfall, medicine, and wind speeds. Some extensions of the Fréchet distribution have been studied 

in literature to model various types of data and this include: the beta Fréchet distribution by 

Nadarajah and Gupta (2004),  Exponentiated Fréchet Distribution by Badr (2010), The Gamma 

Extended Fréchet Distribution by Ronaldo et al. (2013), Exponentiated Generalized Fréchet 

Distribution by Abd-Elfattah et al. (2016), Beta Exponential Fréchet Distribution studied by Mead 

et (2017), Beta generalized exponentiated Fréchet distribution by Majdah (2019), Badr (2019) 

proposed and study the Beta generalized exponentiated Fréchet distribution. Fréchet Weibull 

distribution and Fréchet Weibull mixture distributions are, respectively, proposed and studied by 

Teamah et al. (2020a, 2020b), Lehman Fréchet Poisson distribution by Ogunde et al. (2021) and 

Type II Half logistic Fréchet distribution by Ogunde et al. (2023).  In this article, we introduce and 

study an extension of the Fréchet model called the Harris Extended Fréchet (𝐻𝐸𝐹) distribution 

which is flexible and adaptable to modeling lifetime data of varying degree of skewness. 

1.1 Motivation of study 

We are motivated to extend the Frechet distribution to a more flexible generalized form called the 

Harris extended Frechet distribution (𝐻𝐸𝐹) distribution based on the following: 

(i) When standard probability distribution is extended by the addition of shape 

parameter(s), it performs better by providing a good fit when used to model extremely 

skewed data as compared to baseline (Precim et al. 2012). 

(ii) The goodness of fit can be improved upon with the addition of shape parameter(s). 

(iii) To further analyse extensively, the tail properties of a distribution one can extend the 

underlying baseline distribution by the addition of a shape parameter. 
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(iv) Complex statistical programmes are available such as R program, python, MATLAB, 

Mapple, etc. to handle the complexity of the analysis.  

The rest of the paper is organized as follows: In Section 2, we define the HEF distribution, give 

some plots for its probability density function(pdf), cumulative density function (cdf), survival 

function (rf) and hazard rate function (hrf). We derived the, quantile function, examine the 

asymptotic properties of 𝐻𝐸𝐹 distribution, determine its nature of skewness and kurtosis, 

obtain an expression for the  𝑟𝑡ℎ ordinary moment and incomplete moments, mean deviations, 

Lorenz and Bonferroni curves, mean residual and mean inactivity time, moment generating 

function, and Gini index in Section 3. The entropies (Rényi and 𝛽 − entropies), probability 

weighted moments, stress-strength reliability and the order statistics are derived in Section 4. 

In Section 5, simulation study was carried out to evaluate the performance of the maximum 

likelihood estimates. The maximum likelihood estimates of the 𝐻𝐸𝐹 distribution parameters 

are the Fisher information matrix is discussed. In Section 6, the usefulness and the flexibility 

of the 𝐻𝐸𝐹 distribution is demonstrated by means of two real data sets. Finally, in Section 7 

we make concluding remarks. 

2.0 Harris Extended Fréchet distribution 

Based on the branching process developed by Harris (1948), a random variable X follows a 

Harris Extended Fréchet distribution if the Probability density function (𝑝𝑑𝑓) is given by  

𝑓(𝑥) = ϛ
1

𝜆⁄ 𝛼𝜌𝑥−(𝜌+1)𝑒−𝛼𝑥−𝜌
(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌

]
𝜆

)
−(1+1

𝜆⁄ )

 ,                                           (2.1) 

And the corresponding cumulative density function (cdf) to (2.1) is given by 

  

𝐹(𝑥) = 1 − ϛ
1

𝜆⁄ (1 − 𝑒−𝛼𝑥−𝜌
) (1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌

]
𝜆

)
−1

𝜆⁄

 .                                           (2.2) 

Where 𝜆, ϛ, and 𝜌 are positive shape parameters and 𝛼 is a positive scale parameter. Figure 2.1 

represent the plot of pdf of 𝐻𝐸𝐹 model with different values of the parameters. 

 



Harris Extended Fréchet distribution: Properties, inference, and Applications to failure and waiting time 
data. 

149 

 

 

(a) Plot of the cdf of 𝐻𝐸𝐹 distribution (b) plot of the pdf of 𝐻𝐸𝐹 distribution 

Figure 2.0. Plots of the cdf and the pdf of the 𝐻𝐸𝐹 distribution. 

• Figure 2.0 indicates that the HEF distribution has proper pdf and that the pdf of 

the 𝐻𝐸𝐹 model is non-monotonic. 

An expression for the survival and the hazard functions are, respectively, given as 

𝑠(𝑥) = 1 − 𝐹(𝑥) = ϛ
1

𝜆⁄ (1 − 𝑒−𝛼𝑥−𝜌
) (1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌

]
𝜆

)
−1

𝜆⁄

,                                     (2.3) 

and 

ℎ(𝑥) =
𝛼𝜌𝑥−(𝜌+1)𝑒−𝛼𝑥−𝜌

(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌
]

𝜆
)

(1 − 𝑒−𝛼𝑥−𝜌)
 .                                             (2.4) 
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Figure 2.1. Plots of the hazard function 𝐻𝐸𝐹 distribution 

• Figure 2.1 shows that the shape of the hazard function of 𝐻𝐸𝐹 model can be 

increasing, decreasing, and inverted-bathtub failure rates. 

 

Figure 2.3. Plots of the survival function 𝐻𝐸𝐹 distribution. 
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• Figure 2.3 shows that as time increases the survival probability of the 

𝐻𝐸𝐹 distribution approaches zero. 

Similarly, the reversed hazard function of the 𝐻𝐸𝐹 model is  

ℏ(𝑥) =
ϛ

1
𝜆⁄ 𝛼𝜌𝑥−(𝜌+1)𝑒−𝛼𝑥−𝜌

(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌
]

𝜆
)

−(1+1
𝜆⁄ )

1 − ϛ
1

𝜆⁄ (1 − 𝑒−𝛼𝑥−𝜌)(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌]𝜆)−1
𝜆⁄

                                    (2.5) 

it should be noted that cumulative hazard function cannot be described as a probability function 

but take cognizance of the risk measurement. The higher the value of the risk, the more the failure 

that will be observed over time 𝑥. The cumulative hazard rate function can be represented 

mathematically as 

ℋ(𝑥) = ℓ𝑛(1) − 1
𝜆⁄ ℓ𝑛(ϛ) + ℓ𝑛(1 − 𝑒−𝛼𝑥−𝜌

) − 1
𝜆⁄ ℓ𝑛 (1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌

]
𝜆

).            (2.6) 

3.0 Statistical properties of the 𝑯𝑬𝑭 model 

The 𝐻𝐸𝐹 model can be re-written to a reduced a model using generalized binomial series. 

