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Assessing Treatment Effects in Randomized Longitudinal  

Two-Group Designs with Missing Observations 

 
 
 
SAS’s PROC MIXED can be problematic when analyzing data from randomized longitudinal two-group 
designs when observations are missing over time. Overall (1996, 1999) and colleagues found a number of 
procedures that are effective in controlling the number of false positives (Type I errors) and are yet sensitive 
(powerful) to detect treatment effects. Two favorable methods incorporate time in study and baseline scores to 
model the missing data mechanism; one method was a single-stage PROC MIXED ANCOVA solution and 
the other was a two-stage endpoint analysis using the change scores as dependent scores. Because the two-
stage approach can lack sensitivity to detect effects for certain missing data mechanisms, in this article we 
examined variations of the single-stage approach under conditions not considered by Overall et al., in order to 
assess the generality of the procedure’s positive characteristics. The results indicate when and when not it is 
beneficial to include a baseline score as a covariate in the model. As well, we provide clarification regarding 
the merits of adopting an endpoint analysis as compared to the single-stage PROC MIXED procedure. 
 
Keywords: Randomized designs, repeated measurements, missing data, PROC MIXED 
 
 

Introduction 
 
Overall and his colleagues (Ahn, Tonidandel, & 
Overall, 2000; Overall, Ahn, Shivakumar, & 
Kalburgi 1999, Overall, Ghasser, & Fiore, 1996) 
have provided very valuable information to 
biopharmaceutical researchers regarding the 
analysis  of data  from  randomized  longitudinal 
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two-group designs. In particular, they compared 
various formulations of SASs (SAS, 1995) 
PROC MIXED program for analyzing effects in 
repeated measures designs when data are 
missing over time, finding that many 
formulations did not provide effective Type I 
error control, while others lacked power to 
detect treatment effects. In their studies, they 
found that a number of analysis of covariance 
(ANCOVA) analyses, using baseline scores and 
time in study as covariates, provided effective 
Type I error control and were, among the 
procedures compared, relatively powerful to 
detect treatment effects. In particular, they found 
that a single-stage PROC MIXED (1999, p. 208) 
and several two-stage analyses (1999, pp. 205-
209) provided good results. Among the two-
stage analyses, the endpoint analysis had the 
largest estimated power. 
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Algina and Keselman (2003) however, 
compared the single-stage PROC MIXED  
analysis and endpoint analysis, as well as others 
presented in the literature, and found that though 
Overall et al.’s (1999) two-stage endpoint 
procedure had power similar to that of the other 
procedures when data were missing completely 
at random, it was lacking in power to detect 
treatment effects when data were not missing 
completely at random (See discussion below). 

For example, the two-stage power value 
in one condition was .26, while the other 
procedures investigated had values clustered 
around .60. On the other hand, Overall et al.’s 
single-stage procedure controlled rates of Type I 
error and was the most powerful (or second next 
most powerful in one case) procedure among 
those procedures that were never liberal. 
Moreover, with regard to bias and sampling 
variability its values were not very different 
from bias and sampling variability for the other 
procedures that did not exhibit liberal rates of 
Type I error. Thus, in the investigation reported 
herein, we only examined modifications of the 
single-stage PROC MIXED procedure 
enumerated by Overall et al. (1999) as well as 
another method to be described. 

The variations of the Overall et al. 
(1999) PROC MIXED   procedure that we 
investigated are based on their 
acknowledgement that there was some concern 
regarding “the propriety of ... including the 
baseline scores as both linear covariate and as 
one of the repeated measurements to which a 
linear regression model was fitted” (p. 267). 
Given the very positive operating characteristics 
of their approach to the analysis of longitudinal 
data with missing observations we thought it 
important to further investigate their method of 
analysis by comparing PROC MIXED models 
that do and do not include a baseline score as 
both a covariate and repeated measurement in 
the analysis. In addition, we vary other 
conditions such as drop out mechanism, number 
of repeated measurements, and pattern of 
parameters in order to assess the operating 
characteristics of their procedure over conditions 
not yet examined in order to assess the 
generality of their findings. 
 
 

Missing Data Mechanisms 
 To set the stage for our investigation we 
first discuss conditions under which data may be 
missing in randomized longitudinal two-group 
designs. 
 Consider a design in which N 
participants are randomly assigned to 2K =  
treatments. The researcher plans to observe each 
participant J times on the dependent variable, 
with the first observation prior to initiating a 
treatment and the remaining 1J −  observations 
following initiation of a treatment.  The effect of 
primary interest, typically, is whether there are 
differential rates of change over time, that is, 
whether there is a group by time interaction.  

