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JMASM Algorithms and Code 
JMASM10: A Fortran Routine For Sieve Bootstrap Prediction Intervals 

 
Andrés M. Alonso 

Department of Mathematics 
Universidad Autónoma de Madrid 

 
 
A Fortran routine for constructing nonparametric prediction intervals for a general class of linear 
processes is described. The approach uses the sieve bootstrap procedure of Bühlmann (1997) based on 
residual resampling from an autoregressive approximation to the given process.   
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Introduction 
 
When studying a time series, one of the goals is 
the estimation of forecast confidence intervals 
based on an observed trajectory of the process. 
The traditional approach of finding prediction 
intervals for a linear time series assumes that the 
distribution of the error process is known. Thus, 
these prediction intervals could be adversely 
affected by departures from the true underlying 
distribution. 

Some bootstrap approaches have been 
proposed as a distribution free alternative to 
compute prediction intervals. Stine (1987) 
proposed a bootstrap method to estimate the 
prediction mean squared error of the estimated 
linear predictor of an AR(p) where p is known. 
Also, for an AR(p) process with known p, and 
relaxing the assumptions of Stine (1987), 
Thombs and Schucany (1990) propose a  
backward then forward bootstrap method to 
estimate prediction intervals. Cao et al. (1997) 
study a conditional bootstrap method alternative 
to Thombs and Schucany's proposal, which is 
computationally faster. Pascual et al. (2001) 
generalize this conditional bootstrap to 
ARMA(p, q) processes with known p and q and  
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also include the parameter estimation variability. 
 This article describes a bootstrap 

method to construct nonparametric prediction 
intervals for a class of linear processes that can 
be written as a one-sided infinite-order moving 
average process with at most a polynomial decay 
of the coefficients { }+∞

=0jjψ . This class includes 

the stationary and invertible ARMA(p,q) 
processes. This approach uses the sieve 
bootstrap of Bühlmann (1997) based on residual 
resampling from a sequence of approximating 
autoregressions for { } Z∈ttX  with order p = p(n) 
that increases as a function of the sample size n.  

This sieve bootstrap has a nice 
nonparametric property, being model-free within 
the considered class of linear processes. Thus, 
the proposed bootstrap prediction intervals could 
be applied to this more general class of linear 
models without specifying a finite dimensional 
model as in previous bootstrap proposals. 
Alonso et al. (2002) and (2003) studied the 
consistency and the finite sample properties of 
this sieve bootstrap. 

 
Methodology 

 
Let { } Z∈ttX  be a real valued, stationary process 
with expectation [ ] XtXE µ=  that admits a 

MA(∞) representation with ∑+∞

=
∞<

0
2

j jψ . 

Under the additional assumption of invertibility 
{ } Z∈ttX  can be represented as a one-sided 
infinite-order autoregressive process:  
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∑+∞

= − ∈==−
0 0 ,1,)(

j tXjtj tX Zφεµφ  

           (1) 
 
with coefficients { }+∞

=0jjφ  satisfying 

∑+∞

=
∞<

0
2

j jφ . This AR(∞) representation 

motivates Bühlmann's sieve bootstrap. The 
method proceeds as follows: 
 
1. Given a sample { }nXXX ,,, 21 … , 
select the order p = p(n) of the autoregressive 
approximation by AICC criterion: AICC = 

)2/()1(2)log( 2 −−++− pnnpn σ , (cf. 
Section 9.3 of Brockwell &Davis, 1991). 

The AICC criterion is a bias-corrected 
version of AIC (Akaike, 1973), and it has a more 
extreme penalty for large-order models which 
counteracts the overfitting nature of AIC. Other 
order selection criteria (such as BIC) could be 
used, but  AICC is preferred assuming the view 
that the true model is complex and not of finite 
dimension, and also because the AICC is 
asymptotically efficient for autoregressive 
models, i.e., it chooses an AR model which 
achieves the optimal rate of convergence of the 
mean-square prediction error.  
2. Construct some estimators of the 
autoregressive coefficients: ( )pφφφ ˆ,,ˆ,ˆ

