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Abstract: We propose and develop the four-parameter Harris Extended Fréchet
distribution. It is obtained by inserting the two-parameter Fréchet distribution as the
baseline in the Harris family and may be a useful alternative method to model income
distribution and could be applied to other areas. We demonstrate that the new
distribution can have decreasing, increasing and upside-down-bathtub hazard
functions and that its probability density function is an infinite linear combination of
Fréchet densities. Some standard mathematical properties of the proposed distribution
are derived, such as the quantile function, ordinary and incomplete moments,
incomplete moments, Lorenz and Bonferroni curves, Gini index, Renyi and f-
entropies, mean residual life and mean inactivity time, probability weighted moments,
stress-strength reliability, and order statistics. We also obtain the maximum likelihood
estimators of the model. The potentiality/flexibility of the new distribution is
illustrated by means two applications to failure and waiting time data sets.

Keywords: Gine index; Bonferroni curve; probability weighted moments; strength-
stress reliability

1. Introduction

Statistical distributions are useful tool in describing and predicting real life data. Although many flexible
distributions have been developed and studied widely. However, there are always techniques for developing a
more robust and flexible distributions which are adaptable for fitting specific real-life data. This technique involves
the addition of one or more additional shape parameters to an existing standard probability (say, a baseline model).
This study focused on extending the Fréchet distribution introduced by [1], and has been widely applied in extreme
value theory. It is an important distribution in extreme value theory and found applications in many fields of applied
statistics and this includes: Seismography, life testing, insurance, earthquakes, flood, sea waves, rainfall, medicine,
and wind speeds. Some extensions of the Fréchet distribution have been studied in literature to model various types
of data and this include: the generalized Fréchet by [2,3], the beta Fréchet distribution by [4], Exponentiated
Fréchet Distribution by [5]. The Gamma Extended Fréchet Distribution by [6], Exponentiated Generalized Fréchet
Distribution by [7], Beta Exponential Fréchet Distribution studied by [8,9], proposed and studied the Beta
generalized exponentiated Fréchet distribution. Fréchet Weibull distribution and Fréchet Weibull mixture
distributions are, respectively, proposed and studied by Teamah et al. [10,11], Lehman Fréchet Poisson distribution
by [12] and Type II Half logistic Fréchet distribution by [13]. In this article, we introduce and study an extension
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of the Fréchet model called the Harris Extended Fréchet (HEF) distribution which is flexible and adaptable to
modeling lifetime data of varying degree of skewness.

Motivation of Study

We are motivated to extend the Fréchet distribution to a more flexible generalized form called the Harris
extended Fréchet distribution (HEF) distribution based on the following:

(i) When standard probability distribution is extended by the addition of shape parameter(s), it performs better
by providing a good fit when used to model extremely skewed data as compared to baseline [14].

(ii)) The goodness of fit can be improved upon with the addition of shape parameter(s).

(iii) To further analyse extensively, the tail properties of a distribution one can extend the underlying baseline
distribution by the addition of a shape parameter.

(iv) Complex statistical programmes are available such as R program, python, MATLAB, Mapple, etc. to handle
the complexity of the analysis.

The rest of the paper is organized as follows: In Section 2, we define the HEF distribution, give some plots for
its probability density function(pdf), cumulative density function (cdf), survival function (rf) and hazard rate
function (hrf). We derived the, quantile function, examine the asymptotic properties of HEF distribution, determine
its nature of skewness and kurtosis, obtain an expression for the " ordinary moment and incomplete moments,
mean deviations, Lorenz and Bonferroni curves, mean residual and mean inactivity time, moment generating
function, and Gini index in Section 3. The entropies (Rényi and f-entropies), probability weighted moments,
stress-strength reliability and the order statistics are derived in Section 4. In Section 5, simulation study was carried
out to evaluate the performance of the maximum likelihood estimates. The maximum likelihood estimates of the
HEF distribution parameters are the Fisher information matrix is discussed. In Section 6, the usefulness and the
flexibility of the HEF distribution is demonstrated by means of two real data sets. Finally, in Section 7 we make
concluding remarks.

