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 Abstract: We propose and develop the four-parameter Harris Extended Fréchet 
distribution. It is obtained by inserting the two-parameter Fréchet distribution as the 
baseline in the Harris family and may be a useful alternative method to model income 
distribution and could be applied to other areas. We demonstrate that the new 
distribution can have decreasing, increasing and upside-down-bathtub hazard 
functions and that its probability density function is an infinite linear combination of 
Fréchet densities. Some standard mathematical properties of the proposed distribution 
are derived, such as the quantile function, ordinary and incomplete moments, 
incomplete moments, Lorenz and Bonferroni curves, Gini index, Renyi and β-
entropies, mean residual life and mean inactivity time, probability weighted moments, 
stress-strength reliability, and order statistics. We also obtain the maximum likelihood 
estimators of the model. The potentiality/flexibility of the new distribution is 
illustrated by means two applications to failure and waiting time data sets.  

 Keywords: Gine index; Bonferroni curve; probability weighted moments; strength-
stress reliability 

1. Introduction 

Statistical distributions are useful tool in describing and predicting real life data. Although many flexible 
distributions have been developed and studied widely. However, there are always techniques for developing a 
more robust and flexible distributions which are adaptable for fitting specific real-life data. This technique involves 
the addition of one or more additional shape parameters to an existing standard probability (say, a baseline model). 
This study focused on extending the Fréchet distribution introduced by [1], and has been widely applied in extreme 
value theory. It is an important distribution in extreme value theory and found applications in many fields of applied 
statistics and this includes: Seismography, life testing, insurance, earthquakes, flood, sea waves, rainfall, medicine, 
and wind speeds. Some extensions of the Fréchet distribution have been studied in literature to model various types 
of data and this include: the generalized Fréchet by [2,3], the beta Fréchet distribution by [4], Exponentiated 
Fréchet Distribution by [5]. The Gamma Extended Fréchet Distribution by [6], Exponentiated Generalized Fréchet 
Distribution by [7], Beta Exponential Fréchet Distribution studied by [8,9], proposed and studied the Beta 
generalized exponentiated Fréchet distribution. Fréchet Weibull distribution and Fréchet Weibull mixture 
distributions are, respectively, proposed and studied by Teamah et al. [10,11], Lehman Fréchet Poisson distribution 
by [12] and Type II Half logistic Fréchet distribution by [13]. In this article, we introduce and study an extension 
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of the Fréchet model called the Harris Extended Fréchet (HEF) distribution which is flexible and adaptable to 
modeling lifetime data of varying degree of skewness. 

Motivation of Study 

We are motivated to extend the Fréchet distribution to a more flexible generalized form called the Harris 
extended Fréchet distribution (HEF) distribution based on the following: 
(i) When standard probability distribution is extended by the addition of shape parameter(s), it performs better 

by providing a good fit when used to model extremely skewed data as compared to baseline [14]. 
(ii) The goodness of fit can be improved upon with the addition of shape parameter(s). 
(iii) To further analyse extensively, the tail properties of a distribution one can extend the underlying baseline 

distribution by the addition of a shape parameter. 
(iv) Complex statistical programmes are available such as R program, python, MATLAB, Mapple, etc. to handle 

the complexity of the analysis. 
The rest of the paper is organized as follows: In Section 2, we define the HEF distribution, give some plots for 

its probability density function(pdf), cumulative density function (cdf), survival function (rf) and hazard rate 
function (hrf). We derived the, quantile function, examine the asymptotic properties of HEF distribution, determine 
its nature of skewness and kurtosis, obtain an expression for the r th ordinary moment and incomplete moments, 
mean deviations, Lorenz and Bonferroni curves, mean residual and mean inactivity time, moment generating 
function, and Gini index in Section 3. The entropies (Rényi and β-entropies), probability weighted moments, 
stress-strength reliability and the order statistics are derived in Section 4. In Section 5, simulation study was carried 
out to evaluate the performance of the maximum likelihood estimates. The maximum likelihood estimates of the 
HEF distribution parameters are the Fisher information matrix is discussed. In Section 6, the usefulness and the 
flexibility of the HEF distribution is demonstrated by means of two real data sets. Finally, in Section 7 we make 
concluding remarks. 

2. Harris Extended Fréchet Distribution 

Based on the branching process developed by [15], a random variable X follows a Harris Extended Fréchet 
distribution if the Probability density function (pdf) is given by 

𝑓ሺ𝑥ሻ ൌ 𝜁ଵ/ఒ𝛼𝜌𝑥ିሺఘାଵሻ𝑒ିఈ௫
షഐ
൫1 െ 𝜍ሾ̅1 െ 𝑒ିఈ௫

షഐ
ሿఒ൯

ିሺଵାଵ/ഊሻ,  (1) 

And the corresponding cumulative density function (cdf) to (1) is given by 

𝐹ሺ𝑥ሻ ൌ 1 െ 𝜁ଵ/ఒሺ1 െ 𝑒ିఈ௫
షഐ
ሻ൫1 െ 𝜁ሾ̅1 െ 𝑒ିఈ௫

షഐ
ሿఒ൯

ିଵ/ఒ
. (2) 

where λ, 𝜁, and ρ are positive shape parameters and α is a positive scale parameter. Figure 1 represent the plot of 
pdf of HEF model with different values of the parameters. 

 Figure 1 indicates that the 𝐻𝐸𝐹 distribution has proper pdf and that the pdf of the HEF model is non-
monotonic. 

 

Figure 1. Plots of the cdf and the pdf of the HEF distribution. 
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An expression for the survival and the hazard functions are, respectively, given as 

𝒔ሺ𝒙ሻ ൌ 𝟏 െ 𝑭ሺ𝒙ሻ ൌ 𝜻𝟏/𝝀ሺ𝟏 െ 𝒆ି𝜶𝒙
ష𝝆
ሻ൫𝟏 െ 𝜻തሾ𝟏 െ 𝒆ି𝜶𝒙

ష𝝆
ሿ𝝀൯

ି𝟏/𝝀
,  (3) 

and 

𝒉ሺ𝒙ሻ ൌ
𝜶𝝆𝒙ିሺ𝝆ା𝟏ሻ𝒆ି𝜶𝒙

ష𝝆
൫𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒙

ష𝝆
ሿ𝝀൯

ሺ𝟏 െ 𝒆ି𝜶𝒙ష𝝆ሻ
. (4) 

 Figure 2 shows that the shape of the hazard function of HEF model can be increasing, decreasing, and 
inverted-bathtub failure rates. 

 

Figure 2. Plots of the hazard function 𝐻𝐸𝐹 distribution. 

 Figure 3 shows that as time increases the survival probability of the HEF distribution approaches zero. 

 

Figure 3. Plots of the survival function 𝐻𝐸𝐹 distribution. 

Similarly, the reversed hazard function of the HEF model is 
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ℏሺ𝒙ሻ ൌ
𝝇𝟏/𝝀𝜶𝝆𝒙ିሺ𝝆ା𝟏ሻ𝒆ି𝜶𝒙

ష𝝆
൫𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒙

ష𝝆
ሿ𝝀൯

ି൫𝟏ା𝟏/𝝀൯

𝟏 െ 𝜻𝟏/𝝀ሺ𝟏 െ 𝒆ି𝜶𝒙ష𝝆ሻሺ𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒙ష𝝆ሿ𝝀ሻି𝟏/𝝀
 (5) 

it should be noted that cumulative hazard function cannot be described as a probability function but take 
cognizance of the risk measurement. The higher the value of the risk, the more the failure that will be observed over 
time x. The cumulative hazard rate function can be represented mathematically as 

𝓗ሺ𝒙ሻ ൌ 𝓵𝒏ሺ𝟏ሻ െ 𝟏/𝝀𝓵𝒏ሺ𝝇ሻ ൅ 𝓵𝒏ሺ𝟏 െ 𝒆ି𝜶𝒙
ష𝝆
ሻ െ 𝟏/𝝀𝓵𝒏൫𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒙

ష𝝆
ሿ𝝀൯. (6) 

3. Statistical Properties of the HEF Model 

The HEF model can be re-written to a reduced a model using generalized binomial series. 