(1 − ℎ)𝑧 = ∑(−1)𝑘

∞

𝑘=0

(
𝑧

𝑘
) ℎ𝑘 ,                                                                          (3.1) 

where, |ℎ| < 1, 𝑘 > 0. Now using the binomial series given in (3.1), The pdf of 𝐻𝐸𝐹 model can 

be written as a mixture model as 

 

𝑓(𝑥) = 𝜌 ∑ 𝛿𝑖,𝑗

∞

𝑖=0

𝑥−(𝜌+1)𝑒−𝛼(1+𝑗)𝑥−𝜌
.                                                              (3.2) 

where, 

𝛿𝑖,𝑗 = ϛ
1

𝜆⁄ 𝛼 ∑ (
1

𝜆⁄ + 𝑖

𝑖
) (

𝜆𝑖

𝑗
) (ϛ̅̅)𝑖(−1)𝑗

𝜆𝑖

𝑗=0
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3.1 Quantile function 

To investigate the theoretical aspects of the probability distribution, we can employ the use of the 

quantile function. Mathematically, the quantile function can be expressed in form of 𝑄(𝑝) =

𝐹−1(𝑝). Correspondingly, the quantile function of 𝐻𝐸𝐹 model is  

𝑄(𝑝) = (−
1

𝛼
𝑙𝑜𝑔 [1 −

(1 − 𝑝)

ϛ(1 − ϛ)(1 − 𝑝)𝜆
])

−1
𝜌⁄

,    0 < 𝑝 < 1.                                        (3.3) 

If we take 𝑝 = 0.25, 0.5, 0.75, then will derive an expression for the lower (𝑞1), middle (𝑞2), and 

the upper quartiles (𝑞3), respectively, as  

𝑞1 = (−
1

𝛼
𝑙𝑜𝑔 [1 −

0.75

ϛ(1 − ϛ)(0.75)𝜆
])

−1
𝜌⁄

,                                          (3.4) 

𝑞2 = (−
1

𝛼
𝑙𝑜𝑔 [1 −

0.5

ϛ(1 − ϛ)0.5𝜆
])

−1
𝜌⁄

,                                                     (3.5) 

and 

𝑞3 = (−
1

𝛼
𝑙𝑜𝑔 [1 −

0.25

ϛ(1 − ϛ)0.25𝜆
])

−1
𝜌⁄

.                                                  (3.6) 

3.2 Asymptotic Behaviour of 𝑯𝑬𝑭 model 

To determine the asymptotic behaviour, we have to examine, lim
𝑥→0

𝑓(𝑥) = lim
𝑥→∞

𝑓(𝑥). 

lim
𝑥→0

ϛ
1

𝜆⁄ 𝛼𝜌𝑥−(𝜌+1)𝑒−𝛼𝑥−𝜌

(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌]𝜆)(1+1
𝜆⁄ )

= lim
𝑥→∞

ϛ
1

𝜆⁄ 𝛼𝜌𝑥−(𝜌+1)𝑒−𝛼𝑥−𝜌

(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌]𝜆)(1+1
𝜆⁄ )

= 0.           (3.7) 

The result indicates that both limits are existing, hence the 𝐻𝐸𝐹 model has conformed with the 

unimodal distribution. However, since 𝑓(𝑥) > 0 and 
𝜕𝑓(𝑥)

𝜕𝑥
= 0 then (2.1) becomes 

−
(𝜌 + 1)

𝑥
+ 𝛼𝜌𝑥−(𝜌+1) − (1 + 1

𝜆⁄ )
𝛼𝜌𝑥−(𝜌+1)𝑒−𝛼𝑥−𝜌

[1 − 𝑒−𝛼𝑥−𝜌
]

(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌]𝜆)
= 0                  (3.8) 

Solution to (3.9) cannot be obtained analytically because it is non-linear equation. The solution 

can only be obtained using numerical process such as the Newton-Raphson iteration procedure. 
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3.3 Skewness and Kurtosis 

The skewness and Kurtosis employed in statistical analysis to measure some desirable 

characteristics of a distribution. Bowley’s skewness was developed using quartile by Bowley 

(1920) and is of the form 

ℬ𝑠𝑘 =
𝑄(0.75) − 2𝑄(0.5) + 𝑄(0.25)

𝑄(0.75) − 𝑄(0.25)
. 

Moore (1988) developed the Moore kurtosis using octiles and it can be estimated as 

ℳ𝑘 =
𝑄(0.875) − 𝑄(0.625) + 𝑄(0.375) − (0.125)

𝑄(0.75) − 𝑄(0.25)
. 

where, 𝑄(. ) is the quantile function defined in (2.7). Table 3.0 gives the 𝑞1, 𝑞2, 𝑞3, ℬ𝑠𝑘, and ℳ𝑘 

of the 𝐻𝐸𝐹 model for fixed values of 𝛼 = 0.5, 𝜌 = 1.2 and various values of ϛ, and 𝜆. 

 

Table 3.0: Values of 𝑞1, 𝑞2, 𝑞3, ℬ𝑠𝑘, and  ℳ𝑘 of the 𝐻𝐸𝐹 model 

ϛ, 𝜆 𝑞1 𝑞2 𝑞3 ℬ𝑠𝑘 ℳ𝑘 

0.1, 0.1 1.0592 3.8174 21.1937 0.7260 0.0240 

0.2,0.2 1.3166 4.4899 24.2670 0.7235 4.4714 

0.3,0.3 1.4906 4.9405 26.3122 0.7249 4.4587 

0.4,0.4 1.5618 5.1243 27.1432 0.7215 4.4540 

0.5,0.5 1.5271 5.0348 26.7385 0.7217 4.4563 

0.6,0.6 1.4010 4.7088 25.262 0.7227 4.4650 

0.7,0.7 1.2145 4.2237 23.0543 0.7244 4.4797 

0.8,0.8 1.0097 3.6870 20.5946 0.7266 4.4990 

0.9,0.9 0.8349 3.2249 18.4690 0.7289 4.5165 
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3.4 Moments of 𝑯𝑬𝑭 model  

Moments are very properties for any statistical investigation, most especially in application areas. 

Suppose 𝑋~𝐻𝐸𝐹(𝛼, ϛ, 𝜌, 𝜆),then many important features such as dispersion, skewness, measures 

of central tendency, and kurtosis of the 𝐻𝐸𝐹 model can be derived by using ordinary moments. 