21 … . 
Following Bühlmann (1997) the Yule-Walker 
estimates are taken. 
3. Compute the residuals for t ∈ (p+1,p+2, 
…, n) by: 

 
.1ˆ),(ˆˆ

0 0∑ = − =−=
p

j jtjt XX φφε     
 

(2)

 
4. Define the empirical distribution 
function of the centered residuals: 

 
{ }∑ +=

− ≤−=
n

pt t xpnxF
1

1
~ ,~1)()(ˆ εε  

 
(3)

 
where )(ˆˆ~ •−= εεε tt  and 
 
                 ∑ +=

−• −=
n

pt tpn
1

1)( .ˆ)(ˆ εε  

5. Draw a resample *
tε  of i.i.d. 

observations from ε~F̂ . 

6. Define *
tX  by the recursion: 

∑ = − =−
p

j tjtj XX
0

** ,)( εφ  (4)

where the starting p observations are equal to 
.X  

In practice an AR(p) resample is 
generated using (4) with sample size equal to n 
+ 100 and then discard the first 100 
observations. Up to this step, the resampling 
plan coincides with the sieve bootstrap, and is 
valid for bootstrapping some statistics defined as 
a functional of a m-dimensional distribution 
function (see details in Section 3.3 of Bühlmann, 
1997). However, it is not effective for bootstrap 
prediction, because it does not replicate the 
conditional distribution of hnX + given the 
observed data. But, proceeding as do Cao et al. 
(1997) by fixing the last p observations 
resamples of the future values can be obtained 

*
hnX +  given ,1

*
1 +−+− = pnpn XX  

.,, *
2

*
2 nnpnpn XXXX == +−+− …  

7. Compute the estimation of the 
autoregressive coefficients: ( )**

2
*

1
ˆ,,ˆ,ˆ

pφφφ …  as 
in step 1. 
8. Compute the future bootstrap 
observations by the recursion: 

∑ = −+ +−−=
p

j tjtjhn XXXX
1

**** ,)(ˆ εφ  (5) 

where h > 0, and tt XX =* , for .nt ≤  

Finally, )(*
* xF

hnX +
 the bootstrap 

distribution of *
hnX +  is used to approximate the 

unknown distribution of hnX +  given the 
observed sample. As usual, a Monte Carlo 
estimate )(ˆ *

* xF
hnX +

 is obtained by repeating the 

steps 5 to 8 B times. The (1-α)% prediction 
interval for hnX +  is given by 

[ ])2/1(),2/( ** αα −QQ , where =(.)*Q  

(.)ˆ *
*

hnX
F

+
 are the quantiles of the estimated 

bootstrap distribution. 
 



ANDRÉS M. ALONSO 
 

241 

Fortran routines 
 
Module TimeSeriesRoutines 
 In the module TimeSeriesRoutines  are 
presented some routines required for the sieve 
bootstrap procedure: subroutine 
AutoCovarianceVector, subroutine YuleWalker, 
and subroutine AICCSelection. 
 
SUBROUTINE AutoCovarianceVector( 
ACVector, XSeries,MaxLag,Positions) 
IMPLICIT NONE 
REAL (KIND=8), DIMENSION(0:), 
INTENT(OUT) :: ACVector 
REAL (KIND=8), DIMENSION(:), 
INTENT(IN) :: XSeries 
INTEGER, INTENT(IN) :: MaxLag 
INTEGER, DIMENSION(:), INTENT(IN), 
OPTIONAL :: Positions 
 

This routine estimates the 
autocovariances of the XSeries for the orders 
from 0 to MaxLag. Notice that the 
implementation allows possible missing 
observations in the specified Positions. The 
expression for the autocovariance estimates is 
given by: 
 

1
1

ˆ ( )( ),n k
k t t k t t kn m t

w w X X X X−

+ +− =
γ = − −∑  (6) 

 

where m is the number of missing observations, 

∑ =
−−=

n

t tt XwmnX
1

1)(  and wt is equal 0 if 

the observation t is missing and otherwise is 
equal to 1.  