ሺ𝟏 െ 𝒉ሻ𝒛 ൌ෍  

ஶ

𝒌ୀ𝟎

ሺെ𝟏ሻ𝒌ሺ
𝒛
𝒌
ሻ𝒉𝒌, (7) 

where, |ℎ| < 1, 𝑘 > 0. Now using the binomial series given in (7), The pdf of HEF model can be written as a mixture 
model as 

𝒇ሺ𝒙ሻ ൌ 𝝆෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋𝒙ିሺ𝝆ା𝟏ሻ𝒆ି𝜶ሺ𝟏ା𝒋ሻ𝒙
ష𝝆

. (8) 

where, 

𝜹𝒊,𝒋 ൌ 𝜻𝟏/𝝀𝜶෍  

𝝀𝒊

𝒋ୀ𝟎

ሺ
𝟏/𝝀 ൅ 𝒊

𝒊
ሻሺ
𝝀𝒊
𝒋
ሻሺ𝝃തሻ𝒊ሺെ𝟏ሻ𝒋  

3.1. Quantile Function 

To investigate the theoretical aspects of the probability distribution, we can employ the use of the quantile 
function. Mathematically, the quantile function can be expressed in form of Q (𝑝) = F−1(𝑝). Correspondingly, 
the quantile function of HEF model is 

𝑸ሺ𝒑ሻ ൌ ൬െ
𝟏
𝜶
𝒍𝒐𝒈 ൤𝟏 െ

ሺ𝟏 െ 𝒑ሻ
𝝇ሺ𝟏 െ 𝜻ሻሺ𝟏 െ 𝒑ሻ𝝀

൨൰
ି𝟏/𝝆

,𝟎 ൏ 𝒑 ൏ 𝟏. (9) 

If we take 𝑝 = 0.25, 0.5, 0.75, then will derive an expression for the lower (q1), middle (q2), and the upper 
quartiles (q3), respectively, as 

𝒒𝟏 ൌ ൬െ
𝟏
𝜶
𝒍𝒐𝒈 ൤𝟏 െ

𝟎.𝟕𝟓
𝝇ሺ𝟏 െ 𝝇ሻሺ𝟎.𝟕𝟓ሻ𝝀

൨൰
ି𝟏/𝝆

, (10) 

𝒒𝟐 ൌ ൬െ
𝟏
𝜶
𝒍𝒐𝒈 ൤𝟏 െ

𝟎.𝟓
𝜻ሺ𝟏 െ 𝜻ሻ𝟎.𝟓𝝀

൨൰
ି𝟏/𝝆

, (11) 

and 

𝒒𝟑 ൌ ൬െ
𝟏
𝜶
𝒍𝒐𝒈 ൤𝟏 െ

𝟎.𝟐𝟓
𝜻ሺ𝟏 െ 𝜻ሻ𝟎.𝟐𝟓𝝀

൨൰
ି𝟏/𝝆

. (12) 

3.2. Asymptotic Behaviour of HEF Model 

To determine the asymptotic behaviour, we have to examine, lim
௫→଴

 𝑓ሺ𝑥ሻ ൌ lim
௫→ஶ

 𝑓ሺ𝑥ሻ. 
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𝐥𝐢𝐦
𝒙→𝟎

 
𝝇𝟏/𝝀𝜶𝝆𝒙ିሺ𝝆ା𝟏ሻ𝒆ି𝜶𝒙

ష𝝆

ሺ𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒙ష𝝆ሿ𝝀ሻ൫𝟏ା𝟏/𝝀൯
ൌ 𝐥𝐢𝐦

𝒙→ஶ
 

𝝇𝟏/𝝀𝜶𝝆𝒙ିሺ𝝆ା𝟏ሻ𝒆ି𝜶𝒙
ష𝝆

ሺ𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒙ష𝝆ሿ𝝀ሻ൫𝟏ା𝟏/𝝀൯
ൌ 𝟎. (13) 

The result indicates that both limits are existing, hence the HEF model has conformed with the unimodal 
distribution. However, since f(x) > 0 and ப௙ሺ௫ሻ

ப௫
ൌ 0 then (13) becomes 

െ
ሺ𝝆 ൅ 𝟏ሻ

𝒙
൅ 𝜶𝝆𝒙ିሺ𝝆ା𝟏ሻ െ ሺ𝟏 ൅ 𝟏/𝝀ሻ

𝜶𝝆𝒙ିሺ𝝆ା𝟏ሻ𝒆ି𝜶𝒙
ష𝝆
ൣ𝟏 െ 𝒆ି𝜶𝒙

ష𝝆
൧

ሺ𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒙ష𝝆ሿ𝝀ሻ
ൌ 𝟎 (14) 

Solution to (15) cannot be obtained analytically because it is non-linear equation. The solution can only be 
obtained using numerical process such as the Newton-Raphson iteration procedure. 

3.3. Skewness and Kurtosis 

The skewness and Kurtosis employed in statistical analysis to measure some desirable characteristics of a 
distribution. Bowley’s skewness was developed using quartile by [16], and is of the form 

𝓑𝒔𝒌 ൌ
𝑸ሺ𝟎.𝟕𝟓ሻ െ 𝟐𝑸ሺ𝟎.𝟓ሻ ൅ 𝑸ሺ𝟎.𝟐𝟓ሻ

𝑸ሺ𝟎.𝟕𝟓ሻ െ 𝑸ሺ𝟎.𝟐𝟓ሻ
.  

Ref. [17] developed the Moore kurtosis using octiles and it can be estimated as 

𝓜𝒌 ൌ
𝑸ሺ𝟎.𝟖𝟕𝟓ሻ െ 𝑸ሺ𝟎.𝟔𝟐𝟓ሻ ൅ 𝑸ሺ𝟎.𝟑𝟕𝟓ሻ െ ሺ𝟎.𝟏𝟐𝟓ሻ

𝑸ሺ𝟎.𝟕𝟓ሻ െ 𝑸ሺ𝟎.𝟐𝟓ሻ
.  

where, Q(.) is the quantile function defined in (9). Table 1 gives the q1, q2, q3, ℬ𝑠𝑘, and ℳ𝑘 of the HEF model for 
fixed values of α = 0.5, ρ = 1.2 and various values of 𝜍, and λ. 

Table 1. Values of q1, q2, q3, ℬ𝑠𝑘, and ℳ𝑘 of the HEF model. 