2. Harris Extended Fréchet Distribution

Based on the branching process developed by [15], a random variable X follows a Harris Extended Fréchet
distribution if the Probability density function (pdf) is given by

F(x) = (Vrapx~HDeax (1 — g1 — e~ PA) Y, "
And the corresponding cumulative density function (cdf) to (1) is given by
F(x) =1— (VA1 — e ") (1= {[1 — e~ PA) ", o

where A, {, and p are positive shape parameters and a is a positive scale parameter. Figure 1 represent the plot of
pdf of HEF model with different values of the parameters.

®  Figure 1 indicates that the HEF distribution has proper pdf and that the pdf of the HEF model is non-
monotonic.
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Figure 1. Plots of the cdf and the pdf of the HEF distribution.
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An expression for the survival and the hazard functions are, respectively, given as

s(x) =1 - F(x) = {MA(1 — == ") (1 - (1 — e~ ]4) %) 3)

apx—(p+1)e—ax_"(1 —¢[1 - e—ax“’]l)

h(x) = (1 — e—ax‘P)

“

Figure 2 shows that the shape of the hazard function of HEF model can be increasing, decreasing, and
inverted-bathtub failure rates.
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Figure 2. Plots of the hazard function HEF distribution.

®  Figure 3 shows that as time increases the survival probability of the HEF distribution approaches zero.
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Figure 3. Plots of the survival function HEF distribution.
Similarly, the reversed hazard function of the HEF model is
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(141
g.1//1apx—(p+1)e,—ax—l’(1 1 - e_ax—p]l) (1+1/2)

Sidit L/ )
1- 01— e )1 —§[1 - e )

h(x) =

it should be noted that cumulative hazard function cannot be described as a probability function but take
cognizance of the risk measurement. The higher the value of the risk, the more the failure that will be observed over
time x. The cumulative hazard rate function can be represented mathematically as

H(x) = ¢n(1) — 1/,6n(c) + tn(1 — e ") — 1/,6n(1 — §[1 — e~ *]%). (6)

3. Statistical Properties of the HEF Model

The HEF model can be re-written to a reduced a model using generalized binomial series.

(1—hy =) (~DKR, ™
k=0

where, |4 < 1,k > 0. Now using the binomial series given in (7), The pdf of HEF model can be written as a mixture
model as

fx) = pz 8;jx P, ®)

i=0

where,

Ai
1/2+i_ Ai __. ;
sy =¢taay (I THChH@ -y

j=0

3.1. Quantile Function

To investigate the theoretical aspects of the probability distribution, we can employ the use of the quantile
function. Mathematically, the quantile function can be expressed in form of Q (p) =F (p). Correspondingly,
the quantile function of HEF model is

-1/p
,0<p<1. 9

. a-p D
«1-9@a-p)*
If we take p = 0.25, 0.5, 0.75, then will derive an expression for the lower (g:), middle (g2), and the upper
quartiles (g3), respectively, as

0w) = (- log1

-1/p

0= (~glog 1 ‘#7(375)1]) ' (10)
q: = (—%log [1 - ((1_0'—(_5)0.51])_1/’), (11)
and
1 0.25 /e
s = (- loa |1~ 7755 77)) (12

3.2. Asymptotic Behaviour of HEF Model

To determine the asymptotic behaviour, we have to examine, lirré f(x) = lim f(x).
P X—00
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Cl/,lapx—(p+1)e—ax_p g.1/,1apx—(p+1)e—ot:lc_"

gci—l}(} (1—¢g[1- e—ax‘P]A)(1+1//1) - :chIg (1-¢[1- e—ax—l’]/l)(1+1/z) =0 (13)

The result indicates that both limits are existing, hence the HEF model has conformed with the unimodal

distribution. However, since f{x) > 0 and % = 0 then (13) becomes
apx—(p+1)e—vtx"D [1 _ e—ax"’]

(p+1)
= 14
A-gi-earmy 0 (19

+apx~®tD — (1+1/,)