 
SUBROUTINE YuleWalker(XSeries, 
ACMatrix,YWPhi,Residuals) 
USE Msimsl 
USE Imslf90 
IMPLICIT NONE 
REAL (KIND=8), DIMENSION(:), 
INTENT(IN) :: XSeries 
REAL (KIND=8), DIMENSION(:,:), 
INTENT(IN) :: ACMatrix 
REAL (KIND=8), DIMENSION(:), 
INTENT(OUT) :: YWPhi 
REAL (KIND=8), DIMENSION(:), 
INTENT(OUT) :: Residuals 

 

This routine calculates the Yule-Walker 
estimates of the autoregressive coefficient 
required in the steps 2 and 7 of sieve bootstrap 
procedure. It also calculates the residuals for the 
estimated model. The Yule-Walker estimators 
can be obtained from the following relation (cf. 
Section 8.1 of Brockwell and Davis (1991)): 

 
,ˆˆˆ
pp γφΓ =p  (7) 

where pΓ̂  is the estimated autocovariance 

matrix [ ]p
jiji 1,

ˆ
=−γ , )'ˆ,,ˆ,ˆ(ˆ 21 pγγγ …=pγ  and  

)'ˆ,,ˆ,ˆ(ˆ 21 pφφφ …=pφ  is the coefficients vector. 
Using (2), the estimated residuals were obtained. 
 
SUBROUTINE AICCSelection(XSeries, 
ACVector,PMax,PHat) 
IMPLICIT NONE 
REAL (KIND=8), DIMENSION(:), 
INTENT(IN) :: XSeries 
REAL (KIND=8), DIMENSION(0:), 
INTENT(IN) :: ACVector 
INTEGER, INTENT(IN) :: PMax 
INTEGER, INTENT(OUT) :: PHat 
 

This routine implements the AICC 
method for selecting the order of the 
autoregressive model for XSeries. It considers 
models from p = 0 to p = PMax. Instead of using 
the subroutine YuleWalker for the different 
values of p, it uses the Durbin-Levinson 
algorithm (cf. Section 8.2 of Brockwell and 
Davis (1991)) which avoids the matrix inversion 
required in the direct computation of pφ̂ . The 
Durbin-Levinson algorithm uses the following 
recursions: 
 

,ˆ/)ˆˆˆ(ˆ
1

1

1 ,1, −
−

= −−∑−= m
m

j jmjmmmm vγφγφ  (8)

 

,

ˆ

ˆ
ˆ

ˆ

ˆ

ˆ
ˆ

ˆ

ˆ
ˆ

1,1

2,1

1,1

,

1,1

2,1

1,1

1,

2,

1,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−

−−

−−

−

−

− m

mm

mm

mm

mm

m

m

mm

m

m

φ

φ
φ

φ

φ

φ
φ

φ

φ
φ

###
 

(9)

and  
),ˆ1(ˆˆ 2

,1 mmmm vv φ−= −  (10)
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with the following initial values: 011,1 ˆ/ˆˆ γγφ =  

and ).ˆ1(ˆˆ 2
1,101 φγ −=v  

Notice that the subroutine 
AICCSelection can be easily modified in order 
to use other information criterion as AIC or BIC. 
Only the two following sentences required some 
minor changes: 
 
MinimumAIC = 
RXSize*LOG(ACVector(0)) + 
2.0D0*(REAL(I,KIND=8)+1.0D0)        
*RXSize/(RXSize - REAL(I+2,KIND=8)) 
 
WorkAIC = 
RXSize*LOG(VarianceVector(I)) 
+2.0D0*(REAL(I,KIND=8)+1.0D0) 
*RXSize/(RXSize - REAL(I+2,KIND=8)) 
 
Routine FESieves 
 Here are described the subroutine 
FESieves which implements the steps 2 to 8 of 
the sieve bootstrap procedure. Notice that the 
step 1 is implemented by subroutine 
AICCSelection.  
 
SUBROUTINE 
FESieves(EDF,XSeries,PHat) 
USE Msimsl 
USE Imslf90 
USE TimeSeries 
IMPLICIT NONE 
REAL (KIND=8), DIMENSION (:,:), 
INTENT(OUT) :: EDF 
REAL (KIND=8), DIMENSION (:), 
INTENT(IN) :: XSeries 
INTEGER, INTENT(IN) :: PHat 
 

The inputs of subroutine FESieves are: 
the sample XSeries = { }nXXX ,,, 21 …  and the 
selected order, PHat. The output is a MaxLag × 
B matrix, where MaxLag is the maximum 
prediction horizon to be considered and B is the 
number of resamples.  