𝝇, λ q1 q2 q3 ℬ𝑠𝑘 ℳ𝑘 
0.1, 0.1 1.0592 3.8174 21.1937 0.7260 0.0240 
0.2, 0.2 1.3166 4.4899 24.2670 0.7235 4.4714 
0.3, 0.3 1.4906 4.9405 26.3122 0.7249 4.4587 
0.4, 0.4 1.5618 5.1243 27.1432 0.7215 4.4540 
0.5, 0.5 1.5271 5.0348 26.7385 0.7217 4.4563 
0.6, 0.6 1.4010 4.7088 25.262 0.7227 4.4650 
0.7, 0.7 1.2145 4.2237 23.0543 0.7244 4.4797 
0.8, 0.8 1.0097 3.6870 20.5946 0.7266 4.4990 
0.9, 0.9 0.8349 3.2249 18.4690 0.7289 4.5165 

3.4. Moments of HEF Model 

Moments are very properties for any statistical investigation, most especially in application areas. Suppose 
𝑋~𝐻𝐸𝐹 (𝛼, ϛ, 𝜌, 𝜆), then many important features such as dispersion, skewness, measures of central tendency, and 
kurtosis of the 𝐻𝐸𝐹 model can be derived by using ordinary moments. The rth raw moment of the HEF model is 
obtained as 

𝑬ሺ𝑿ሻ𝒓 ൌ 𝝁𝒓ᇱ ൌ න  

ஶ

ିஶ

𝒙𝒓𝒇ሺ𝒙ሻ𝒅𝒙 ൌ 𝝆෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋 න  

ஶ

ିஶ

𝒙𝒓ିሺ𝝆ା𝟏ሻ𝒆ି𝜶ሺ𝟏ା𝒋ሻ𝒙
ష𝝆
𝒅𝒙, (15) 

Letting 𝑦 ൌ 𝛼ሺ1 ൅ 𝑗ሻ𝑥ିఘ, 𝑥 ൌ ሾ𝛼ሺ1 ൅ 𝑗ሻሿଵ/ఘ𝑦ିଵ/ఘ,𝑑𝑥 ൌ 𝜌ିଵሾ𝛼ሺ1 ൅ 𝑗ሻሿଵ/ఘ𝑦ିଵ/ఘିଵ𝑑𝑦, putting in (15), we 
have 

𝝁𝒓ᇱ ൌ෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝒓ି𝝆ሻ න  
ஶ

𝟎
𝒚
ି𝒓
𝝆 𝒆ି𝒚𝒅𝒙, (16) 

Finally, we have an expression for the 𝑟th raw moment of 𝐻𝐸𝐹 distribution as 
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𝝁𝒓ᇱ ൌ෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝒓ି𝝆ሻ/𝝆𝜞ሺ𝟏 െ 𝒓/𝝆ሻ;𝝆 ൐ 𝒓. (17) 

where 𝛤(1 − 𝑟∕𝜌) is a gamma function. In the like manner, incomplete moments play a vital role in measuring 
inequality. Hence, we can determine the lower incomplete moments, say, 𝛾𝑠(𝑡) is given by 

𝜸𝒔ሺ𝒕ሻ ൌ න  

𝒕

𝟎

𝒙𝒔𝒇ሺ𝒙ሻ𝒅𝒙 ൌ 𝝆෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋 න  

𝒕

ିஶ

𝒙𝒔ିሺ𝝆ା𝟏ሻ𝒆ି𝜶ሺ𝟏ା𝒋ሻ𝒙
ష𝝆
𝒅𝒙 (18) 

Letting 𝑦 ൌ 𝛼ሺ1 ൅ 𝑗ሻ𝑥ିఘ, 𝑥 ൌ ሾ𝛼ሺ1 ൅ 𝑗ሻሿଵ/ఘ𝑦ିଵ/ఘ,𝑑𝑥 ൌ െ𝜌ିଵሾ𝛼ሺ1 ൅ 𝑗ሻሿଵ/ఘ𝑦ିଵ/ఘିଵ𝑑𝑦,  putting in (18), 
we have 

𝜸𝒔ሺ𝒕ሻ ൌ෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝒓ି𝝆ሻ න  
𝒕

ିஶ
𝒚
ି𝒔
𝝆 𝒆ି𝒚𝒅𝒙, (19) 

Finally, we have an expression for the 𝑟th incomplete moment of 𝐻𝐸𝐹 distribution as 

𝜸𝒔ሺ𝒕ሻ ൌ෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝒔ି𝝆ሻ𝝆𝜞ሺ𝟏െ𝑺/𝝆,𝜶ሺ𝟏 ൅ 𝒋ሻ𝒕ି𝝆ሻ;𝝆 ൐ 𝒔. (20) 

An expression for the first incomplete moment of 𝐻𝐸𝐹 distribution is obtained by taken 𝑠 = 1 in (19) and 
given as 

𝜸𝟏ሺ𝒕ሻ ൌ෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ/𝝆𝜞ሺ𝟏 െ 𝟏/𝝆,𝜶ሺ𝟏 ൅ 𝒋ሻ𝒕ି𝝆ሻ. (21) 

where 𝛤(1 − 1∕𝜌, 𝛼(1 + 𝑗)𝑡−𝜌) is an incomplete gamma function. Consequently, an expression for the variance, 
skewness and the kurtosis can respectively, be obtained as follows 𝜎ଶ ൌ 𝜇ଶ

ᇱ െ  ሾ𝜇ଵᇱ ሿଶ, 𝑠௞ ൌ 𝜇ଷ
ଶሺ√𝜇ଶሻିଷ and  𝑘௨ ൌ

𝜇ସሺ𝜇ଶሻିଶ respectively. Where 𝜇௥ ൌ 𝐸ሾሺ𝑥 െ 𝜇ଵᇱ ሻ௥ሿ,𝜇ଷ ൌ െ3𝜇ଶ
ᇱ 𝜇ଵᇱ ൅ 𝜇ଷ

ᇱ ൅ 2ሺ𝜇ଵᇱ ሻଷ and 𝜇ସ ൌ 6ሺ𝜇ଵᇱ ሻଶ𝜇ଶ
ᇱ െ 3ሺ𝜇ଵᇱ ሻସ െ

4𝜇ଷ
ᇱ 𝜇ଵᇱ ൅ 𝜇ସᇱ . 

Tables 2 and 3 gives the values for the first six moments, variance (𝜎2), skewness, and kurtosis of 𝐻𝐸𝐹 model 
for fixed values of 𝛼 and 𝜌 and varying the values of ϛ and 𝜆. 

Table 2. First six moments, 𝜎2, 𝓼𝒌, and 𝑘𝑢 of the 𝐻𝐸𝐹 model. 

𝛼 = 5.5, 𝜌 = 10.5 

Moments 𝜆 = 1.2, 
ϛ = 0.1 

λ = 1.4, 
ϛ = 0.3 

𝜆 = 1.8, 
ϛ = 0.5 

𝜆 = 2.5, 
ϛ = 0.8 

𝜆 = 5.5, 
ϛ = 0.8 

𝜇ଵᇱ  1.1109 1.1741 1.2108 1.2411 1.2459 
𝜇ଶ
ᇱ  1.2454 1.3977 1.490 1.5673 1.5799 
𝜇ଷ
ᇱ  1.4120 1.6925 1.8699 2.0204 2.0455 
𝜇ସᇱ  1.6242 2.0935 2.4042 2.6706 2.7163 
𝜇ହ
ᇱ  1.9054 2.6625 3.1881 3.6440 3.7241 
𝜇଺
ᇱ  2.298 3.5173 4.4065 5.1862 5.3263 
𝜎 0.0113 0.0192 0.0240 0.0270 0.0276 
𝓼𝒌 2.8102 2.4078 2.0968 1.8687 1.7952 
𝑘𝑢 19.7087 12.0421 11.2802 10.4996 10.8794 

Table 3. Moments, 𝜎2, 𝓼𝒌, and 𝑘𝑢 of the 𝐻𝐸𝐹 model. 

𝛼 = 2.1, 𝜌 = 7.5 

Moments 𝜆 = 0.2, 
ϛ = 0.1 

𝜆 = 0.4, 
ϛ = 0.3 

𝜆 = 0.8, 
ϛ = 0.5 

𝜆 = 1.5, 
ϛ = 0.8 

𝜆 = 2.5, 
ϛ = 0.8 

𝜇ଵᇱ  0.9759 1.0621 1.1306 1.1903 1.1957 
𝜇ଶ
ᇱ  0.9564 1.1446 1.3144 1.4680 1.4828 
𝜇ଷ
ᇱ  0.9415 1.2555 1.5855 1.8967 1.9281 
𝜇ସᇱ  0.9311 1.4101 2.0165 2.6153 2.6788 
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Table 3. Cont. 