Solution to (15) cannot be obtained analytically because it is non-linear equation. The solution can only be
obtained using numerical process such as the Newton-Raphson iteration procedure.
3.3. Skewness and Kurtosis

The skewness and Kurtosis employed in statistical analysis to measure some desirable characteristics of a
distribution. Bowley’s skewness was developed using quartile by [16], and is of the form

_Q(0.75) — 2Q(0.5) + Q(0.25)
sk = Q(0.75) — Q(0.25)

Ref. [17] developed the Moore kurtosis using octiles and it can be estimated as
_ Q(0.875) — Q(0.625) + Q(0.375) — (0.125)
k= Q(0.75) — Q(0.25) '

where, 0(.) is the quantile function defined in (9). Table 1 gives the q1, ¢2, g3, Bsk, and A of the HEF model for
fixed values of a = 0.5, p = 1.2 and various values of ¢, and 4.

Table 1. Values of g1, g2, g3, Bsk, and -y of the HEF model.

G, A q q> qs3 Bsk Ak
0.1,0.1 1.0592 3.8174 21.1937 0.7260 0.0240
0.2,0.2 1.3166 4.4899 24.2670 0.7235 44714
03,03 1.4906 4.9405 26.3122 0.7249 44587
04,04 1.5618 5.1243 27.1432 0.7215 4.4540
0.5,0.5 1.5271 5.0348 26.7385 0.7217 44563
0.6, 0.6 1.4010 4.7088 25.262 0.7227 4.4650
0.7,0.7 1.2145 42237 23.0543 0.7244 4.4797
0.8,0.8 1.0097 3.6870 20.5946 0.7266 4.4990
0.9,09 0.8349 3.2249 18.4690 0.7289 4.5165

3.4. Moments of HEF Model

Moments are very properties for any statistical investigation, most especially in application areas. Suppose
X~HEF (a,c, p, 1), then many important features such as dispersion, skewness, measures of central tendency, and
kurtosis of the HEF model can be derived by using ordinary moments. The " raw moment of the HEF model is
obtained as

B =py = [ xfdx=py 8y [ xeeeanray, (15)
—oo i=0 )

Letting y = a(1+ j)x?,x = [a(1 + )]VPy=VP,dx = p~[a(1 + j)]V/Py~1/P~1dy, putting in (15), we
have

r

H= . Syl + 1o [ yrevax (16)
i=0 0

Finally, we have an expression for the " raw moment of HEF distribution as
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wo= Y 8,la(l+pIC/pr(A—r/p)ip>r. (17)
i=0

where I'(1 — r/p) is a gamma function. In the like manner, incomplete moments play a vital role in measuring

inequality. Hence, we can determine the lower incomplete moments, say, ys(t) is given by

t o t
YA =f x*f(x)dx = pz 51_‘]_ f xS—(P+D) g—a(1+))x™P g (18)
0 i=0 —0

Letting y = a(1 +j)x7?,x = [a(1 + )H]YPy~VP,dx = —p~'[a(1 + j)]¥/Py~Y/P~1dy, putting in (18),
we have

=S

it t
r® =y sylat+p)e? [ yrevax (19)
i=0 -

Finally, we have an expression for the v incomplete moment of HEF distribution as

Ys(®) = 8;jla(1+ NP pr(1-5/p, a1 + jHt);p > s. (20)
i=0

An expression for the first incomplete moment of HEF distribution is obtained by taken s = 1 in (19) and
given as

i) = ) 8 la(t + PITP/pr A~ 1/p,a(1 + ). @1
i=0
where I'(1 — l/p, a(l + j)t») is an incomplete gamma function. Consequently, an expression for the variance,
skewness and the kurtosis can respectively, be obtained as follows o2 = u) — [u1]% sk = 2 (Vuz) 2 and k, =
14 (112) 7% respectively. Where pt, = E[(x — pu1)"], s = —3pppy + 3 + 2(y)° and py = 6(u1)?p; — 3(u)* —
4pzpy + pa.
Tables 2 and 3 gives the values for the first six moments, variance (62), skewness, and kurtosis of HEF model
for fixed values of a and p and varying the values of ¢ and A.