 
Step 2 and 7 are implemented by the 

following sentences: 
 

CALL YuleWalker(XSeries, 
ACMatrix(1:PHat+1, 1:PHat+1), 
YWPhi, Residuals) 
 

CALL YuleWalker(WSeries(101:XSize + 
100), WACMatrix(1:PHat+1, 
1:PHat+1), WYWPhi, YWResiduals) 
 
where the WSeries  are the resample obtained 
using recursion (4). The estimates YWPhi are 
used in recursion (4) and  the bootstrap estimates 
WYWPhi are used in recursion (5). Also, in the 
first call to subroutine YuleWalker, the step 3 is 
performed. As mentioned in the previous 
section, a bootstrap resample was generated 
using (4) with sample size equal to XSize+100 
and then discard the first 100 observations by 
WSeries(101:XSize + 100). 

The resamples of step 5 are obtained by 
sampling with replacement from the vector of 
centered residuals, WResiduals = WResiduals - 
SUM(WResiduals) / REAL(XSize - PHat, 
KIND=8): 
 
DO I = 1, XSize + 100 + MaxLag ! a 
resample of centered residual 
   CALL RNUND(1, XSize-PHat,  
        RandomIndex)  
   RResiduals(I)=   
        WResiduals(RandomIndex)  
END DO 
 

Because recursions (4) and (5) are 
similar, here, it is only described the prediction 
recursion: 
 
DO I = XSize+101, XSize+100+MaxLag 
   WSeries(I) = RResiduals(I) 
   DO Ip = 1, PHat 
      WSeries(I) = WSeries(I) +  
           WYWPhi(Ip)*WSeries(I-Ip) 
   END DO 
END DO 
EDF(1:MaxLag,J)=WSeries(XSize+101:  
XSize+100+MaxLag) + XMean 
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Notice that in (5) the bootstrap 

autoregressive coefficient is used, WYWPhi, 
this allows us to incorporate the parameter 
estimation variability in the prediction intervals.  

Finally, the α/2 and (1-α/2) quantiles of 
the empirical density of forecasts, EDF, 
constitutes the prediction interval. 

 
 

 
 

Results 
 
In this section are briefly described the results of 
a simulation experiment using the Fortran 
subroutine presented in the previous section. The 
following models are used: 
• Model 1: Xt = 0.75 Xt-1 – 0.5 Xt-2 + εt, 
where εt are i.i.d. N(0,1). 
• Model 2: Xt = εt – 0.3 εt-1 + 0.7 εt-2, 
where εt are i.i.d. N(0,1). 

Table 1. Simulation results for Model 1. 
 

Lag Sample size Method Coverage (se) Cov. (below /above) Length (se) 
h n Theoretical 95% 2.50% / 2.50% 3.92 
1 25 Bootstrap 89.03 (0.82) 4.44 / 6.53 3.74 (0.07) 
 50  92.59 (0.52) 4.25 / 3.16 3.86 (0.05) 
 100  93.77 (0.33) 3.25 / 2.98 3.90 (0.04) 
h n Theoretical 95% 2.50% / 2.50% 4.92 
3 25 Bootstrap 87.50 (0.86) 5.41 / 7.09 4.30 (0.08) 
 50  92.08 (0.49) 3.97 / 3.95 4.69 (0.05) 
 100  93.21 (0.38) 3.53 / 3.26 4.77 (0.05) 
  

 
Table 2. Simulation results for Model 2. 