𝛼 = 2.1, 𝜌 = 7.5 

Moments 𝜆 = 0.2, 
ϛ = 0.1 

𝜆 = 0.4, 
ϛ = 0.3 

𝜆 = 0.8, 
ϛ = 0.5 

𝜆 = 1.5, 
ϛ = 0.8 

𝜆 = 2.5, 
ϛ = 0.8 

𝜇ହ
ᇱ  0.9254 1.6408 2.7942 3.9919 4.1248 
𝜇଺
ᇱ  0.9245 2.0454 4.5971 7.3938 7.7160 
𝜎2 0.0040 0.0165 0.0361 0.0512 0.0531 
𝓼𝒌 1.1954 2.1987 2.5775 2.3735 2.2988 
𝑘𝑢 −5.2608 20.9734 19.3344 16.0091 15.8564 

3.5. Mean Deviation 

The amount of variability observed in a distribution can be measured using the deviations about the mean 
and about the median. The mean deviation about the mean and the mean deviation about the median can be 
estimated respectively, using 

𝚫𝟏ሺ𝒙ሻ ൌ 𝟐 ቈ𝝁𝑭ሺ𝝁ሻ െ න  
𝝁

𝟎
𝒙𝒇ሺ𝒙ሻ𝒅𝒙቉ (22) 

and 

𝚫𝟐ሺ𝒙ሻ ൌ 𝑬ሺ𝒙ሻ ൅ 𝟐𝑴𝑭ሺ𝑴ሻ െ𝑴െ 𝟐න  
𝑴

𝟎
𝒙𝒇ሺ𝒙ሻ𝒅𝒙 (23) 

where 𝜇 is the mean of 𝐻𝐸𝐹 obtained from (17), taking 𝑟 = 1, 𝑀 is the median (𝑞2). Hence, we obtain 

𝚫𝟏ሺ𝒙ሻ ൌ 𝟐 ൥𝝁𝑭ሺ𝝁ሻ െ෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ𝝆𝚪ሺ𝟏 െ 𝟏/𝝆,𝜶ሺ𝟏 ൅ 𝒋ሻ𝝁ି𝝆ሻ൩,  

and 

𝚫𝟐ሺ𝒙ሻ ൌ 𝑬ሺ𝒙ሻ ൅ 𝟐𝑴𝑭ሺ𝑴ሻ െ𝑴െ 𝟐෍  

ஶ

𝒊ୀ𝟎

𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ𝝆𝚪ሺ𝟏 െ 𝟏/𝝆,𝜶ሺ𝟏 ൅ 𝒋ሻ𝑴ି𝝆ሻ  

3.6. Lorenz and Bonferroni Curves 

Lorenz index (𝑙𝑝) was introduced by American economist [18]. He developed a graphical diagram that 
illustrates wealth distribution called Lorenz curve. The Lorenz index is defined as 

𝒍𝒑 ൌ
𝟏
𝝁
න  
𝒙

𝟎
𝒙𝒇ሺ𝒙ሻ𝒅𝒙. (24) 

The Lorenz plot is described as a plot of Lorenz index, 𝒍𝒑, versus 𝑥. Given below is an expression for the 
Lorenz index for 𝐻𝐸𝐹 distribution 

𝒍𝒑 ൌ
∑  ஶ
𝒊ୀ𝟎 𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ/𝝆𝜞ሺ𝟏 െ 𝟏/𝝆,𝜶ሺ𝟏 ൅ 𝒋ሻ𝑴ି𝝆ሻ

∑  ஶ
𝒊ୀ𝟎 𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ/𝝆𝜞ሺ𝟏 െ 𝟏/𝝆ሻ.

 (25) 

Bonferroni curve was developed by [19] as a measure of income inequality and was founded on partial means, 
required when the source of income inequality is the occurrence of units whose income is much lower when 
compared to others. The Bonferroni index, 𝑩𝒑, can be obtained using 

𝑩𝒑 ൌ
𝒍𝒑
𝑭ሺ𝒙ሻ

. (26) 

This is a plot of Bonferroni index versus x, and this index for 𝐻𝐸𝐹 model is given by 

𝑩𝒑 ൌ
∑  ஶ
𝒊ୀ𝟎 𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ/𝝆𝜞൫𝟏 െ 𝟏/𝝆,𝜶ሺ𝟏 ൅ 𝒋ሻ𝑴ି𝝆൯

𝟏 െ 𝜻𝟏/𝝀ሺ𝟏 െ 𝒆ି𝜶𝒙ష𝝆ሻሺ𝟏 െ 𝜻തሾ𝟏 െ 𝒆ି𝜶𝒙ష𝝆ሿ𝝀ሻି𝟏/𝝀൫∑  ஶ
𝒊ୀ𝟎 𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ/𝝆𝜞ሺ𝟏 െ 𝟏/𝝆ሻ൯

.  
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3.7. Mean Residual Life and Mean Inactivity Time 

The mean Residual life (𝑀𝑅𝐿) can be used to describe the additional expected life span of a unit, which 
happens to be alive at age 𝑥. It can be applied in many areas of life which includes; product quality control, 
biomedical sciences, life insurance, demography among many others. The MRL is defined as 

𝑴𝑹𝑳ሺ𝒕ሻ ൌ 𝑬ሺ𝑿 െ 𝒕/𝒙 ൐ 𝒕ሻ ൌ
𝟏 െ 𝜸𝟏ሺ𝒕ሻ
𝑺ሺ𝒕ሻ

െ 𝒕, 𝒕 ൐ 𝟎, (27) 

Consequently, we have 

𝑴𝑹𝑳ሺ𝒕ሻ ൌ
𝟏 െ ∑  ஶ

𝒊ୀ𝟎 𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ/𝝆𝜞ሺ𝟏 െ 𝟏/𝝆,𝜶ሺ𝟏 ൅ 𝒋ሻ𝒕ି𝝆ሻ

𝝇𝟏/𝝀ሺ𝟏 െ 𝒆ି𝜶𝒕ି𝝆ሻሺ𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒕ି𝝆ሿ𝝀ሻି𝟏/𝝀 െ 𝒕 (28) 

The mean inactivity time (𝑀𝐼𝑇) is used to describe the waiting time elapsed since the failure of an item 
occurred on the condition that this failure occurred between an interval (0, 𝑡). Mathematically, it is represented as 

𝑴𝑰𝑻ሺ𝒙ሻ ൌ 𝒕 െ
𝜸𝟏ሺ𝒕ሻ
𝑭ሺ𝒕ሻ

,

ൌ 𝒕 െ
∑  ஶ
𝒊ୀ𝟎 𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝟏ି𝝆ሻ/𝝆𝜞ሺ𝟏െ𝟏/𝝆,𝜶ሺ𝟏 ൅ 𝒋ሻ𝒕ି𝝆ሻ

𝟏 െ 𝝇𝟏/𝝀ሺ𝟏 െ 𝒆ି𝜶𝒕ష𝝆ሻሺ𝟏 െ 𝝇തሾ𝟏 െ 𝒆ି𝜶𝒕ష𝝆ሿ𝝀ሻି𝟏/𝝀 .
 (29) 

3.8. Moment Generating Function of HEF Model 

The moment generating function (𝑀𝐺𝐹) of a random variable X provides an alternative method that can be 
used in describing the characteristics of a distribution. Mathematically, the 𝑀𝐺𝐹 is defined as 

𝓜𝑿ሺ𝒕ሻ ൌ 𝑬ሺ𝒆𝒕𝑿ሻ ൌ෍  

ஶ

𝒓ୀ𝟎

𝒕𝒓

𝒓!
𝑬ሺ𝑿𝒓ሻ. (30) 

Putting (17) in (30) for 𝐸(𝑋𝑟) for 𝐻𝐸𝐹 model, we obtain 

𝓜𝑿ሺ𝒕ሻ ൌ ෍  

ஶ

𝒊ୀ𝒓ୀ𝟎

𝒕𝒓

𝒓!
𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝒓ି𝝆ሻ𝝆𝜞ሺ𝟏 െ 𝒓/𝝆ሻ;𝝆 ൐ 𝒓. (31) 

By setting 𝑡 = 𝑖𝑡 in (31), we derived an expression for the characteristics function of the 𝐻𝐸𝐹 model. 