Table 2. First six moments, o2, 8k, and k. of the HEF model.

a=55,p=105

Moments A=1.2, =14, A=138, A=125, A=155,
c=0.1 c=03 c=05 c=038 =08

Ui 1.1109 1.1741 1.2108 1.2411 1.2459

s 1.2454 1.3977 1.490 1.5673 1.5799

us 1.4120 1.6925 1.8699 2.0204 2.0455

Uy 1.6242 2.0935 2.4042 2.6706 2.7163

Us 1.9054 2.6625 3.1881 3.6440 3.7241

Ue 2.298 3.5173 4.4065 5.1862 5.3263

g 0.0113 0.0192 0.0240 0.0270 0.0276

Bk 2.8102 2.4078 2.0968 1.8687 1.7952

ku 19.7087 12.0421 11.2802 10.4996 10.8794

Table 3. Moments, 02, 8k, and ku of the HEF model.
a=21,p=175

Moments A1=0.2, A=04, A1=0.28, A=15, A=125,
c=0.1 c=03 c=05 c=0.38 =08

Ui 0.9759 1.0621 1.1306 1.1903 1.1957

s 0.9564 1.1446 1.3144 1.4680 1.4828

us 0.9415 1.2555 1.5855 1.8967 1.9281

Uy 0.9311 1.4101 2.0165 2.6153 2.6788
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Table 3. Cont.

a=21,p=175

Moments 1=02, A=104, A=038, A=15, A=25,
c=0.1 c=03 c=05 c=0.38 c=0.8

Us 0.9254 1.6408 2.7942 3.9919 4.1248

U 0.9245 2.0454 4.5971 7.3938 7.7160

a? 0.0040 0.0165 0.0361 0.0512 0.0531

Bk 1.1954 2.1987 2.5775 2.3735 2.2988

ku —5.2608 20.9734 19.3344 16.0091 15.8564

3.5. Mean Deviation

The amount of variability observed in a distribution can be measured using the deviations about the mean
and about the median. The mean deviation about the mean and the mean deviation about the median can be
estimated respectively, using

"
Ax) =2 [uF(u) - f xf(X)dx] 22)
0
and

M
Ay(x) = E(x) + 2MF(M) — M — 2 j xf(x)dx 23)
0

where p is the mean of HEF obtained from (17), taking r = 1, M is the median (g). Hence, we obtain

WF(R) = ) 8la(1+ )] Ppr(L - 1/p,a(l + Du~?)|
i=0

Al(x) =2

and

Ay(x) =E(x)+2MFM)—M -2 Z 8;jla(1 + NI Ppr(1—1/p,a(1 +j)M?)
i=0
3.6. Lorenz and Bonferroni Curves

Lorenz index (lp) was introduced by American economist [18]. He developed a graphical diagram that
illustrates wealth distribution called Lorenz curve. The Lorenz index is defined as

l —lfx d
PTy | xf(x)dx. (24)

The Lorenz plot is described as a plot of Lorenz index, Ip, versus x. Given below is an expression for the
Lorenz index for HEF distribution

_ 220 6jla(1 +)1AP/Pr(1—1/p, a(1+ j)MP)

l
P i20 0ijla(1 + H]A-P/Pr(1 - 1/p).