 
Lag Sample size Method Coverage (se) Cov. (below /above) Length (se) 
h n Theoretical 95% 2.50% / 2.50% 3.93 
1 25 Bootstrap 89.53 (0.85) 5.72 / 4.75 4.12 (0.08) 
 50  92.06 (0.62) 3.63 / 4.31 3.98 (0.06) 
 100  93.31 (0.43) 3.49 / 3.20 3.96 (0.04) 
h n Theoretical 95% 2.50% / 2.50% 4.93 
3 25 Bootstrap 89.19 (0.79) 5.15 / 5.66 4.52 (0.09) 
 50  91.50 (0.58) 3.85 / 4.65 4.62 (0.06) 
 100  92.49 (0.39) 3.19 / 4.32 4.68 (0.05) 
  

Table 3. Simulation results for Model 3. 
 

Lag Sample size Method Coverage (se) Cov. (below /above) Length (se) 
h n Theoretical 95% 2.50% / 2.50% 3.79 
1 25 Bootstrap 89.45 (0.66) 4.73 / 5.82 3.54 (0.06) 
 50  92.44 (0.45) 4.19 / 3.37 3.62 (0.04) 
 100  93.77 (0.36) 3.38 / 2.85 3.74 (0.04) 
h n Theoretical 95% 2.50% / 2.50% 3.93 
3 25 Bootstrap 89.20 (0.65) 4.90 / 5.90 3.58 (0.06) 
 50  92.79 (0.39) 3.68 / 3.53 3.75 (0.05) 
 100  93.84 (0.34) 3.03 / 3.13 3.88 (0.04) 
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• Model 3: Xt is a Gaussian process with 
autocovariance generating function equal to 

∑+∞

−∞=
=

k
k

k zzG γ)( , where .)1|(| 3−+= kkγ  

The autoregressive model was 
considered by Cao et al. (1997), the moving 
average model 2 by Pascual et al. (2001) and the 
model 3 by Alonso et al. (2002). Notice that 
neither model 2 nor model 3 admit a finite AR 
representation. Moreover, model 3 does not have 
an ARMA representation. 

To evaluate the prediction intervals, 
their mean coverage and length are used and the 
proportions of observations lying out to the left 
and to the right of the interval. These quantities 
are estimated as follows: 
a) For a combination of model, sample size 
and error distribution, simulate a series, and 
generate R = 1000 future values Xn+h. 
b) For the bootstrap procedure obtain the 
(1-α) prediction interval based on B = 1000 
bootstrap resamples.  
c) The coverage is estimated as 

{ } RQXQC r
hn /)2/1()2/(# ** αα −≤≤= + , 

where r
hnX +  with r = 1,2,…,R are the R future 

values generated in step a). 
In steps a) and b) the “theoretical” and 

bootstrap interval lengths are obtained using 
 

⎡ ⎤ ⎡ ⎤2/)2/1( αα R
hn

R
hnT XXL +
−

+ −=  
and 
 

),2/()2/1( ** αα QQLB −−=  
 

respectively. Finally, the steps a) – c) are 
repeated 100 times. 

The results are presented in Tables 1 – 
3, using three sample sizes n = 25, 50 and 100, 
nominal coverage 95% and the prediction lag h 
= 1 and 3. Essentially, similar results are 
obtained in all cases. Sieve bootstrap performs 
reasonably well in all considered models since 
the mean coverage and length tend to the 
nominal values as the sample size grows. Notice 
that for models 2 and 3 the sieve bootstrap never 
uses the correct model. The running time for 
these three experiments (using a Pentium 4, 
running at 2.66GHz) was 22.92, 24.40 and 27.82 
seconds, respectively. 

Conclusion 
 

It has been shown by Alonso et al. (2002) and 
(2003) that, for general linear process, if an AR 
approximation that grows with the sample size is 
used, it can derive a bootstrap for building 
prediction intervals that has the two following 
properties: first, the procedure is consistent, that 
is, it generates as prediction a random variable 
that converges in conditional distribution to the 
concerning variable; second, Monte Carlo 
simulations show that the proposed procedure 
provides better coverage results than previous 
methods in general cases. This article describes 
a Fortran routine that implement this sieve 
bootstrap prediction procedure. Additional 
simulation experiments confirm the correct 
behavior of the proposed procedure in finite 
samples. 
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Appendix I – Module TimeSeriesRoutines 
 
MODULE TimeSeriesRoutines 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: ZSeries  
 INTEGER :: p, d, q, ps, ds, qs, season 
 