3.9. Gini Index 

One of the well-known inequality indexes is the Gini index developed by [20], is defined as 

𝑮 ൌ
𝟏

𝑬ሺ𝒙ሻ
න  
ஶ

𝟎
ሾ𝑭ሺ𝒙ሻ െ 𝑭ሺ𝒙ሻ𝟐ሿ𝒅𝒙, (32) 

Inserting (2) in (32), we have 

𝑮 ൌ
𝟏

𝑬ሺ𝒙ሻ
ቊ𝒙 െ 𝑽𝒊𝒋 න  

ஶ

𝟎
𝒆ି𝒋𝜶𝒙

ష𝝆
𝒅𝒙 െ 𝑽𝒌𝒍𝒑 න  

ஶ

𝟎
𝒆ି𝒑𝜶𝒙

ష𝝆
𝒅𝒙ቋ, (33) 

Consequently, taking 𝑧 = 𝑗𝛼𝑥−𝜌 and further 𝑢 = 𝑝𝛼𝑥−𝜌, we have 

𝑮 ൌ
𝟏

𝑬ሺ𝒙ሻ
ቊ𝒙 െ 𝜶𝟏/𝝆 ቈ𝑴𝒊𝒋

𝒋𝟏/𝝆

𝝆
න  
ஶ

𝟎
𝒛ି𝟏/𝝆ି𝟏𝒆𝒛𝒖𝒅𝒛 െ𝑴𝒌𝒍

𝒑𝟏/𝝆

𝝆
න  
ஶ

𝟎
𝒖ି𝟏/𝝆ି𝟏𝒆ି𝒖቉ቋ, (34) 

Finally, we obtain an expression for the coefficient of Gini index as 

𝑮 ൌ
ൣ𝒙 െ 𝜶𝟏/𝝆𝜞ሺെ𝟏/𝝆ሻ൛𝑴𝒊𝒋𝒋𝟏/𝝆 െ𝑴𝒌𝒍𝒑𝒑𝟏/𝝆ൟ൧

𝝆∑  ஶ
𝒊ୀ𝟎 𝜹𝒊,𝒋ሾ𝜶ሺ𝟏 ൅ 𝒋ሻሿሺ𝒓ି𝝆ሻ/𝝆𝜞ሺ𝟏െ𝒓/𝝆ሻ

 (35) 

where 
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𝑽𝒊𝒋 ൌ
𝜻𝟏/𝜶

𝝆
෍  

ஶ

𝒊ୀ𝒋ୀ𝟎

ሺ
𝟏/𝝀 ൅ 𝒊 െ 𝟏

𝒊
ሻሺ
𝝀𝒊 ൅ 𝟏
𝒋

ሻሺെ𝟏ሻ𝒋ሺ𝝇തሻ𝒊,  

and 

𝑽𝒌𝒍𝒑 ൌ ෍  

ஶ

𝒌ୀ𝒍ୀ𝒑ୀ𝟎

ሺ
𝟐
𝒌
ሻሺ
𝒌/𝝀 ൅ 𝒍 െ 𝟏

𝒍
ሻሺ
𝝀𝒍 ൅ 𝟏
𝒑

ሻሺെ𝟏ሻ𝒌ା𝒑𝜻𝒌/𝝀ሺ𝜻തሻ𝒍  

4. Entropies 

The Rényi entropy of a random variable X with density function 𝑓(𝑥) can be described as a measure 
of variation off uncertainty or randomness and its defined (for 𝜁 > 0 and ζ ≠ 1) by [21] as; 

𝑰𝑹ሺ𝜻ሻ ൌ
𝟏

𝟏 െ 𝜻
𝒍𝒐𝒈ሾ𝑴ሺ𝜻ሻሿ, (36) 

where 

𝑴ሺ𝜻ሻ ൌ න  
ஶ

ିஶ
𝒇𝜻ሺ𝒙ሻ𝒅𝒙 (37) 

Inserting (1) in (37), we have 

𝑴ሺ𝜻ሻ ൌ න  

ஶ

ିஶ

ቂ𝜻𝟏/𝝀𝜶𝝆𝒙ିሺ𝝆ା𝟏ሻ𝒆ି𝜶𝒙
ష𝝆
൫𝟏 െ 𝜻തሾ𝟏 െ 𝒆ି𝜶𝒙

ష𝝆
ሿ𝝀൯

ିሺ𝟏ା𝟏/𝝀ሻቃ
𝜻
𝒅𝒙 (38) 

Upon simplification, we obtain 

𝑴ሺ𝜻ሻ ൌ 𝒏𝒊,𝒋𝜞 ൬
𝜻ሺ𝝆 ൅ 𝟏ሻ െ 𝟏

𝝆
൰, (39) 

where 

𝒏𝒊,𝒋 ൌ 𝜻𝜻/𝝀𝜶𝜻𝝆𝜻ି𝟏෍  

ஶ

𝒊,𝒋

ሺ
𝜻ሺ𝟏/𝝀 ൅ 𝟏ሻ ൅ 𝒊 െ 𝟏

𝒊
ሻሺ
𝒊𝝀
𝒋
ሻሺെ𝟏ሻ𝒊𝝇ത𝒊 ൬

𝟏
𝜶ሺ𝒊 ൅ 𝟏ሻ

൰  

Putting (39) in (36), we generate an expression for the Rényi entropy of 𝐻𝐸𝐹 model as 

𝑰𝑹ሺ𝜻ሻ ൌ
𝟏

𝟏 െ 𝜻
𝒍𝒐𝒈 ൤𝒏𝒊,𝒋𝜞 ൬

𝜻ሺ𝝆 ൅ 𝟏ሻ െ 𝟏
𝝆

൰൨. (40) 

The 𝛽-entropy, ℋ𝛽, is defined by 

𝓗𝜷 ൌ
𝟏

𝜷 െ 𝟏
𝒍𝒐𝒈ሼ𝟏 െ ሺ𝟏 െ 𝜷ሻ𝑰𝑹ሺ𝜻ሻሽ.  

Using, 𝐼𝑅(𝜁), we obtain an expression for the 𝛽 −entropy of 𝐻𝐸𝐹 model as 

𝓗𝜷 ൌ
𝟏

𝜷 െ 𝟏
𝒍𝒐𝒈 ൜𝟏 െ ሺ𝟏 െ 𝜷ሻ

𝟏
𝟏 െ 𝜻

𝒍𝒐𝒈 ൤𝒏𝒊,𝒋𝜞 ൬
𝜻ሺ𝝆 ൅ 𝟏ሻ െ 𝟏

𝝆
൰൨ൠ. (41) 

4.1. Probability Weighted Moment (PWM) 

The PWM is a better alternative to the existing moment for estimation of parameter, most especially in a 
situation when maximum likelihood estimation procedure is difficult to apply or completely unavailable. It is 
defined as 
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𝑱𝒓,𝝂 ൌ 𝑬ሾ𝑿𝒓𝑭ሺ𝑿ሻ𝒓ሿ ൌ න  
ஶ

ିஶ
𝒙𝒓𝒇ሺ𝒙ሻ𝑭ሺ𝒙ሻ𝝂𝒅ሺ𝒙ሻ. (42) 

If X ~ 𝐻𝐸𝐹 (Л), then Л𝑟,𝑣 is given by 

𝓙𝒓,𝝂 ൌ 𝜶 ෍  

ஶ

𝒊ୀ𝒋ୀ𝒌ୀ𝟎

𝓗∗𝜞൬
𝒓 ൅ 𝝆 ൅ 𝟏

𝝆
൅ 𝟏൰. (43) 

where, ℋ∗ ൌ ሺଵ/ഊା
೔/ഊା௝ିଵ
௝ ሻሺఔ௜ሻሺ

ఒ௝ା௜
௞ ሻ𝜁

೔శభ
ഊ 𝜍̅௝ ቀ

ଵ

ఈሺଵା௞ሻ
ቁ
ೝశభ
ഐ ሺെ1ሻ௞ା௜. 