The 𝑟𝑡ℎ raw moment of the 𝐻𝐸𝐹 model is obtained as 

𝐸(𝑋)𝑟 = 𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

−∞

= 𝜌 ∑ 𝛿𝑖,𝑗

∞

𝑖=0

∫ 𝑥𝑟−(𝜌+1)𝑒−𝛼(1+𝑗)𝑥−𝜌
𝑑𝑥,

∞

−∞

        (3.9) 

Letting 𝑦 = 𝛼(1 + 𝑗)𝑥−𝜌,  𝑥 = [𝛼(1 + 𝑗)]
1

𝜌⁄ 𝑦−1
𝜌⁄ ,  𝑑𝑥 = 𝜌−1[𝛼(1 + 𝑗)]

1
𝜌⁄ 𝑦−1

𝜌⁄ −1𝑑𝑦, putting 

in (11), we have 

𝜇𝑟
′ = ∑ 𝛿𝑖,𝑗

∞

𝑖=0

[𝛼(1 + 𝑗)]
(𝑟−𝜌)

𝜌⁄ ∫ 𝑦
−𝑟
𝜌 𝑒−𝑦𝑑𝑥,

∞

0

                                                 (3.10) 

Finally, we have an expression for the 𝑟𝑡ℎ raw moment of 𝐻𝐸𝐹 distribution as  

𝜇𝑟
′ = ∑ 𝛿𝑖,𝑗

∞

𝑖=0

[𝛼(1 + 𝑗)]
(𝑟−𝜌)

𝜌⁄ 𝛤(1 − 𝑟
𝜌⁄ );        𝜌 > 𝑟.                                                       (3.11) 

Where 𝛤(1 − 𝑟
𝜌⁄ ) is a gamma function. In the like manner, incomplete moments play a vital 

role in measuring inequality. Hence, we can determine the lower incomplete moments, say, 𝛾𝑠(𝑡) 

is given by 

𝛾𝑠(𝑡)  = ∫ 𝑥𝑠𝑓(𝑥)𝑑𝑥

𝑡

0

= 𝜌 ∑ 𝛿𝑖,𝑗

∞

𝑖=0

∫ 𝑥𝑠−(𝜌+1)𝑒−𝛼(1+𝑗)𝑥−𝜌
𝑑𝑥

𝑡

−∞

        (3.12) 

Letting 𝑦 = 𝛼(1 + 𝑗)𝑥−𝜌,  𝑥 = [𝛼(1 + 𝑗)]
1

𝜌⁄ 𝑦−1
𝜌⁄ ,  𝑑𝑥 = −𝜌−1[𝛼(1 + 𝑗)]

1
𝜌⁄ 𝑦−1

𝜌⁄ −1𝑑𝑦, 

putting in (3.12), we have 

𝛾𝑠(𝑡) = ∑ 𝛿𝑖,𝑗

∞

𝑖=0

[𝛼(1 + 𝑗)]
(𝑟−𝜌)

𝜌⁄ ∫ 𝑦
−𝑠
𝜌 𝑒−𝑦𝑑𝑥,

𝑡

−∞

                                                 (3.13) 

Finally, we have an expression for the 𝑟𝑡ℎ incomplete moment of 𝐻𝐸𝐹 distribution as  
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𝛾𝑠(𝑡) = ∑ 𝛿𝑖,𝑗

∞

𝑖=0

[𝛼(1 + 𝑗)]
(𝑠−𝜌)

𝜌⁄ 𝛤(1 − 𝑠
𝜌⁄ , 𝛼(1 + 𝑗)𝑡−𝜌);        𝜌 > 𝑠.                          (3.14) 

An expression for the first incomplete moment of 𝐻𝐸𝐹 distribution is obtained by taken 𝑠 = 1 in 

(3.14) and given as  

𝛾1(𝑡) = ∑ 𝛿𝑖,𝑗

∞

𝑖=0

[𝛼(1 + 𝑗)]
(1−𝜌)

𝜌⁄ 𝛤(1 − 1
𝜌⁄ , 𝛼(1 + 𝑗)𝑡−𝜌).                                  (3.15) 

Where 𝛤(1 − 1
𝜌⁄ , 𝛼(1 + 𝑗)𝑡−𝜌) is an incomplete gamma function. Consequently, an expression 

for the variance, skewness and the kurtosis can respectively, be obtained as follows 𝜎2 = 𝜇2
′ −

[𝜇1
′ ]2, 𝓼𝒌 = 𝜇3

2(√𝜇2)−3 and 𝑘𝑢 = 𝜇4(𝜇2)−2 respectively. Where 𝜇𝑟 = 𝐸[(𝑥 − 𝜇1
′ )𝑟], 𝜇3 =

−3𝜇2
′ 𝜇1

′ + 𝜇3
′ + 2(𝜇1

′ )3 and 𝜇4 = 6(𝜇1
′ )2𝜇2

′ − 3(𝜇1
′ )4 − 4𝜇3

′ 𝜇1
′ + 𝜇4

′  

 Tables 3.1, 3.2 gives the values for the first six moments, variance (𝜎2), skewness, and kurtosis 

of 𝐻𝐸𝐹 model for fixed values of 𝛼 and 𝜌 and varying the values of ϛ and 𝜆. 

Table 3.1. First six moments, 𝜎2, 𝓼𝒌, and 𝑘𝑢 of the 𝐻𝐸𝐹 model 

𝛼 = 5.5, 𝜌 = 10.5 

Moments 𝜆 = 1.2, 

ϛ = 0.1 

𝜆 = 1.4, 

ϛ = 0.3 

𝜆 = 1.8, 

ϛ = 0.5 

𝜆 = 2.5, 

ϛ = 0.8 

𝜆 = 5.5, 

ϛ = 0.8 

𝜇1
′  1.1109 1.1741 1.2108 1.2411 1.2459 

𝜇2
′  1.2454 1.3977 1.490 1.5673 1.5799 

𝜇3
′  1.4120 1.6925 1.8699 2.0204 2.0455 

𝜇4
′  1.6242 2.0935 2.4042 2.6706 2.7163 

𝜇5
′  1.9054 2.6625 3.1881 3.6440 3.7241 

𝜇6
′  2.298 3.5173 4.4065 5.1862 5.3263 

𝜎 0.0113 0.0192 0.0240 0.0270 0.0276 

𝓼𝒌 2.8102 2.4078 2.0968 1.8687 1.7952 

𝑘𝑢 19.7087 12.0421 11.2802 10.4996 10.8794 
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Table 3.2. Moments, 𝜎2, 𝓼𝒌, and 𝑘𝑢 of the 𝐻𝐸𝐹 model 