Let ijkY  denote a random variable 

underlying the score, in treatment k ( )1,2k = , 
for participant i  ( )1, , ki n= … , on occasion j 

( )1, ,j J= … .  A possible model for the subject-
specific regression of the dependent variable on 
time of measurement is 
 

ik ik ikβ ε= +y X  
 
where ( )1 , ,ik i k iJkY Y′ =y " , ikβ  is an 
unobservable r-dimensional random vector, ikε  
is a J-dimensional random vector,   
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and 1, , Jt t…  indexes time of measurement.  We 
assume ( )2~ 0,ik JNε σ I .  

In this paper we focus on situations in 
which it is reasonable to assume that the subject-
specific regressions are well described by a 
linear trend. Therefore  
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and ( )0 1ik i k i kβ β β′ = . The between-subjects 
model for ikβ  is 
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      (1) 

where 0z =  for the first treatment and 1 for the 
second treatment. More compactly 
 
                            ikβ γ= +W u .   
We assume that ( )~ ,Nu 0 D .   

In randomized longitudinal two-group 
designs, participants may not be observed on all 
occasions. In general, the correct method of 
analysis depends on the missing data 
mechanism. Using an incorrect method can 
result in inconsistent estimates of the 
parameters.  The design considered in this paper 
is a special case of the longitudinal design 
considered by Little (1995). Little presented his 
review in the context of monotone missing data 
patterns, a context we adopt here. That is, we 
assume that if a participant is not observed on a 
particular occasion, the participant is not 
observed on any subsequent occasion.   

In order to clarify missing data 
mechanisms, we employ a random coefficients 
selection model perspective to the analysis of 
missing data in longitudinal data. Let ikJ  denote 
the last occasion at which participant i  in group 
k was observed and 

ikJt  the value of t for this 
time point and let iky  be partitioned as 

( ), ,ik obs ik miss ik′ ′ ′=y y y , ikR J=  if the participant 

has complete data, and ik ikR J= , otherwise.  
According to Little (1995), in this approach the 
joint distribution of iky , ikβ , and ikR  is factored 
as 

 
( )
( ) ( ) ( )

, , | ,

| , , | | , , , .
ik ik ik

ik ik ik ik ik ik

f R

f f f R

β

β β β

=y X W

y X W W X W y
In our context, the model for ( )| , ,ik ikf βy X W  
is  

( ) ( )2| , , ~ ,ik ik JNβ γ σ+y X W W Xu I  

and  
( ) ( )| ~ ,ik Nβ =W u 0 D . 

 

The model for ( )| , , ,ik ik ikf R βX W y  is the 
model for the missing data mechanism. The data 
are referred to as missing completely at random 
(MCAR) if  
 

( ) ( )| , , ,ik ik ik ikf R f Rβ =X W y . 
 

(See, e.g., Rubin, 1976; Little, 1995; Little & 
Rubin, 1987). That is, the data are MCAR if the 
probability of a particular data point being 
missing does not depend on either iky , ikβ , X  or 
W .  The missing data mechanism is called 
covariate dependent (CD) if the probability of a 
particular data point being missing does not 
depend on either  

iky , ikβ :  

( ) ( ), ,| , , , , | ,ik obs ik miss ik ik ikf R f Rβ =X W y y X W . 
 

The missing data mechanism is called missing at 
random (MAR) if  

 
( ) ( ), , ,| , , , , | , ,ik obs ik miss ik ik ik obs ikf R f Rβ =X W y y X W y , 

 
that is, the probability of a particular data point 
being missing does not depend on either ,miss iky  
or ikβ . Following Verbeke and Molenberghs 
(2000, p. 213), a missing data mechanism that 
does not meet any of these criteria can be 
referred to as missing not at random (MNAR). 
Consistent estimates for γ  can be obtained from 
the likelihood for ,obs iky  and ikR .  However if 
the data are MCAR, CD, or MAR (and if the 
parameters of the missing data mechanism are 
distinct from the parameters for the data), 
consistent estimates can be obtained by 
maximizing the likelihood for ,obs iky , a process 
that is called ignoring the missing data 
mechanism. Thus, for the purposes of estimating 
the fixed effects, the missing data mechanism is 
ignorable if the mechanism is MCAR, CD or 
MAR, but the missing data mechanism is non-
ignorable if the mechanism is MNAR.   