4.2. Stress Strength Reliability 

Here, we derived an expression for the stress-strength parameter of 𝐻𝐸𝐹 model. Suppose 𝑋1 represents the 
strength of a structure experiencing stress 𝑋2, and if 𝑋1 follows 𝐻𝐸𝐹 (𝛼, 𝜌, ϛ1, 𝜆1) and 𝑋2 follows 𝐻𝐸𝐹 (𝛼, 𝜌, ϛ2, 𝜆2) 
given that 𝑋1and 𝑋2 are independent random variables. Then the mathematical expression for the Stress-strength 
Reliability (𝔎) of 𝐻𝐸𝐹 model is obtained as follows: 

𝑹 ൌ 𝑷ሺ𝑿𝟐 ൏ 𝑿𝟏ሻ ൌ න  

ஶ

𝟎

𝒇𝟏ሺ𝒙;𝜶,𝝆, 𝜻𝟏,𝝀𝟏ሻ𝑭𝟐ሺ𝒙;𝜶,𝝆, 𝜻𝟐,𝝀𝟐ሻ𝒅𝒙 (44) 

If X ~ 𝐻𝐸𝐹 (Л), then 𝑅 is given by 

𝑹 ൌ 𝑭𝟏ሺ𝒙;𝜶,𝝆, 𝜻𝟐,𝝀𝟐ሻ െ 𝜶𝜻𝟏
𝟏/𝝀𝟏𝜻𝟐

𝟏/𝟐ሺ𝑪𝟏 െ 𝑪𝟐ሻ (45) 

where 

𝑪𝟏 ൌ ෍  

ஶ

𝒊ୀ𝒋ୀ𝒌ୀ𝒍

ሺ

𝟏
𝝀𝟏
൅ 𝒊

𝒊
ሻሺ
𝒊𝝀𝟏
𝒋
ሻሺ

𝟏
𝝀𝟐
൅ 𝒌 െ 𝟏

𝒌
ሻሺ
𝒌𝝀𝟐
𝒍
ሻ𝝇ത𝟏

𝒊 𝝇ത𝟐
𝒌ሺെ𝟏ሻ𝒋ା𝒍 ൬

𝟏
𝜶ሺ𝟏 ൅ 𝒋 ൅ 𝒍ሻ

൰  

And 

𝑪𝟐 ൌ ෍  

ஶ

𝒎ୀ𝒏ୀ𝒑ୀ𝒒

ሺ
𝟏
𝝀𝟐
൅𝒎

𝒎
ሻሺ
𝒎𝝀𝟐
𝒏

ሻሺ
𝟏
𝝀𝟐
൅ 𝒑 െ 𝟏

𝒑
ሻሺ
𝒑𝝀𝟐
𝒒
ሻ𝝇ത𝟏

𝒎𝝇ത𝟐
𝒑ሺെ𝟏ሻ𝒏ା𝒑 ൬

𝟏
𝜶ሺ𝟏 ൅ 𝒋 ൅ 𝒍ሻ

൰  

4.3. Order Statistics 

Given 𝑥1, 𝑥2, 𝑥3 …, 𝑥𝑛 as a random sample having CDF 𝐹(𝑥). Let 𝑋1:1, 𝑋2:𝑛, 𝑋3:𝑛, …, 𝑥𝑛:𝑛 is the ordered 
sample of size 𝑛, then the density of 𝑗𝑡ℎ order statistics is given as 

𝒈𝒋:𝒏ሺ𝒙ሻ ൌ 𝑾∗෍  

𝒏ି𝒓

𝒊ୀ𝟎

ሺെ𝟏ሻ𝒊ሺ
𝒏 െ 𝒓
𝒊

ሻ𝒇ሺ𝒙ሻ𝑭ሺ𝒙ሻ𝒊ା𝒋ି𝟏, (46) 

where 𝑊∗ ൌ
௡!

ሺ௡ି௥ሻ!௥!
. 

Putting (1) and (2) in (46), followed by simply algebraic manipulation gives 

𝒈𝒋:𝒏ሺ𝒙ሻ ൌ 𝟐𝜶𝝆𝝇𝟏/𝝀𝑾∗ ෍  

𝒏ି𝒓

𝒊ୀ𝒌ୀ𝒍ୀ𝒎ୀ𝟎

ሺെ𝟏ሻ𝒊ା𝒌ା𝒎ሺ
𝒏 െ 𝒓
𝒊

ሻሺ
𝒊 ൅ 𝒋 െ 𝟏

𝒌
ሻሺ
𝒌
𝝀 ൅

𝟏
𝝀 ൅ 𝒍

𝒍
ሻሺ
𝝀𝒍 ൅ 𝒌
𝒎

ሻ𝝇𝒌/𝝀

ൈ 𝝇ത𝒍𝒙ିሺ𝝆ା𝟏ሻ𝒆ିሺ𝒎ା𝟏ሻ𝜶𝒙
ష𝝆

.

  

5. Maximum Likelihood Estimation (MLE) 

Given that 𝑥1, 𝑥2, …, 𝑥𝑛 are the observed sample values from the 𝐻𝐸𝐹 distribution. The log- likelihood 
(𝑙) function is defined as follows: 
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𝒍ሺ𝜼,𝝋,𝝆ሻ ൌ 𝒏/𝝀𝒍𝒐𝒈ሺ𝝇ሻ ൅ 𝒏𝒍𝒐𝒈ሺ𝜶ሻ ൅ 𝒏𝒍𝒐𝒈ሺ𝝆ሻ െ ሺ𝝆 ൅ 𝟏ሻ෍  

ஶ

𝒊ୀ𝟏

𝒍𝒐𝒈ሺ𝒙𝒊ሻ െ 𝜶෍  

ஶ

𝒊ୀ𝟏

𝒙ି𝝆

ൈ ሺ𝟏 ൅ 𝟏/𝝀ሻ෍  

𝒏

𝒊ୀ𝟏

𝒍𝒐𝒈 ቀ𝟏 െ ሺ𝟏 െ 𝝇ሻൣ𝟏 െ 𝒆ି𝜶𝒙
ష𝝆
൧
𝝀
ቁ .