(25)

Bonferroni curve was developed by [19] as a measure of income inequality and was founded on partial means,
required when the source of income inequality is the occurrence of units whose income is much lower when
compared to others. The Bonferroni index, Bp, can be obtained using

B, = Ly
» = Flx) (26)

This is a plot of Bonferroni index versus x, and this index for HEF model is given by

5 2o 8jla(l + )P /,r(1-1/, a(l+)HM?)
PT1-gUA(1 - e ) (1 - {1 — e P 1a(TE, 8la(l+HIA-P/,I(1—1/p))
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3.7. Mean Residual Life and Mean Inactivity Time

The mean Residual life (MRL) can be used to describe the additional expected life span of a unit, which
happens to be alive at age x. It can be applied in many areas of life which includes; product quality control,
biomedical sciences, life insurance, demography among many others. The MRL is defined as

1-y1(t)

MRL(t) = E(X —t/x>t) = @ bt>0 27)

Consequently, we have

1-3%% 8ila(@+ NI /pr1—1/p,a(1+ )t *)

MRL(t) = cl/ﬂ'(l _ e_at_p)(l _ Z.[l _ e—at—p]ﬂ.)—l/ﬂ

(28)

The mean inactivity time (MIT) is used to describe the waiting time elapsed since the failure of an item
occurred on the condition that this failure occurred between an interval (0, t). Mathematically, it is represented as

A
F@®)'
20 8ila(1+HIAP/Pr(1-1/p,a(1+j)t?)
1-— (1/’1(1 _ e—at‘ﬂ)(l _ f[l _ e—at‘P]A)—l/A

MIT(x) =t

(29)

3.8. Moment Generating Function of HEF Model

The moment generating function (MGF) of a random variable X provides an alternative method that can be
used in describing the characteristics of a distribution. Mathematically, the MGF is defined as

My(t) = E(e™™) = Z %E(xr). (30)
r=0

Putting (17) in (30) for E(X") for HEF model, we obtain

Mu®) = Y by la+DICPpr(-r/p)p > (1)

i=r=0

By setting t = it in (31), we derived an expression for the characteristics function of the HEF model.

3.9. Gini Index

One of the well-known inequality indexes is the Gini index developed by [20], is defined as

1 (o]
G=—J- F(x) — F(x)?]dx, 32
)y F® ~F@?] (32)
Inserting (2) in (32), we have
G=—lx—v, j " griax gy — Via f " epat gy (33)
E(x) o ? o '

Consequently, taking z = jax and further u = pax™», we have

1

G =m{x—a1/”

jl/p ° -1/p-1,zu pl/P ° -1/p-1,-u
M;j— z etdz —M;;— u e , (34)
P Jo P Jy

Finally, we obtain an expression for the coefficient of Gini index as

- [x — a'Pr(=/p){M;j*/P — My, p"/*}]
PZ{"’:O 61,]'[6!(1 +])] ("—P)/P['(l_r/p)

(35)

where
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i=j=0

Ve o 1/A+i—1 A+l
=3« L HEDE!

i
and

o 2 k/A+1-1_Al+1 _
V= T HE ey

k:l:p:O

4. Entropies

The Rényi entropy of a random variable X with density function f(x) can be described as a measure
of variation off uncertainty or randomness and its defined (for { >0 and { # 1) by [21] as;

1
Ir() = 1= (.loy[M(()], (36)
where
MO = [ Foax (37)
Inserting (1) in (37), we have
‘ - - _ - 4
M@ = f [{1/lapx—(p+1)e—ax p(l —I1-ex P]A) (1+1//1)] dx (38)
Upon simplification, we obtain
{p+1) -1
M@ = nyr (S, (39)
p
where
- {A/A+ 1) +i—1_iA ._.( 1 )
=5 2afp%1 _aNimi [
nyy = ¢2apt ) ( l. NV (G
ij
Putting (39) in (36), we generate an expression for the Rényi entropy of HEF model as
1 {p+1)—-1
IR(Q) = 1= (log [nul‘ (f)] (40)
The f-entropy, 3, is defined by
1
Hg = F—1 log{1—(1-PB)Ir()}
Using, Ir({), we obtain an expression for the f —entropy of HEF model as
1 1 ((p+1)—1>]}
Hg = = 1log{l a-p 1= (log [ni,jl"< P) . (41)

4.1. Probability Weighted Moment (PWM)

The PWM is a better alternative to the existing moment for estimation of parameter, most especially in a
situation when maximum likelihood estimation procedure is difficult to apply or completely unavailable. It is
defined as

https://doi.org/10.56801/Jmasm.V24.i1.7 9 of 15
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Jrv = E[X"F(X)"] = f x"f()F(x)"d (x). (42)
If X ~ HEF (JI), then Jlrv is given by
- r+p+1
drv=a H'r 1 43
Z (—5—+1) @)