Hedeker and Gibbons (1997) noted that, 
frequently, missing data are related to 
performance or other characteristics of 
participants. (See Schafer, 1997, Ch. 2, for other 
examples of studies where MAR is a reasonable 
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model of “missingness”). Accordingly, MAR 
may very well be a reasonable process to 
presume for the missing data in a study. It 
should be noted that to legitimately ignore the 
missing data mechanism for estimation 
purposes, not only must the data be missing at 
random, but also, the parameters of the missing 
data mechanism must be independent of the 
parameters of the data model (Schafer, 1997). 
This independence or distinctness of parameters 
is quite realistic in many contexts (e.g,, Schafer, 
1997, p. 11-15). When the missing data 
mechanism is ignorable, numerical results can 
easily be obtained with commercially available 
software, e.g., the SAS (1995) PROC MIXED  
program (see Littell et al., 1996). 
 
Overall et al.’s (1999) Approach 

Overall and his colleagues (See Overall 
et al., 1999) investigated an ANCOVA approach 
using the baseline score on Y ( )1i kY and the 
number of available measurements for 
participant i  as covariates. Their model is 

 
0 1ijk ik ik j ijkY tβ β ε= + +  

0 00 01 02 03 1 0ik ik i k iJ z Y uβ λ λ λ λ= + + + +  

1 10 12 1ik iz uβ λ λ= + + . 
 

PROC MIXED  code (See Overall et al., 1999, 
p. 208) for the model is 
 
proc mixed method=ml; 
class id group; 
model score=nrm scr1 group time 
time*group/solution; 
random intercept time/type=un subject=id; 
 
The variable nrm is the number of measurements 
(time in study) available for a participant. The 
variable scr1 is the baseline score. As Overall et 
al. (1999, p. 193) note “The covariates entered 
the PROC MIXED model statement in numeric 
form by being excluded from the class 
statement.”    
 In this article, we compare Type I error 
and power for the test of equality of average 
slopes, bias in the difference in the average 
slopes, and the variability in estimating this 

difference as a function of the covariates 
included in the model. 
 

Methodology 
 
Four methods of examining the group by time 
interaction effect in a randomized longitudinal 
two-group design were examined. Specifically, 
the methods (with their acronyms) were: 

 
(1) PROC MIXED analysis that presumes the 
data are missing at random (PMMAR), 
(2) Overall et al.’s (1999) PROC MIXED 
analysis that uses scr1 as a covariate (SCR1), 
(3) Overall et al.’s (1999) PROC MIXED 
analysis that uses nrm as a covariate (NRM), 
(4) Overall et al.’s (1999) PROC MIXED 
analysis that uses scr1 and nrm as covariates  
(SCR1&NRM). 
 
It should be noted that PMMAR is Overall et 
al.’s procedure without any covariates. 

We investigated three factors in our 
study: number of equally spaced levels of the 
repeated measures variable (5 and 9), missing 
data mechanism (MCAR, MAR and MNAR), 
and covariance structure for the repeated 
measures. (The variations on the covariance 
structure are presented when we describe the 
model we used to simulate the data.) Overall and 
his colleagues (See Ahn, Tonidandel and 
Overall, 2000; Overall et al., 1999; Overall et 
al., 1996) examined the group by time 
interaction effect in a design containing a 
baseline score and eight additional repeated 
measurements; thus, for comparative purposes 
we had nine levels for one of our cases of 
number of repeated measurements. For 
examining generality of results, we also included 
a smaller case, that is, five levels.  

To compare the procedures, we 
simulated data for a situation in which 
participants are randomly assigned to treatments. 
We used the following equation to generate data 
for the ith participant, in group k on the jth 
occasion: 

0 1ijk i i j ijkY tβ β ε= + +                 (2). 
 
In each treatment group, data were simulated for 
100 participants. The variable jt  was coded (0, 
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0.23077, 0.46154, 0.69231, 0.92308, 1.15385, 
1.38462, 1.61538, 1.84615). To get the codes for 
conditions with five time points we eliminated 
the last four codes. 

The mean for 0iβ  was 50 in both 
groups, implying that both treatment groups had 
the same population pretest mean. For Type I 
error data, the mean for the slope was 4.5 in 
treatment 1 and treatment 2 [ 11 0γ = , where 11γ  
is defined in equation (1)], indicating identical 
average rates of increase over time, hence, a null 
condition. For our power comparisons, the slope 
was 9.0 in treatment 2 and 4.5 in treatment 1 
( 11 4.5γ = ) when there were nine occasions and 
12.5 in treatment 2 and 4.5 in treatment 1 
( 11 8γ = ) when there were five occasions. The 
slopes for treatment 2 were selected to provide 
similar power for both levels of the number of 
occasions factor. The errors ( ijkε ) were assumed 
to be uncorrelated for different times of 
observation. This does not imply that the scores 
were uncorrelated over time. Allowing the slope 
and intercept to vary across participants implies 
that scores were correlated over time. The 
variance for the residuals, conditional on time, 
was 240. In half of the conditions the covariance 
matrix (D) for the intercept and slope was 
 

15.21 -12.42
-12.42 82.81
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D . 