𝛼 = 2.1, 𝜌 = 7.5 

𝑚𝑜𝑚𝑒𝑛𝑡𝑠 𝜆 = 0.2, 

ϛ = 0.1 

𝜆 = 0.4, 

ϛ = 0.3 

𝜆 = 0.8, 

ϛ = 0.5 

𝜆 = 1.5, 

ϛ = 0.8 

𝜆 = 2.5, 

ϛ = 0.8 

𝜇1
′  0.9759 1.0621 1.1306 1.1903 1.1957 

𝜇2
′  0.9564 1.1446 1.3144 1.4680 1.4828 

𝜇3
′  0.9415 1.2555 1.5855 1.8967 1.9281 

𝜇4
′  0.9311 1.4101 2.0165 2.6153 2.6788 

𝜇5
′  0.9254 1.6408 2.7942 3.9919 4.1248 

𝜇6
′  0.9245 2.0454 4.5971 7.3938 7.7160 

𝜎2 0.0040 0.0165 0.0361 0.0512 0.0531 

𝓼𝒌 1.1954 2.1987 2.5775 2.3735 2.2988 

𝑘𝑢 −5.2608 20.9734 19.3344 16.0091 15.8564 

 

 

3.5 Mean deviation 

The amount of variability observed in a distribution can be measured using the deviations about 

the mean and about the median. The mean deviation about the mean and the mean deviation about 

the median can be estimated respectively, USING  

𝛥1(𝑥) = 2 [𝜇𝐹(𝜇) − ∫ 𝑥𝑓(𝑥)𝑑𝑥

𝜇

0

]                                                      (3.16) 

and 

𝛥2(𝑥) = 𝐸(𝑥) + 2𝑀𝐹(𝑀) − 𝑀 − 2 ∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑀

0

                                          (3.17) 

Where 𝜇 is the mean of 𝐻𝐸𝐹 obtained from (3.11), taking 𝑟 = 1, 𝑀 is the median (𝑞2). Hence, 

we obtain 
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𝛥1(𝑥) = 2 [𝜇𝐹(𝜇) − ∑ 𝛿𝑖,𝑗

∞

𝑖=0

[𝛼(1 + 𝑗)]
(1−𝜌)

𝜌⁄ 𝛤(1 − 1
𝜌⁄ , 𝛼(1 + 𝑗)𝜇−𝜌)], 

and  

𝛥2(𝑥) = 𝐸(𝑥) + 2𝑀𝐹(𝑀) − 𝑀 − 2 ∑ 𝛿𝑖,𝑗

∞

𝑖=0

[𝛼(1 + 𝑗)]
(1−𝜌)

𝜌⁄ 𝛤(1 − 1
𝜌⁄ , 𝛼(1 + 𝑗)𝑀−𝜌) 

3.6 Lorenz and Bonferroni curves 

Lorenz index (𝑙𝑝) was introduced by American economist Lorenz (1905). He developed a 

graphical diagram that illustrates wealth distribution called Lorenz curve. The Lorenz index is 

defined as 

𝒍𝒑 =
𝟏

𝜇
∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑥

0

.                                                                        (3.18) 

The Lorenz plot is described as a plot of Lorenz index, 𝒍𝒑, versus 𝑥. Given below is an 

expression for the Lorenz index for 𝐻𝐸𝐹 distribution 

𝒍𝒑 =
∑ 𝛿𝑖,𝑗

∞
𝑖=0 [𝛼(1 + 𝑗)]

(1−𝜌)
𝜌⁄ 𝛤(1 − 1

𝜌⁄ , 𝛼(1 + 𝑗)𝑀−𝜌)

∑ 𝛿𝑖,𝑗
∞
𝑖=0 [𝛼(1 + 𝑗)]

(1−𝜌)
𝜌⁄ 𝛤(1 − 1

𝜌⁄ ).
                       (3.19) 

Bonferroni curve was developed by Bonferroni (1930) as a measure of income inequality and 

was founded on partial means, required when the source of income inequality is the occurrence 

of units whose income is much lower when compared to others. The Bonferroni index, 𝑩𝒑, can 

be obtained using 

𝐵𝑝 =
𝑙𝑝

𝐹(𝑥)
.                                                                                          (3.20) 

This is a plot of Bonferroni index versus x, and this index for 𝐻𝐸𝐹 model is given by  

𝐵𝑝 =
∑ 𝛿𝑖,𝑗

∞
𝑖=0 [𝛼(1 + 𝑗)]

(1−𝜌)
𝜌⁄ 𝛤(1 − 1

𝜌⁄ , 𝛼(1 + 𝑗)𝑀−𝜌)

1 − ϛ
1

𝜆⁄ (1 − 𝑒−𝛼𝑥−𝜌)(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌]𝜆)−1
𝜆⁄ (∑ 𝛿𝑖,𝑗

∞
𝑖=0 [𝛼(1 + 𝑗)]

(1−𝜌)
𝜌⁄ 𝛤(1 − 1

𝜌⁄ )) 

. 
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3.7 Mean residual life and mean inactivity time 

The mean Residual life (𝑀𝑅𝐿) can be used to describe the additional expected life span of a unit, 

which happens to be alive at age 𝑥. It can be applied in many areas of life which includes; product 

quality control, biomedical sciences, life insurance, demography among many others. The MRL is 

defined as 

𝑀𝑅𝐿(𝑡) = 𝐸(𝑋 − 𝑡 𝑥 > 𝑡⁄ ) =
1 − 𝛾1(𝑡)

𝑆(𝑡)
− 𝑡,          𝑡 > 0,                                (3.21) 

Consequently, we have 

𝑀𝑅𝐿(𝑡) =
1 − ∑ 𝛿𝑖,𝑗

∞
𝑖=0 [𝛼(1 + 𝑗)]

(1−𝜌)
𝜌⁄ 𝛤(1 − 1

𝜌⁄ , 𝛼(1 + 𝑗)𝑡−𝜌)

ϛ
1

𝜆⁄ (1 − 𝑒−𝛼𝑡−𝜌)(1 − ϛ̅[1 − 𝑒−𝛼𝑡−𝜌]𝜆)−1
𝜆⁄

− 𝑡                      (3.22) 

The mean inactivity time (𝑀𝐼𝑇) is used to describe the waiting time elapsed since the failure of an 

item occurred on the condition that this failure occurred between an interval (0, 𝑡). Mathematically, 

it is represented as 

𝑀𝐼𝑇(𝑥) = 𝑡 −
𝛾1(𝑡)

𝐹(𝑡)
,                                                                                                     (3.23) 

= 𝑡 −
∑ 𝛿𝑖,𝑗

∞
𝑖=0 [𝛼(1 + 𝑗)]

(1−𝜌)
𝜌⁄ 𝛤(1 − 1

𝜌⁄ , 𝛼(1 + 𝑗)𝑡−𝜌)

1 − ϛ
1

𝜆⁄ (1 − 𝑒−𝛼𝑡−𝜌)(1 − ϛ̅[1 − 𝑒−𝛼𝑡−𝜌]𝜆)−1
𝜆⁄

.                           