CONTAINS 
 
SUBROUTINE AutoCovarianceVector(ACVector,XSeries,MaxLag,Positions) 
 IMPLICIT NONE 
 REAL (KIND=8), DIMENSION(0:), INTENT(OUT) :: ACVector 
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries 
 INTEGER, INTENT(IN) :: MaxLag 
 INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL :: Positions 
 ! Local variables 
 INTEGER :: K, I, J, XSize, NMissings 
 REAL (KIND=8) :: RXSize, XMean 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: Weights 
 
 ! First executable statement 
 
 XSize = SIZE(XSeries, 1) 
 ALLOCATE(Weights(XSize)) 
 Weights = 1.0D0 
 
 IF (PRESENT(Positions)) THEN  
 Weights(Positions) = 0.0D0 

NMissings = SIZE(Positions, 1) 
 RXSize = REAL(XSize - NMissings, KIND=8) 
 ELSE 
 RXSize = REAL(XSize, KIND=8) 
 END IF 
 
 XMean = SUM(XSeries*Weights)/RXSize 
 DO K = 0, MaxLag 
  ACVector(K) = DOT_PRODUCT(& 
  (XSeries((K+1):XSize) - XMean)*Weights((K+1):XSize), &  
   (XSeries(1:(XSize-K)) - XMean)*Weights(1:(XSize-K)))/RXSize 
 END DO 
 
 DEALLOCATE(Weights) 
END SUBROUTINE AutoCovarianceVector 
 
SUBROUTINE AutoCovarianceMatrix(ACMatrix,XSeries,MaxLag,MSize) 
 IMPLICIT NONE 
 REAL (KIND=8), DIMENSION(:,:), INTENT(OUT) :: ACMatrix 
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries 
 INTEGER, INTENT(IN) :: MaxLag, MSize 
! Local variables 
 INTEGER :: K, I, J, XSize 
 REAL (KIND=8) :: RXSize, XMean 
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 REAL (KIND=8), DIMENSION(0:MSize) :: ACVector 
 
 ! First executable statement 
 
 XSize = SIZE(XSeries, 1) 
 RXSize = REAL(XSize, KIND=8) 
 XMean = SUM(XSeries)/RXSize 
 DO K = 0, MaxLag+1 
  ACVector(K) = DOT_PRODUCT(XSeries((K+1):XSize) - XMean, &  
   XSeries(1:(XSize-K)) - XMean)/RXSize 
 END DO 
 DO I = 1, MaxLag+1 
  DO J = 1, MaxLag+1 
   ACMatrix(I,J) = ACVector(ABS(I-J)) 
  END DO 
 END DO 
END SUBROUTINE AutoCovarianceMatrix 
 
SUBROUTINE YuleWalker(XSeries,ACMatrix,YWPhi,Residuals) 
 USE Msimsl 
 USE Imslf90 
 IMPLICIT NONE 
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries 
 REAL (KIND=8), DIMENSION(:,:), INTENT(IN) :: ACMatrix 
 REAL (KIND=8), DIMENSION(:), INTENT(OUT) :: YWPhi 
 REAL (KIND=8), DIMENSION(:), INTENT(OUT) :: Residuals 
 ! Local variables 
 INTEGER :: MSize, XSize, I, J 
 REAL (KIND=8), DIMENSION(:,:), ALLOCATABLE :: A 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: B 
 INTEGER :: M, N, IERR, IOPT, IA, IB 
 
 ! First executable statement 
 
 MSize = SIZE(ACMatrix, 1) 
 XSize = SIZE(XSeries) 
 
 ! Initializing LSLDS variables 
 ALLOCATE(A(MSize-1, MSize-1), B(MSize-1)) 
 A = ACMatrix(1:(MSize-1), 1:(MSize-1)) 
 B = ACMatrix(2:MSize, 1) 
 M = MSize-1 
 
 ! Solving the Yule-Walker equations 
 CALL DLSLDS (M, A, M, B, YWPhi) 
 