 (47) 

Maximizing 𝑙(𝛼, ϛ, 𝜌, 𝜆) with respect to 𝛼, ϛ, 𝜌 and 𝜆, we derive the following system of nonlinear equations: 

𝒏
𝜶
െ෍ 

ஶ

𝒊ୀ𝟎

𝒙𝒊
ି𝝆 െ ൬

𝝀ሺ𝟏 ൅ 𝝇ሻ
𝝇

൰෍  

ஶ

𝒊ୀ𝟎

𝒙𝒊
ି𝝆𝒆ି𝜶𝒙𝒊

ష𝝆
𝒚𝒊
𝝀

ሾ𝟏 െ 𝒆ି𝜶𝒙𝒊
ష𝝆
ሿሺ𝟏 െ ሺ𝟏 െ 𝝇ሻ𝒚𝒊

𝝀ሻ
ൌ 𝟎. (48) 

െ
𝒏
𝝀𝟐
𝒍𝒐𝒈ሺ𝜻ሻ ൅

𝟏
𝝀𝟐
෍  

𝒏

𝒊ୀ𝟏

𝒍𝒐𝒈൫𝟏 െ ሺ𝟏 െ 𝜻ሻ𝒚𝒊
𝝀൯ െ ൬𝟏 ൅

𝟏
𝝀

/𝝀൰෍  

𝒏

𝒊ୀ𝟏

𝒚𝒊𝒍𝒐𝒈𝒚𝒊
ሾ𝒍𝒐𝒈ሺ𝟏 െ ሺ𝟏 െ 𝝇ሻ𝒚𝒊

𝝀ሻሿ
ൌ 𝟎 (49) 

𝒏
𝝆
െ෍ 

ஶ

𝒊ୀ𝟏

𝒍𝒐𝒈ሺ𝒙𝒊ሻ ൅ 𝜶෍  

ஶ

𝒊ୀ𝟏

𝒙𝒊
ି𝝆𝐥𝐨𝐠 ሺ𝒙𝒊ሻ െ 𝜶ሺ𝟏 ൅ 𝝀ሻ෍  

𝒏

𝒊ୀ𝟏

ሺ𝟏 െ 𝝇ሻ𝒙𝒊
ି𝝆𝒍𝒐𝒈ሺ𝒙𝒊ሻ𝒆ି𝜶𝒙𝒊ି𝝆𝒚𝒊

ሾ𝒍𝒐𝒈ሺ𝟏 െ ሺ𝟏 െ 𝝇ሻ𝒚𝒊
𝝀ሻሿ

ൌ 𝟎 (50) 

and 

𝒏
𝝀𝝇

െ ൬𝟏 ൅
𝟏
𝝀

/𝝀൰෍  

𝒏

𝒊ୀ𝟏

𝒚𝒊𝝀

ሾ𝒍𝒐𝒈ሺ𝟏 െ ሺ𝟏 െ 𝜻ሻ𝒚𝒊𝝀ሻሿ
ൌ 𝟎 (51) 

where 𝑦𝑖 = [1 − 𝑒−𝛼𝑥𝑖 ]. Solving Equations (47)–(51) simultaneously we produce the MLEs of �̂�,  �̂�,  �̂�, and ϛ̂.  To 
obtain an approximate confidence interval (CIs) of the parameters of HEF model, it is necessary to obtain an 
estimate of the elements of the variance covariance matrix D of the MLEs. The variance-covariance matrix D is 
calculated by the observed information matrix �̂�,  and 

𝑫෡ ൌ െ൦

𝑺𝟏𝟏 𝑺𝟏𝟐 𝑺𝟏𝟑 𝑺𝟏𝟒
𝑺𝟐𝟏 𝑺𝟐𝟐 𝑺𝟐𝟑 𝑺𝟐𝟒
𝑺𝟑𝟏 𝑺𝟑𝟐 𝑺𝟑𝟑 𝑺𝟑𝟒
𝑺𝟒𝟏 𝑺𝟒𝟐 𝑺𝟒𝟑 𝑺𝟒𝟒

൪. (52) 

where 𝑆𝑖,𝑗, 𝑖, 𝑗 = 1, 2, 3, 4 represent the second partial derivatives of (47) with respect to 𝛼, 𝜌, 𝜆, and 𝛼. This value 
represents the Fisher’s information matrix analogous to 𝛼, 𝜌, 𝜆, and 𝛼, respectively. the elements at the diagonal 
of the matrix given in (52) is the values of the variance of the MLEs of to 𝛼, 𝜌, 𝜆, and ϛ, respectively. an estimated 
100(1 − 𝑓)% confidence interval for 𝜁𝑐 as 

𝜻𝒄෡ േ 𝒁𝒅
𝟐
ට𝒗𝒂𝒓ෞ ሺ𝜻𝒄෡ ሻ,  

where 𝜁௖෡ ൌ ሺ𝛼ො,𝜌ො, 𝜆መ, 𝜉መሻ,𝑍೏
మ
 is the upper ቀௗ

ଶ
ቁ100௧௛ percentile of normal distribution. The likelihood ratio (LR) 

test can be used compare the performance of 𝐻𝐸𝐹 model with its sub-models for any given lifetime data set. For 
example, say, 𝛼 = 1, the LR statistic is 𝑃 = 2 ቂ𝑙𝑛 ቀ𝐿൫𝛼ො,𝜌ො, 𝜆መ, 𝜉መ൯ቁ െ 𝑙𝑛 ൬𝐿 ቀ൫1෠ ,𝜌෤, 𝜆ሚ, 𝜉ሚ൯ቁ൰ቃ , where 𝛼ෝ ,𝜌ො, 𝜆መ, and 𝜍ෝ 

are the unrestricted estimates and 𝜌෤, 𝜆ሚ, and 𝜍̃ are the restricted estimates. 
The LR test do not accept the null hypothesis if 𝑃 ൐ 𝜒ఌଶ, where 𝜒ఌଶ represent the upper 100% point of the 

𝜒2 distribution with 1 degree of freedom. 

6. Applications of the HEF Distribution 

A comparison of the newly developed 𝐻𝐸𝐹 distribution was carried out with the Harris Inverse Exponential 
(𝐻𝐼𝐸), Harris Inverted Weibull (𝐻𝐼𝑊), Marshall Olkin Inverse Exponential (𝑀𝑂𝐼𝐸), Inverted Weibull (𝐼𝑊), 
Inverse exponential (𝐼𝐸), and the Fréchet (𝐹) distributions with the help of two lifetime data sets. We employ the 
use of five goodness of fit criterion which are: Akaike information criterion (𝐴𝐼𝐶𝑟), Consistent Akaike Information 
Criterion (𝐶𝐴𝐼𝐶𝑟), Kolmogorov Smirnoff (𝐾), Cramer-Von Mises (𝐶𝑟𝑀), and the Probability value (𝑃𝑣). The 
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model with the smallest value of 𝐴𝐼𝐶𝑟, 𝐶𝐴𝐼𝐶𝑟, 𝐾, 𝐶𝑟𝑀, and the highest 𝑃𝑣 is considered the best model in the 
class of models considered. 

Data Set 1. The first data set is taken from [22]. The data are the number of million revolutions before failure 
for each of the 23 ball bearings in the life test. The kernel density and the boxplots for the data shows that the 
positively skewed. The kernel density and the boxplots for the failure time data is given in Figure 4 which shows 
that the data is positively skewed. Table 4 gives the exploratory data analysis of the failure time data which 
indicates that the data over-dispersed, leptokurtic. Table 5 presents the MLEs estimate of the model parameters 
and the measures of goodness of fit. 

Table 4. Exploratory data analysis for failure time data. 

n q1 Median Mean q3 Range Skewness Kurtosis Variance 
23 47.20 67.80 73.85 101.88 155.52 0.79 3.14 1452.81 

 

Figure 4. Plots Kernel density and the Boxplots for failure time data. 

Table 5. MLEs, standard error (in parenthesis), and measure of the goodness of fit for failure time data. 