3.8 Moment generating function of 𝑯𝑬𝑭 model 

The moment generating function (MGF) of a random variable X provides an alternative method 

that can be used in describing the characteristics of a distribution. Mathematically, the MGF is 

defined as 

ℳ𝑋(𝑡) = 𝐸(𝑒𝑡𝑋) = ∑
𝑡𝑟

𝑟!
𝐸(𝑋𝑟).                                                   

∞

𝑟=0

                           (3.24) 

Putting (3.11) in (3.24) for 𝐸(𝑋𝑟) for 𝐻𝐸𝐹 model, we obtain 

ℳ𝑋(𝑡) = ∑
𝑡𝑟

𝑟!
𝛿𝑖,𝑗

∞

𝑖=𝑟=0

[𝛼(1 + 𝑗)]
(𝑟−𝜌)

𝜌⁄ 𝛤(1 − 𝑟
𝜌⁄ );        𝜌 > 𝑟.                               (3.25) 
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By setting 𝑡 = 𝑖𝑡 in (3.25), we derived an expression for the characteristics function of the 𝐻𝐸𝐹 

model. 

3.9 Gini Index 

One of the well-known inequality indexes is the Gini index developed by Gini (1914), is 

defined as 

𝐺 =
1

𝐸(𝑥)
∫ [𝐹(𝑥) − 𝐹(𝑥)2]𝑑𝑥

∞

0

,                                                                            (3.26) 

Inserting (2.2) in (3.26), we have 

𝐺 =
1

𝐸(𝑥)
{𝑥 − 𝑉𝑖𝑗 ∫ 𝑒−𝑗𝛼𝑥−𝜌

𝑑𝑥

∞

0

− 𝑉𝑘𝑙𝑝 ∫ 𝑒−𝑝𝛼𝑥−𝜌
𝑑𝑥

∞

0

},                            (3.27) 

Consequently, taking 𝑧 = 𝑗𝛼𝑥−𝜌and further 𝑢 = 𝑝𝛼𝑥−𝜌, we have 

𝐺 =
1

𝐸(𝑥)
{𝑥 − 𝛼

1
𝜌⁄ [𝑀𝑖𝑗

𝑗
1

𝜌⁄

𝜌
∫ 𝑧−1

𝜌⁄ −1𝑒𝑧𝑢𝑑𝑧

∞

0

− 𝑀𝑘𝑙

𝑝
1

𝜌⁄

𝜌
∫ 𝑢−1

𝜌⁄ −1𝑒−𝑢

∞

0

]},               (3.28) 

Finally, we obtain an expression for the coefficient of Gini index as 

𝐺 =
[𝑥 − 𝛼

1
𝜌⁄ 𝛤(− 1

𝜌⁄ ) {𝑀𝑖𝑗𝑗
1

𝜌⁄ − 𝑀𝑘𝑙𝑝𝑝
1

𝜌⁄ }]

𝜌 ∑ 𝛿𝑖,𝑗
∞
𝑖=0 [𝛼(1 + 𝑗)]

(𝑟−𝜌)
𝜌⁄ 𝛤(1 − 𝑟

𝜌⁄ )
                                                 (3.29) 

where  

𝑉𝑖𝑗 =
ϛ

1
𝛼⁄

𝜌
∑ (

1
𝜆⁄ + 𝑖 − 1

𝑖
) (

𝜆𝑖 + 1

𝑗
) (−1)𝑗

∞

𝑖=𝑗=0

(ϛ̅)𝑖,  

and 

𝑉𝑘𝑙𝑝 = ∑ (
2

𝑘
) (

𝑘
𝜆⁄ + 𝑙 − 1

𝑙
) (

𝜆𝑙 + 1

𝑝
) (−1)𝑘+𝑝

∞

𝑘=𝑙=𝑝=0

ϛ
𝑘

𝜆⁄ (ϛ̅)𝑙 
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4.0 Entropies 

The Rényi entropy of a random variable X with density function 𝑓(𝑥) can be described as a 

measure of variation off uncertainty or randomness and its defined (for 𝜁 > 0 and ζ≠ 1) as; 

𝐼𝑅(𝜁) =
1

1 − 𝜁
𝑙𝑜𝑔[𝑀(𝜁)],                                                              (4.1) 

where  

𝑀(𝜁) = ∫ 𝑓𝜁(𝑥)𝑑𝑥

∞

−∞

                                                                                      (4.2) 

Inserting (2.1) in (4.2), we have 

𝑀(𝜁) = ∫ [ϛ
1

𝜆⁄ 𝛼𝜌𝑥−(𝜌+1)𝑒−𝛼𝑥−𝜌
(1 − ϛ̅[1 − 𝑒−𝛼𝑥−𝜌

]
𝜆

)
−(1+1

𝜆⁄ )

]

𝜁

𝑑𝑥

∞

−∞

                (4.3) 

Upon simplification, we obtain 

𝑀(𝜁) = 𝑛𝑖,𝑗𝛤 (
𝜁(𝜌 + 1) − 1

𝜌
),                                                                   (4.4) 

where 

𝑛𝑖,𝑗 = ϛ
𝜁

𝜆
⁄ 𝛼𝜁𝜌𝜁−1 ∑ (

𝜁(1
𝜆⁄ + 1) + 𝑖 − 1

𝑖
) (

𝑖𝜆

𝑗
) (−1)𝑖ϛ̅𝑖 (

1

𝛼(𝑖 + 1)
)

∞

𝑖,𝑗

 

Putting (4.4) in (4.1), we generate an expression for the Rényi entropy of 𝐻𝐸𝐹 model as 

𝐼𝑅(𝜁) =
1

1 − 𝜁
𝑙𝑜𝑔 [𝑛𝑖,𝑗𝛤 (

𝜁(𝜌 + 1) − 1

𝜌
)].                                                      (4.5) 

The 𝛽 −entropy, ℋ𝛽 , is defined by 

ℋ𝛽 =
1

𝛽 − 1
𝑙𝑜𝑔{1 − (1 − 𝛽)𝐼𝑅(𝜁)}.                                                    

Using, 𝐼𝑅(𝜁), we obtain an expression for the 𝛽 −entropy of 𝐻𝐸𝐹 model as 
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ℋ𝛽 =
1

𝛽 − 1
𝑙𝑜𝑔 {1 − (1 − 𝛽)

1

1 − 𝜁
𝑙𝑜𝑔 [𝑛𝑖,𝑗𝛤 (

𝜁(𝜌 + 1) − 1

𝜌
)]}.                                          (4.6) 

4.1 Probability Weighted Moment (PWM) 

The PWM is a better alternative to the existing moment for estimation of parameter, most 

especially in a situation when maximum likelihood estimation procedure is difficult to apply or 

completely unavailable. It is defined as  

Л𝑟,𝑣 = 𝐸[𝑋𝑟𝐹(𝑋)𝑟] = ∫ 𝑥𝑟𝑓(𝑥)𝐹(𝑥)𝑣𝑑(𝑥).