* i j— i St 1 e .
where, 3% = (VAT (I T (L) 7 (-,

4.2. Stress Strength Reliability

Here, we derived an expression for the stress-strength parameter of HEF model. Suppose X represents the
strength of a structure experiencing stress X», and if X; follows HEF (a, p,ci1, A1) and X, follows HEF (a, p, G2, A2)
given that X,and X, are independent random variables. Then the mathematical expression for the Stress-strength
Reliability () of HEF model is obtained as follows:

R = P(Xz < X1) = f fl(x; a,p, (1)11)F2(x; Qa,p, (Z!AZ)dx (44)
0

If X ~ HEF (JI), then R is given by

R=F(x;a,p {3 4) — ai;/18/% (€1 - Cy) (45)
where
o 1 1
5 i —+k—-1 ki, . )
_ A il Az 2\ ik _qvj+l (—)
ci= ), 10 w0 BV (T
1=]=k=l
And

1 1
~ T+m ma, T+P—1 PAz . AP
C, = Z ( Zm )( n )42 p )( q )¢1 CIZJ( 1) p(a(l +j+l))

4.3. Order Statistics

Given X1, X2, X3 ..., Xn as a random sample having CDF F(x). Let Xi.1, X2.n, X3, ..., Xnn 18 the ordered
sample of size n, then the density of j order statistics is given as

9@ =W ) DI DFOF@, (46)
i=0

n!
where W* =

m-r)lr!

Putting (1) and (2) in (46), followed by simply algebraic manipulation gives

n-r k. 1
i . n—-r i+j—1 v+3+1 Al+k
i) = 2apstiw Y (ke T AT gk
i=k=l=m=0

X flx—(p+1) e—(m+1)ax_p.

5. Maximum Likelihood Estimation (MLE)

Given that Xxi,X»,...,xn are the observed sample values from the HEF distribution. The log- likelihood
(1) function is defined as follows:
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1, 9,p) = n/;l0g(s) + nlog(a) + nlog(p) = (p+1) ) log(x) —a ) x7°
i=1 i=1

n (47)
x (1 + 1/1)2 log (1-(1-9[1- e—“x"’]l).
i=1

Maximizing l(a, ¢, p, 4) with respect to @, ¢, p and A, we derive the following system of nonlinear equations:

NN (MO "yl o
o Z, & ( )Z, a-a-oyh @
1 \\ yilogy
log@) + AZZ log(1— (1 - 9)¥i) - (1+;/A)  flogGi = (1= 51~ (49)
n_ N ) N -p N N (1—C)xi_pl"9(xi)e_axi_p}’i_
. ; log(xl)+a; 0B () — @+ ) ) S e T (50)
and
n v _
7 (143 “)Z[log(l—(l—c)yﬂ)l‘“ Gl

where y; = [1 — e™]. Solving Equations (47)—(51) simultaneously we produce the MLEs of & p 1, and ¢ To
obtain an approximate confidence interval (Cls) of the parameters of HEF model, it is necessary to obtain an
estimate of the elements of the variance covariance matrix D of the MLEs. The variance-covariance matrix D is
calculated by the observed information matrix D and

Sll 512 513 Sl4
SZl SZZ SZ3 524

. 2
Ss1 S32 Sz S (52)
S41 Saz Saz Sua

where Sij, i, =1, 2, 3, 4 represent the second partial derivatives of (47) with respect to a, p, 4, and a. This value
represents the Fisher’s information matrix analogous to a, p, A4, and @, respectively. the elements at the diagonal
of the matrix given in (52) is the values of the variance of the MLEs of to «, p, 4, and ¢, respectively. an estimated

100(1 — f)% confidence interval for {¢ as
{ctZa /v’dr((c),
Z

where (. = (&,p, 4, f),Zg is the upper (%) 100" percentile of normal distribution. The likelihood ratio (LR)
2

test can be used compare the performance of HEF model with its sub-models for any given lifetime data set. For
example, say, a = 1, the LR statistic is P = 2 [ln (L(&, D, A, f)) —In (L ((i, D, A f)))] ,where @, p, A and¢
are the unrestricted estimates and 5,1, and ¢ are the restricted estimates.