 ! Calculating the YW residuals 
 Residuals = 0 
 DO I = (MSize+1), XSize 
  Residuals(I) = XSeries(I) 
  DO J = 1, MSize-1 
   Residuals(I) = Residuals(I) - YWPhi(J)*XSeries(I-J) 
  END DO 
 END DO 
 
 DEALLOCATE(A, B) 
END SUBROUTINE YuleWalker 
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SUBROUTINE AICCSelection(XSeries,ACVector,PMax,PHat) 
 IMPLICIT NONE 
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries 
 REAL (KIND=8), DIMENSION(0:), INTENT(IN) :: ACVector 
 INTEGER, INTENT(IN) :: PMax 
 INTEGER, INTENT(OUT) :: PHat 
 ! Local variables 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: VarianceVector 
 REAL (KIND=8), DIMENSION(:,:), ALLOCATABLE :: PPhi 
 REAL (KIND=8) :: VWork, WorkAIC, MinimumAIC, RXSize 
 INTEGER :: XSize, WorkP, I, J 
 
 ! First executable statement 
 
 ALLOCATE(VarianceVector(PMax)) 
 ALLOCATE(PPhi(PMax, PMax)) 
 XSize = SIZE(XSeries) 
 RXSize = REAL(XSize, KIND=8) 
  
 ! Durbin-Levinson Algorithm 
 
 PPhi = 0.0D0 
 PPhi(1, 1) = ACVector(1)/ACVector(0) 
 VarianceVector(1) = ACVector(0)*(1.0D0 - PPhi(1, 1)**2) 
 
 DO I = 2, PMax 
 VWork = 0 
 DO J = 1, I-1 
  VWork = VWork + PPhi(I-1, J)*ACVector(I-J) 
 ENDDO 
 PPhi(I, I) = (ACVector(I) - VWork)/VarianceVector(I-1) 
 DO J = 1, I-1 
  PPhi(I, J) = PPhi(I-1, J) - PPhi(I, I)*PPhi(I-1, I-J) 
 ENDDO 
 VarianceVector(I) = VarianceVector(I-1)*(1.0D0 - PPhi(I, I)**2) 
 ENDDO 
 
 I = 0 
 MinimumAIC = RXSize*LOG(ACVector(0))+2.0D0*(REAL(I, KIND=8)+1.0D0)* & 
  RXSize/(RXSize - REAL(I+2, KIND=8)) 
 WorkP = 0 
 DO I = 1, PMax 
  WorkAIC = RXSize*LOG(VarianceVector(I))+2.0*(REAL(I, KIND=8) & 

 +1.0)*RXSize/(RXSize - REAL(I+2, KIND=8)) 
  IF (WorkAIC < MinimumAIC) THEN 
   MinimumAIC = WorkAIC 
   WorkP = I 
  END IF 
 END DO 
 PHat = WorkP 
 
 DEALLOCATE(PPhi, VarianceVector) 
END SUBROUTINE AICCSelection 
 
END MODULE TimeSeriesRoutines 
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Appendix II – Routine FESieves 
 
SUBROUTINE FESieves(EDF, XSeries, PHat) 
 USE Msimsl 
 USE Imslf90 
 USE TimeSeries 
 IMPLICIT NONE 
 REAL (KIND=8), DIMENSION (:,:), INTENT(OUT) :: EDF 
 REAL (KIND=8), DIMENSION (:), INTENT(IN) :: XSeries 
 INTEGER, INTENT(IN) :: PHat 
 ! Local variables 
 INTEGER :: XSize, MaxLag, B 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: WSeries 
 REAL (KIND=8), DIMENSION(:,:), ALLOCATABLE :: ACMatrix 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: Residuals 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: YWPhi 
 REAL (KIND=8) :: XMean 
 
 ! First executable statement 
 
 XSize = SIZE(XSeries, 1) 
 MaxLag = SIZE(EDF, 1) 
 B = SIZE(EDF, 2) 
 ALLOCATE(WSeries(XSize), Residuals(XSize)) 
 ALLOCATE(ACMatrix(PHat+1, PHat+1), YWPhi(PHat)) 
 XMean = SUM(XSeries)/REAL(XSize, KIND=8) 
 WSeries = XSeries – Xmean 
 