∞

−∞

                                                             (4.7) 

If X ~ 𝐻𝐸𝐹 (Л), then  Л𝑟,𝑣 is given by 

 

                                                   Л𝑟,𝑣 = 𝛼 ∑ ℋ∗𝛤 (
𝑟 + 𝜌 + 1

𝜌
+ 1) .

∞

𝑖=𝑗=𝑘=0

                                         (4.8) 

where, ℋ∗ = (
1

𝜆⁄ +𝑖
𝜆⁄ +𝑗−1

𝑗
) (𝑣

𝑖
)(𝜆𝑗+𝑖

𝑘
)ϛ

𝑖+1

𝜆 ϛ̅𝑗 (
1

𝛼(1+𝑘)
)

𝑟+1

𝜌
(−1)𝑘+𝑖 

4.2 Stress strength Reliability 

Here, we derived an expression for the stress-strength parameter of 𝐻𝐸𝐹 model. Suppose 𝑋1 

represents the strength of a structure experiencing stress 𝑋2, and if 𝑋1 follows 𝐻𝐸𝐹 (𝛼, 𝜌, ϛ1, 𝜆1) 

and 𝑋2 follows 𝐻𝐸𝐹 (𝛼, 𝜌, ϛ2, 𝜆2)given that 𝑋1and 𝑋2 are independent random variables.  Then the 

mathematical expression for the Stress-strength Reliability (𝔎) of 𝐻𝐸𝐹 model is obtained as 

follows: 

𝑅 = 𝑃(𝑋2 < 𝑋1) = ∫ 𝑓1(𝑥; 𝛼, 𝜌, ϛ1, 𝜆1)𝐹2(𝑥; 𝛼, 𝜌, ϛ2, 𝜆2)𝑑𝑥

∞

0

                                       (4.9) 

If X ~ 𝐻𝐸𝐹 (Л), then  𝑅 is given by 

 

𝑅 = 𝐹1(𝑥; 𝛼, 𝜌, ϛ2, 𝜆2) − 𝛼ϛ1

1
𝜆1

⁄
ϛ2

1
2⁄

(𝐶1 − 𝐶2)                                                       (4.10) 

where 
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𝐶1 = ∑ (

1
𝜆1

+ 𝑖

𝑖
) (

𝑖𝜆1

𝑗
) (

1
𝜆2

+ 𝑘 − 1

𝑘
) (

𝑘𝜆2

𝑙
) ϛ̅1

𝑖 ϛ̅2
𝑘(−1)𝑗+𝑙 (

1

𝛼(1 + 𝑗 + 𝑙)
)

∞

𝑖=𝑗=𝑘=𝑙

 

And 

𝐶2 = ∑ (

1
𝜆2

+ 𝑚

𝑚
) (

𝑚𝜆2

𝑛
) (

1
𝜆2

+ 𝑝 − 1

𝑝
) (

𝑝𝜆2

𝑞
) ϛ̅1

𝑚ϛ̅2
𝑝(−1)𝑛+𝑝 (

1

𝛼(1 + 𝑗 + 𝑙)
)

∞

𝑚=𝑛=𝑝=𝑞

 

4.3 Order statistics 

Given 𝑥1, 𝑥2, 𝑥3 . . . , 𝑥𝑛 as a random sample having CDF 𝐹(𝑥). Let 𝑋1:1, 𝑋2:𝑛, 𝑋3:𝑛, . . . , 𝑥𝑛:𝑛 is the 

ordered sample of size 𝑛, then the density of 𝑗𝑡ℎ order statistics is given as 

𝑔𝑗:𝑛(𝑥) = 𝑊∗ ∑(−1)𝑖

𝑛−𝑟

𝑖=0

(
𝑛 − 𝑟

𝑖
) 𝑓(𝑥)𝐹(𝑥)𝑖+𝑗−1 ,                                                       (4.11) 

Where 𝑊∗ =
𝑛!

(𝑛−𝑟)!𝑟!
. 

Putting (2.1) and (2.2) in (4.11), followed by simply algebraic manipulation gives 

𝑔𝑗:𝑛(𝑥) = 2𝛼𝜌ϛ
1

𝜆⁄ 𝑊∗ ∑ (−1)𝑖+𝑘+𝑚

𝑛−𝑟

𝑖=𝑘=𝑙=𝑚=0

(
𝑛 − 𝑟

𝑖
) (

𝑖 + 𝑗 − 1

𝑘
) (

𝑘
𝜆

+
1
𝜆

+ 𝑙

𝑙
) (

𝜆𝑙 + 𝑘

𝑚
) ϛ

𝑘
𝜆⁄  

                              × ϛ̅𝑙𝑥−(𝜌+1)𝑒−(𝑚+1)𝛼𝑥−𝜌
. 

 

5.0 Maximum Likelihood Estimation (MLE) 

Given that  𝑥1, 𝑥2, … , 𝑥𝑛 are the observed sample values from the 𝐻𝐸𝐹 distribution. The log-

likelihood (𝑙) function is defined as follows: 

𝑙(𝜂, 𝜑, 𝜌) = 𝑛
𝜆⁄ 𝑙𝑜𝑔(ϛ) + 𝑛𝑙𝑜𝑔(𝛼) + 𝑛𝑙𝑜𝑔(𝜌) − (𝜌 + 1) ∑ 𝑙𝑜𝑔(𝑥𝑖)

∞

𝑖=1

− 𝛼 ∑ 𝑥−𝜌

∞

𝑖=1

 

× (1 + 1
𝜆⁄ ) ∑ 𝑙𝑜𝑔 (1 − (1 − ϛ)[1 − 𝑒−𝛼𝑥−𝜌

]
𝜆

)

𝑛

𝑖=1

.                                              (5.1) 

Maximizing 𝑙(𝛼, ϛ, 𝜌, 𝜆) with respect to 𝛼, ϛ, 𝜌 and 𝜆, we derive the following system of nonlinear 

equations: 



Harris Extended Fréchet distribution: Properties, inference, and Applications to failure and waiting time 
data. 