The LR test do not accept the null hypothesis if P > y2, where y? represent the upper 100% point of the
x? distribution with 1 degree of freedom.

6. Applications of the HEF Distribution

A comparison of the newly developed HEF distribution was carried out with the Harris Inverse Exponential
(HIE), Harris Inverted Weibull (HIW), Marshall Olkin Inverse Exponential (MOIE), Inverted Weibull (IW),
Inverse exponential (/E), and the Fréchet (F) distributions with the help of two lifetime data sets. We employ the
use of five goodness of fit criterion which are: Akaike information criterion (4/Cr), Consistent Akaike Information
Criterion (CAICr), Kolmogorov Smirnoff (K), Cramer-Von Mises (CrM), and the Probability value (Pv). The
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model with the smallest value of AICr, CAICr, K, CrM, and the highest Pv is considered the best model in the
class of models considered.

Data Set 1. The first data set is taken from [22]. The data are the number of million revolutions before failure
for each of the 23 ball bearings in the life test. The kernel density and the boxplots for the data shows that the
positively skewed. The kernel density and the boxplots for the failure time data is given in Figure 4 which shows
that the data is positively skewed. Table 4 gives the exploratory data analysis of the failure time data which
indicates that the data over-dispersed, leptokurtic. Table 5 presents the MLEs estimate of the model parameters
and the measures of goodness of fit.

Table 4. Exploratory data analysis for failure time data.

n qi Median Mean q3 Range Skewness Kurtosis Variance
23 47.20 67.80 73.85 101.88 155.52 0.79 3.14 1452.81
kernel density of failure data Boxplot for failure time data
= "/\\ \—
3 | ) i
\ I
\ 8 - |
\\\ :
g N :
z = '\.‘. s I
§ ) ,“"f \ o |
/ R 1
/ ’ h o !
[‘) 50 1(‘]0 1‘50 2(‘][)
N=23 Bandwidth =18.32
(a) Kernel density (b) Boxplots
Figure 4. Plots Kernel density and the Boxplots for failure time data.
Table 5. MLEs, standard error (in parenthesis), and measure of the goodness of fit for failure time data.
Estimated Parameter Measures of Goodness of Fit
Model a P 2 C =2l AICr CAICr K crM Py
20.71 1.15 2.62 23.91
HF (1031)  (023)  (1.67) (1775 239.15 24725 24947 0206 0.045 0.286
HIE 35.58 (:) 9.05 21.64 240.61  246.62 247.88 0297 0.067 0.034
- 1.12 0.74 29.12
HIW &) 036)  (032) (11.66) 263.16 26937 270.63 0398  0.038  0.001
MIE 2271 (:) (:) 219 25141 25542 25602 0255 0.041 0.100
- 091 - 26.39
MIw 264.81  268.82 26942 0395 0.038  0.002
(@) (0.11) ) (10.30)
21.21 0.83 - -
F 25696 25756 0277 0.045 0.058
(7.53) (0.09) ) )
- 0.323 - - 1.6e
mw 317.87  319.87 320.06 0.675 0.038
() 000) () (@) -9
IE (i) 38.20 (:) (:) 24754 24954 24973 0268 0.048  0.073
The variance covariance matrix for the failure data is given by
12 of 15
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3.0216e — 01 5.6369e - 02 —-3.1886e—-05 3.5015e—07
_ | 5.6369e — 02 1.8985e — 01 6.5723e—04 —7.2181e-—-0

—3.1887e - 05 6.5723e—04 3.2889e—-05 —3.6000e — 07

3.5016e - 07 -7.2181e—06 —3.60e—07 1.2205e - 09

The second dataset consists of the waiting times between 65 consecutive eruptions of the Kiama Blowhole.
The data consists of time between eruptions of a 1340 h period starting from July 12th of 1998 were recorded
using a digital watch. For details on this data set, see [23]. Figure 5 shows that the failure data is positively skewed.
Table 6 gives the exploratory data analysis of the failure time data which indicates that the data over-dispersed,
leptokurtic. Table 7 presents the MLEs estimate of the model parameters and the measures of goodness of fit.

o)
I

Table 6. Exploratory data analysis for waiting time data.