 Estimated Parameter Measures of Goodness of Fit 
Model α Ρ λ Ϛ −2l AICr CAICr K CrM Pv 

𝐻𝐹 20.71 
(10.31) 

1.15 
(0.23) 

2.62 
(1.67) 

23.91 
(17.75) 239.15 247.25 249.47 0.206 0.045 0.286 

𝐻𝐼𝐸 35.58 − 
(−) 9.05 21.64 240.61 246.62 247.88 0.297 0.067 0.034 

𝐻𝐼𝑊 − 
(−) 

1.12 
(0.36) 

0.74 
(0.32) 

29.12 
(11.66) 263.16 269.37 270.63 0.398 0.038 0.001 

𝑀𝐼𝐸 22.71 − 
(−) 

− 
(−) 2.19 251.41 255.42 256.02 0.255 0.041 0.100 

𝑀𝐼𝑊 − 
(−) 

0.91 
(0.11) 

− 
(−) 

26.39 
(10.30) 264.81 268.82 269.42 0.395 0.038 0.002 

𝐹 21.21 
(7.53) 

0.83 
(0.09) 

− 
(−) 

− 
(−)  256.96 257.56 0.277 0.045 0.058 

𝐼𝑊 − 
(−) 

0.323 
(0.06) 

− 
(−) 

− 
(−) 317.87 319.87 320.06 0.675 0.038 1.6𝑒 

− 9 

𝐼𝐸 − 
(−) 38.20 − 

(−) 
− 

(−) 247.54 249.54 249.73 0.268 0.048 0.073 

The variance covariance matrix for the failure data is given by 
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𝑫෡ ൌ െ൦

𝟑.𝟎𝟐𝟏𝟔𝐞 െ 𝟎𝟏 𝟓.𝟔𝟑𝟔𝟗𝐞 െ 𝟎𝟐 െ𝟑.𝟏𝟖𝟖𝟔𝐞 െ 𝟎𝟓 𝟑.𝟓𝟎𝟏𝟓𝐞 െ 𝟎𝟕
𝟓.𝟔𝟑𝟔𝟗𝐞 െ 𝟎𝟐 𝟏.𝟖𝟗𝟖𝟓𝐞 െ 𝟎𝟏 𝟔.𝟓𝟕𝟐𝟑𝐞 െ 𝟎𝟒 െ𝟕.𝟐𝟏𝟖𝟏𝐞 െ 𝟎
െ𝟑.𝟏𝟖𝟖𝟕𝐞 െ 𝟎𝟓 𝟔.𝟓𝟕𝟐𝟑𝐞 െ 𝟎𝟒 𝟑.𝟐𝟖𝟖𝟗𝐞 െ 𝟎𝟓 െ𝟑.𝟔𝟎𝟎𝟎𝐞 െ 𝟎𝟕
𝟑.𝟓𝟎𝟏𝟔𝐞 െ 𝟎𝟕 െ𝟕.𝟐𝟏𝟖𝟏𝐞 െ 𝟎𝟔 െ𝟑.𝟔𝟎𝐞 െ 𝟎𝟕 𝟏.𝟐𝟐𝟎𝟓𝐞 െ 𝟎𝟗

൪  

The second dataset consists of the waiting times between 65 consecutive eruptions of the Kiama Blowhole. 
The data consists of time between eruptions of a 1340 h period starting from July 12th of 1998 were recorded 
using a digital watch. For details on this data set, see [23]. Figure 5 shows that the failure data is positively skewed. 
Table 6 gives the exploratory data analysis of the failure time data which indicates that the data over-dispersed, 
leptokurtic. Table 7 presents the MLEs estimate of the model parameters and the measures of goodness of fit. 

Table 6. Exploratory data analysis for waiting time data. 

N  q1  Median  Mean  q3  Range  Skewness  Kurtosis  Variance 
64 14.75 28.0 39.83 60.0 162 1.54 5.77 1139.10 

 

Figure 5. Plots Kernel density and the Boxplots for waiting time data. 

Table 7. MLEs, standard error (in parenthesis), and measure of the goodness of fit for waiting time data. 

  Estimated Parameter  Measures of Goodness of Fit 
Model  α  Ρ  λ  Ϛ  −2l  AICr  CAICr  K  CrM  Pv 

𝐻𝐹 21.93 
(15.83) 

1.85 
(0.75) 

0.91 
(0.61) 

17.01 
(27.05) 590.90 598.90 599.58 0.082 0.128 0.781 

𝐻𝐼𝐸 13.69 
(3.25) 

− 
(−) 

18.86 
(12.51) 

17.64 
(18.89) 594.0 600.01 600.41 0.125 0.200 0.270 

𝐻𝐼𝑊 − 
(−) 

1.23 
(0.23) 

0.72 
(0.20) 

19.10 
(4.82) 627.82 633.83 634.23 0.280 0.116 8.6𝑒 

− 5 

𝑀𝐼𝐸 25.40 
(5.76) 

− 
(−) 

− 
(−) 

0.61 
(0.27) 595.13 599.22 599.42 0.125 0.184 0.267 

𝑀𝐼𝑊 − 1.11 − 27.33 620.90 624.90 625.10 0.241 0.122 0.001 
 (−) (0.09) (−) (7.26)       

𝐹 24.49 
(6.89) 

1.09 
(0.10) 

− 
(−) 

− 
(−) 594.98 598.98 599.18 0.129 0.162 0.238 

𝐼𝑊 − 
(−) 

0.40 
(0.04) 

− 
(−) 

− 
(−) 752.29 754.29 754.35 0.632 0.116 2.2𝑒 

− 16 

𝐼𝐸 20.41 
(2.55) 

− 
(−) 

− 
(−) 

− 
(−) 598.35 600.35 600.42 0.162 0.157 0.069 
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The variance covariance matrix for the time waiting data is given as 

𝑫෡ ൌ െ൦

𝟗.𝟕𝟑𝟑𝟕𝐞 െ 𝟎𝟕 െ𝟖.𝟓𝟎𝟐𝟓𝐞 െ 𝟎𝟕 െ𝟐.𝟕𝟔𝟒𝟕𝐞 െ 𝟏𝟏 𝟔.𝟕𝟓𝟒𝟕𝐞 െ 𝟏𝟑
െ𝟖.𝟓𝟎𝟐𝟓𝐞 െ 𝟎𝟕 𝟐.𝟐𝟐𝟔𝟗𝐞 െ 𝟎𝟐 𝟏.𝟓𝟕𝟓𝟓𝐞 െ 𝟎𝟗 െ𝟑.𝟖𝟐𝟎𝟔𝐞 െ 𝟏𝟏
െ𝟐.𝟕𝟔𝟒𝟕𝐞 െ 𝟏𝟏 𝟏.𝟓𝟕𝟓𝟓𝐞 െ 𝟎𝟗 𝟒.𝟒𝟑𝟗𝟔𝐞 െ 𝟏𝟎 െ𝟏.𝟎𝟖𝟒𝟓𝐞 െ 𝟏𝟏
𝟔.𝟕𝟓𝟒𝟕𝐞 െ 𝟏𝟑 െ𝟑.𝟖𝟐𝟎𝟔𝐞 െ 𝟏𝟏 െ𝟏.𝟎𝟖𝟒𝟓𝐞 െ 𝟏𝟏 𝟐.𝟖𝟗𝟒𝟒𝟏𝟖𝐞 െ 𝟏𝟔

൪  

From Tables 5 and 7, it can be deduced that the 𝐻𝐸𝐹 possessed the smallest 𝐴𝐼𝐶𝑟, 𝐶𝐴𝐼𝐶𝑟, 𝐶𝑟𝑀, 𝐾, and 
the largest 𝑃𝑣 for the two data sets. Therefore, 𝐻𝐸𝐹 can be considered the best model that fit the two data sets in 
the class of model considered in this study and also supported by the fitted densities given in Figure 6. 

 

Figure 6. Fitted densities for the failure time and the Waiting time data. 

7. Concluding Remarks 

In this study, we proposed and developed a new generalization of Fréchet distribution named as Harris Extended 
Fréchet (𝐻𝐸𝐹) distribution. Statistical properties i.e., quantiles, moments, incomplete moments, moment generating 
function, mean deviations, mean residual life and mean inactivity time, Probability weighted moments, stress-strength 
reliability, Lorenz and Bonferroni curves, Rényi and 𝛽-entropies, Gine index, and order statistics of the new model 
are derived. Maximum likelihood method is used to estimate the unknown parameters of the proposed model. Two 
lifetime data sets are used to demonstrate the flexibility and the competitiveness of proposed model and finally 
concluded that the new model may be better than other competing models considered in this study. 
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