163 

 

𝑛

𝛼
− ∑ 𝑥𝑖

−𝜌
− (

𝜆(1 + ϛ)

ϛ
)

∞

𝑖=0

∑
𝑥𝑖

−𝜌
𝑒−𝛼𝑥𝑖

−𝜌
𝑦𝑖

𝜆

[1 − 𝑒−𝛼𝑥𝑖
−𝜌](1 − (1 − ϛ)𝑦𝑖

𝜆)
= 0

∞

𝑖=0

.                                           (5.2) 

−
𝑛

𝜆2
𝑙𝑜𝑔(ϛ) +

1

𝜆2
∑ 𝑙𝑜𝑔(1 − (1 − ϛ)𝑦𝑖

𝜆)

𝑛

𝑖=1

− (1 + 1
𝜆⁄ ) ∑

𝑦𝑖𝑙𝑜𝑔𝑦𝑖

[𝑙𝑜𝑔(1 − (1 − ϛ)𝑦𝑖
𝜆)]

𝑛

𝑖=1

= 0        (5.3) 

𝑛

𝜌
− ∑ 𝑙𝑜𝑔(𝑥𝑖)

∞

𝑖=1

+ 𝛼 ∑ 𝑥𝑖
−𝜌

∞

𝑖=1

log(𝑥𝑖) − 𝛼(1 + 𝜆) ∑
(1 − ϛ)𝑥𝑖

−𝜌
𝑙𝑜𝑔(𝑥𝑖)𝑒−𝛼𝑥𝑖

−𝜌
𝑦𝑖

[𝑙𝑜𝑔(1 − (1 − ϛ)𝑦𝑖
𝜆)]

𝑛

𝑖=1

= 0     (5.4) 

and 

𝑛

𝜆ϛ
− (1 + 1

𝜆⁄ ) ∑
𝑦𝑖

𝜆

[𝑙𝑜𝑔(1 − (1 − ϛ)𝑦𝑖
𝜆)]

𝑛

𝑖=1

= 0                                                                              (5.5) 

Where 𝑦𝑖 = [1 − 𝑒−𝛼𝑥𝑖
−𝜌

]. Solving equations (5.2) - (5.5) simultaneously we produce the MLEs 

of 𝛼̂, 𝜌̂, 𝜆̂, and ϛ̂. To obtain an approximate confidence interval (CIs) of the parameters of HEF 

model, it is necessary to obtain an estimate of the elements of the variance covariance matrix D of 

the MLEs. The variance-covariance matrix D is calculated by the observed information matrix 𝐷̂, 

and  

𝐷̂ = − [

𝑆11 𝑆12 𝑆13 𝑆14

𝑆21 𝑆22 𝑆23 𝑆24

𝑆31 𝑆32 𝑆33 𝑆34

𝑆41 𝑆42 𝑆43 𝑆44

].                                                               (5.6) 

Where 𝑆𝑖,𝑗, 𝑖, 𝑗 = 1,2,3,4 represent the second partial derivatives of (5.1) with respect to 𝛼, 𝜌, 𝜆, 

and 𝛼. This value represents the Fisher’s information matrix analogous to 𝛼, 𝜌, 𝜆, and 𝛼, 

respectively. the elements at the diagonal of the matrix given in (5.6) is the values of the variance 

of the MLEs of to 𝛼, 𝜌, 𝜆, and ϛ, respectively. an estimated 100(1 − 𝑓)% confidence interval for 

𝜁𝑐 as  

 𝜁𝑐̂ ± 𝑍𝑑
2

√𝑣𝑎𝑟̂( 𝜁𝑐̂), 
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Where  𝜁𝑐̂ = (𝛼̂, 𝜌̂, 𝜆̂, ϛ̂), 𝑍𝑑

2

 is the upper (
𝑑

2
) 100𝑡ℎ percentile of normal distribution. The 

likelihood ratio (LR) test can be used compare the performance of 𝐻𝐸𝐹 model with its sub-models 

for any given lifetime data set. For example, say, 𝛼 = 1, the LR statistic is 𝑃 =

2 [𝑙𝑛 (𝐿(𝛼̂, 𝜌̂, 𝜆̂, ϛ̂)) − 𝑙𝑛 (𝐿 ((1̂, 𝜌̃, 𝜆̃, ϛ̃)))], where 𝛼̂, 𝜌̂, 𝜆̂, and ϛ̂ are the unrestricted estimates and 

𝜌̃, 𝜆̃, and ϛ̃ are the restricted estimates.  

The LR test do not accept the null hypothesis if 𝑃 > 𝜒𝜀
2, where 𝜒𝜀

2 represent the upper 100% point 

of the 𝜒2 distribution with 1 degree of freedom. 

 

6.  Applications of the 𝑯𝑬𝑭 distribution 

A comparison of the newly developed 𝐻𝐸𝐹 distribution was carried out with the Harris Inverse 

Exponential (𝐻𝐼𝐸), Harris Inverted Weibull (𝐻𝐼𝑊), Marshall Olkin Inverse Exponential (𝑀𝑂𝐼𝐸), 

Inverted Weibull (𝐼𝑊), Inverse exponential (𝐼𝐸), and the Frechet (𝐹) distributions with the help of 

two lifetime data sets. We employ the use of five goodness of fit criterion which are: Akaike 

information criterion (𝐴𝐼𝐶𝑟), Consistent Akaike Information Criterion (𝐶𝐴𝐼𝐶𝑟), Kolmogorov 

Smirnoff (𝐾), Cramer-Von Mises (𝐶𝑟𝑀), and the Probability value (𝑃𝑣). The model with the 

smallest value of 𝐴𝐼𝐶𝑟, 𝐶𝐴𝐼𝐶𝑟, 𝐾, 𝐶𝑟𝑀, and the highest 𝑃𝑣 is considered the best model in the 

class of models considered. 

Data Set 1. The first data set is taken from Lawless (2003). The data are the number of million 

revolutions before failure for each of the 23 ball bearings in the life test. The kernel density and 

the boxplots for the data shows that the positively skewed. The kernel density and the boxplots for 

the failure time data is given in Figure 6.0 which shows that the data is positively skewed. Table 

6.1 gives the exploratory data analysis of the failure time data which indicates that the data over-

dispersed, leptokurtic. Table 6.2 presents the MLEs estimate of the model parameters and the 

measures of goodness of fit. 

 

Table 6.1 Exploratory data analysis for failure time data 
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𝑛 𝑞1 𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑎𝑛 𝑞3 𝑅𝑎𝑛𝑔𝑒 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

23 47.20 67.80 73.85 101.88 155.52 0.79 3.14 1452.81 

 

 

 

(a) Kernel density      (b) Boxplots 

Figure 6.0. Plots Kernel density and the Boxplots for failure time data  

 

Table 6.2. MLEs, standard error (in parenthesis), and measure of the goodness of fit for 

failure time data. 