N q1 Median Mean qs3 Range Skewness Kurtosis Variance
64 14.75 28.0 39.83 60.0 162 1.54 5.77 1139.10
kernel density of waiting time data Boxplot for waiting data

0.015
|
150

0.010

100
1

Density

0.005
I

50
1

0.000
|

0 50 100 150 200

N=64 Bandwidth = 1322
(a) Kernel density (b) Boxplots
Figure 5. Plots Kernel density and the Boxplots for waiting time data.

Table 7. MLEs, standard error (in parenthesis), and measure of the goodness of fit for waiting time data.

Estimated Parameter Measures of Goodness of Fit
Model a P A C =2l AICr CAICr K crM Py
21.93 1.85 0.91 17.01

HF (58) (075  (06]) (2705 590.90 59890  599.58 0.082 0.128  0.781
13.69 — 18.86 17.64

HIE (3.25) O (251 (889) 5940  600.01 600.41 0125 0200 0270
- 1.23 0.72 19.10 8.6e

HIW o 023)  (020)  (482) 62782 63383 63423 0280 0116 T
25.40 — — 0.61

MIE 595.13  599.22  599.42  0.125 0.184 0267
(5.76) ) &) 0.27)

MIW - 1.11 - 2733 62090 62490 625.10 0241 0122  0.001
&) (0.09) &) (7.26)
24.49 1.09 — —

F 59498 59898  599.18 0.129 0.162 0238
(6.89)  (0.10) &) )
- 0.40 - -~ 2.2e

w 75229 75429 75435 0.632 0.116 :
(@) (0.04) (@) ) - 16

IE 2041 - - - 59835 60035 60042 0.162 0.157  0.069

255 () ()
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The variance covariance matrix for the time waiting data is given as

9.7337e — 07 —8.5025e—-07 —-2.7647e—-11 6.7547e —13
_|—8.5025e — 07 2.2269e — 02 1.5755e - 09 —3.8206e — 11
—2.7647e—11 1.5755e — 09 4.4396e —10 —1.0845e—11
6.7547e —13 —3.8206e—11 -1.0845e—11 2.894418e - 16

From Tables 5 and 7, it can be deduced that the HEF possessed the smallest AICr, CAICr, CrM, K, and
the largest Pv for the two data sets. Therefore, HEF can be considered the best model that fit the two data sets in
the class of model considered in this study and also supported by the fitted densities given in Figure 6.

o)
I

Estimated Pdfs for failure time data Estimated Pdfs for waiting time data

/
/
]
|

N

I

0.010
1
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i
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]
]
'

’
‘
0.005
1

[}

el | =

7
‘
’
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!
]
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i
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0.000

0.000
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x-value x-value

Figure 6. Fitted densities for the failure time and the Waiting time data.

7. Concluding Remarks

In this study, we proposed and developed a new generalization of Fréchet distribution named as Harris Extended
Fréchet (HEF) distribution. Statistical properties i.e., quantiles, moments, incomplete moments, moment generating
function, mean deviations, mean residual life and mean inactivity time, Probability weighted moments, stress-strength
reliability, Lorenz and Bonferroni curves, Rényi and S-entropies, Gine index, and order statistics of the new model
are derived. Maximum likelihood method is used to estimate the unknown parameters of the proposed model. Two
lifetime data sets are used to demonstrate the flexibility and the competitiveness of proposed model and finally
concluded that the new model may be better than other competing models considered in this study.
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