 ! Steps 2 – 3 
 CALL AutoCovarianceMatrix(ACMatrix(1:PHat+1, 1:PHat+1), WSeries, &  
  PHat, PHat+1) 
 CALL YuleWalker(WSeries, ACMatrix(1:PHat+1, 1:PHat+1), YWPhi, &  
 Residuals) 
 
 ! Steps 4 – 8 
 CALL ESievesBootstrap(EDF,XSeries,YWPhi, Residuals, PHat, MaxLag, B) 
 
 DEALLOCATE(ACMatrix, YWPhi, WSeries, Residuals) 
 
CONTAINS 
 
SUBROUTINE ESievesBootstrap(EDF,XSeries,YWPhi,Residuals,PHat,MaxLag,B) 
 USE Msimsl 
 USE Imslf90 
 USE TimeSeries 
 IMPLICIT NONE 
 REAL (KIND=8), DIMENSION(:,:), INTENT(OUT) :: EDF 
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: XSeries 
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: YWPhi 
 REAL (KIND=8), DIMENSION(:), INTENT(IN) :: Residuals 
 INTEGER, INTENT(IN) :: PHat, MaxLag, B 
 ! Local variables 
 INTEGER :: XSize, I, J, Ip, RandomIndex, NOUT, ISEED 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: WResiduals, RResiduals 
 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: WSeries, WYWPhi 
 REAL (KIND=8), DIMENSION(:,:), ALLOCATABLE :: WACMatrix 
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 REAL (KIND=8), DIMENSION(:), ALLOCATABLE :: YWResiduals 
 REAL (KIND=8) :: XMean 
 
 ! First executable statement 
 
 XSize = SIZE(XSeries, 1) 
 
 ALLOCATE(WSeries(XSize+100+MaxLag)) 
 XMean = SUM(XSeries)/REAL(XSize, KIND=8) 
 WSeries(1:XSize) = XSeries - XMean 
 
 ALLOCATE(WResiduals(XSize - PHat)) 
 WResiduals = Residuals(PHat+1:XSize) 
 WResiduals = WResiduals - SUM(WResiduals)/REAL(XSize - PHat, KIND=8) 
 
 ALLOCATE(RResiduals(XSize+100+MaxLag), WYWPhi(PHat), &  

WACMatrix(PHat+1, PHat+1), YWResiduals(XSize)) 
 
 CALL UMACH (2, NOUT) 
 CALL RNGET (ISEED) 
 CALL RNSET (ISEED) 
  
 DO J = 1, B  
 ! Steps 4 – 5 
  DO I = 1, XSize+100+MaxLag 
    CALL RNUND(1, XSize - PHat, RandomIndex)  
    RResiduals(I) = WResiduals(RandomIndex)  
  END DO 
 
 ! Step 6 
  WSeries = RResiduals 
  DO I = PHat+1, XSize+100 
   DO Ip = 1, PHat 
     WSeries(I) = WSeries(I) + YWPhi(Ip)*WSeries(I-Ip) 
   END DO 
  END DO 
 
 ! Step 7 
  CALL AutoCovarianceMatrix(WACMatrix(1:PHat+1, 1:PHat+1), &  
  WSeries(101:XSize+100), PHat, PHat+1) 
  CALL YuleWalker(WSeries(101:XSize + 100), &  

WACMatrix(1:PHat+1, 1:PHat+1), WYWPhi, YWResiduals) 
   
 ! Prediction. Step 8 
 WSeries(101:XSize+100) = XSeries - XMean 
  DO I = XSize+101, XSize+100+MaxLag 
    WSeries(I) = RResiduals(I) 
   DO Ip = 1, PHat 
     WSeries(I) = WSeries(I) + WYWPhi(Ip)*WSeries(I-Ip) 
   END DO 
  END DO 
  EDF(1:MaxLag, J) = WSeries(XSize+101:XSize+100+MaxLag) + XMean  
 END DO 
 DEALLOCATE(WSeries, Residuals, RResiduals, WYWPhi, YWResiduals, &  
 WACMatrix) 
END SUBROUTINE ESievesBootstrap 
END SUBROUTINE FESieves 
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