 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝑜𝑓 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝑓𝑖𝑡 

𝑀𝑜𝑑𝑒𝑙 𝛼 𝜌 𝜆 ϛ −2𝑙 𝐴𝐼𝐶𝑟 𝐶𝐴𝐼𝐶𝑟 𝐾 𝐶𝑟𝑀 𝑃𝑣 

𝐻𝐹 20.71 

(10.31) 

1.15 

(0.23) 

2.62 

(1.67) 

23.91 

(17.75) 

239.15 247.25 249.47 0.206 0.045 0.286 

𝐻𝐼𝐸 35.58 − 

(−) 

9.05 21.64 240.61 246.62 247.88 0.297 0.067 0.034 

0 50 100 150 200

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

0
.0

1
0

kernel density of failure data

N = 23   Bandwidth = 18.32

D
e

n
s
it
y

5
0

1
0

0
1

5
0

Boxplot for failure time data



Ogunde Adebisi Ade 

166 

 

𝐻𝐼𝑊 − 

(−) 

1.12 

(0.36) 

0.74 

(0.32) 

29.12 

(11.66) 

263.16 269.37 270.63 0.398 0.038 0.001 

𝑀𝐼𝐸 22.71 − 

(−) 

− 

(−) 

2.19 251.41 255.42 256.02 0.255 0.041 0.100 

𝑀𝐼𝑊 − 

(−) 

0.91 

(0.11) 

− 

(−) 

26.39 

(10.30) 

264.81 268.82 269.42 0.395 0.038 0.002 

𝐹 21.21 

(7.53) 

0.83 

(0.09) 

− 

(−) 

− 

(−) 

 256.96 257.56 0.277 0.045 0.058 

𝐼𝑊 − 

(−) 

0.323 

(0.06) 

− 

(−) 

− 

(−) 

317.87 319.87 320.06 0.675 0.038 1.6𝑒

− 9 

𝐼𝐸 − 

(−) 

38.20 − 

(−) 

− 

(−) 

247.54 249.54 249.73 0.268 0.048 0.073 

 

The variance covariance matrix for the failure data is given by  

𝐷̂ = − [

3.0216e − 01  5.6369e − 02 −3.1886e − 05 3.5015e − 07
5.6369e − 02 1.8985e − 01 6.5723e − 04 −7.2181e − 0 

−3.1887e − 05 6.5723e − 04 3.2889e − 05 −3.6000e − 07
3.5016e − 07 −7.2181e − 06 −3.60e − 07 1.2205e − 09

] 

The second dataset consists of the waiting times between 65 consecutive eruptions of the Kiama 

Blowhole. The data consists of time between eruptions of a 1340 hours period starting from July 

12th of 1998 were recorded using a digital watch. For details on this data set, see Pinho (2012). 

figure 6.1 shows that the failure data is positively skewed. Table 6.3 gives the exploratory data 

analysis of the failure time data which indicates that the data over-dispersed, leptokurtic. Table 6.4 

presents the MLEs estimate of the model parameters and the measures of goodness of fit. 

 

Table 6.3 Exploratory data analysis for waiting time data 

𝑛 𝑞1 𝑚𝑒𝑑𝑖𝑎𝑛 𝑚𝑒𝑎𝑛 𝑞3 𝑅𝑎𝑛𝑔𝑒 𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 

64 14.75 28.0 39.83 60.0 162 1.54 5.77 1139.10 
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(a) Kernel density      (b) Boxplots 

Figure 6.1. Plots Kernel density and the Boxplots for waiting time data  

 

Table 6.4. MLEs, standard error (in parenthesis), and measure of the goodness of fit for 

waiting time data. 

 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑠 𝑜𝑓 𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 𝑜𝑓 𝑓𝑖𝑡 

Model 𝛼 𝜌 𝜆 Ϛ −2𝑙 𝐴𝐼𝐶𝑟 𝐶𝐴𝐼𝐶𝑟 𝐾 𝐶𝑟𝑀 𝑃𝑣 

𝐻𝐹 21.93 

(15.83) 

1.85 

(0.75) 

0.91 

(0.61) 

17.01 

(27.05) 

590.90 598.90 599.58 0.082 0.128 0.781 

𝐻𝐼𝐸 13.69 

(3.25) 

− 

(−) 

18.86 

(12.51) 

17.64 

(18.89) 

594.0 600.01 600.41 0.125 0.200 0.270 

𝐻𝐼𝑊 − 

(−) 

1.23 

(0.23) 

0.72 

(0.20) 

19.10 

(4.82) 

627.82 633.83 634.23 0.280 0.116 8.6𝑒

− 5 

𝑀𝐼𝐸 25.40 

(5.76) 

− 

(−) 

− 

(−) 

0.61 

(0.27) 

595.13 599.22 599.42 0.125 0.184 0.267 

𝑀𝐼𝑊 − 1.11 − 27.33 620.90 624.90 625.10 0.241 0.122 0.001 
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(−) (0.09) (−) (7.26) 

𝐹 24.49 

(6.89) 

1.09 

(0.10) 

− 

(−) 

− 

(−) 

594.98 598.98 599.18 0.129 0.162 0.238 

𝐼𝑊 − 

(−) 

0.40 

(0.04) 

− 

(−) 

− 

(−) 

752.29 754.29 754.35 0.632 0.116 2.2𝑒

− 16 

𝐼𝐸 20.41 

(2.55) 

− 

(−) 

− 

(−) 

− 

(−) 

598.35 600.35 600.42 0.162 0.157 0.069 

 

The variance covariance matrix for the time waiting data is given as 

𝐷̂ = − [

9.7337e − 07 −8.5025e − 07 −2.7647e − 11 6.7547e − 13
−8.5025e − 07 2.2269e − 02 1.5755e − 09 −3.8206e − 11
−2.7647e − 11 1.5755e − 09 4.4396e − 10 −1.0845e − 11
6.7547e − 13 −3.8206e − 11 −1.0845e − 11 2.894418e − 16

] 

 

 

Figure 6.2  Fitted densities for the failure time and the Waiting time data 

 

From Tables 6.2 and 6.4, it can be deduced that the 𝐻𝐸𝐹 possessed the smallest 

𝐴𝐼𝐶𝑟, 𝐶𝐴𝐼𝐶𝑟, 𝐶𝑟𝑀, 𝐾, and the largest 𝑃𝑣 for the two data sets. Therefore, 𝐻𝐸𝐹 can be considered 
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the best model that fit the two data sets in the class of model considered in this study and also 

supported by the fitted densities given in Figure 6.2. 

 

7. Concluding remarks 

In this study, we proposed and developed a new generalization of Frechet distribution named as 

Harris Extended Frechet (𝐻𝐸𝐹) distribution. Statistical properties i.e. quantiles, moments, 

incomplete moments, moment generating function, mean deviations, mean residual life and mean 

inactivity time, Probability weighted moments, stress-strength reliability, Lorenz and Bonferroni 

curves, Rényi and 𝛽-entropies, Gine index, and order statistics of the new model are derived. 

Maximum likelihood method is used to estimate the unknown parameters of the proposed model. 

Two lifetime data sets are used to demonstrate the flexibility and the competitiveness of proposed 

model and finally concluded that the new model may be better than other competing models 

considered in this study. 
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