 
The correlation between the slope and intercept 
was -.35, indicating that participants with higher 
pretest status increased less rapidly. In the other 
half of the conditions we changed the covariance 
to 12.42 from -12.42 and retained all other 
features of the design.  Changing the covariance 
for the slope and intercept changes the 
covariance structure for the repeated measures.  
It should be noted that Overall et al. assumed 
that there was no between-subjects variation in 
the subject-specific slopes.  The correlation in 
their repeated measurements was due to the 
random intercept and correlation in the residuals 
in equation (2).  Thus, we investigated the 
performance of Overall et al.’s procedure, as 
well as the alternatives, for different correlation 
structures than Overall et al. employed. 

Overall et al. (1999) investigated three 
variations on the missing data mechanism, 
which they called completely random, treatment 
dependent, and treatment and baseline 
dependent.  In each 30% of the simulated 
participants dropped out of the study. In the 
completely random condition dropping out was 
not related to scores on the repeated measures, 
time, or the treatment indicator. Thus the 
completely random condition meets the 
requirements for a MCAR mechanism. In the 
treatment dependent condition, dropping out was 
not related to scores on the repeated measures or 
time but was related to the treatment indicator: 
two-thirds of the dropouts came from the 
treatment group. The treatment dependent 
condition meets the requirements for a CD 
mechanism.   

In the treatment and baseline dependent 
condition, missing data were related to the 
random effects for the intercept with dropouts 
from the treatment group coming from those that 
had a subject-specific intercept above the mean 
and dropouts from control group coming from 
those that had a subject-specific intercept below 
the mean. Thus, the treatment and baseline 
dependent condition employed a MNAR missing 
data mechanism. 

In our study, once the data were 
generated, data were eliminated according to a 
MCAR, a MAR, or one of two MNAR missing 
data mechanisms. As indicated in our 
introduction, when the missing data mechanism 
is MNAR, ignoring the mechanism can result in 
inconsistent estimates of the unknown 
parameters. To select missing observations we 
used the following model  
           
          ( )1 2 0 3 1 4 51ijk j i i ijki j kZ Y Yθ θ β θ β θ θ−= + + + + . 

 
An observation was set as missing if 

( )ijk ijkU Zφ<  where ijkU  is a uniformly 

distributed random variable and φ  is the 
standard normal distribution. The missing data 
mechanism is MCAR if 2 3 4 5 0θ θ θ θ= = = = , 
MAR if 2 3 5 0θ θ θ= = =  and MNAR if 2θ , 3θ , 
or 5θ  is not equal to zero.  In one MNAR 
mechanism only 2θ  and 3θ  were not equal to 
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zero (MNAR-SI). In the other MNAR 
mechanism, only 5θ  was not equal to zero 
(MNAR-Y). The values of 1 jθ  were selected to 
give cumulative missing data rates between 30% 
and 40% at the ninth occasion.  In all conditions 
missing data conformed to a monotone drop out 
pattern. That is, if a simulated respondent had 
missing data on occasion j, the respondent had 
missing data on all subsequent occasions. Thus 
we investigated the performance of Overall et 
al.’s procedure, as well as variations, for 
different missing data mechanisms than Overall 
et al. employed. In particular our MAR and 
MNAR conditions were different than those 
employed by Overall et al. (1999). 

Figure 1 shows estimated proportions of 
participants remaining in the study at each 
occasion in the non-null condition with a 
negative correlation between the slope and 
intercept and nine time points under the MCAR, 
MAR, MNAR-SI and MNAR-Y mechanisms. 
To obtain these estimates, 100,000 data points 
were generated for each treatment group. (For 
the MCAR mechanism, a total of 100,000 data 
points were generated since in our MCAR 
condition the drop out rate was the same in both 
treatments.)  For our MAR condition the 
probability of dropping out at occasion j was 
positively related to the participant’s score at 
occasion 1j − . For our MNAR-SI condition the 
probability of dropping out at occasion j was 
positively related to the participant’s intercept 
and slope.  For our MNAR-Y condition the 
probability of dropping out at occasion j was 
positively related to the score the participant 
would have attained at occasion j if the 
participant had not dropped out. 

Thus in all panels of Figure 1, except the 
top right, drop out rates are higher for the 
treatment group with the average slope equal to 
9 (treatment 2).  Drop out rates vary across type 
of missing data mechanism; however, because 
we will compare methods for a particular 
mechanism, and not the performance of a 
method across mechanisms, this variation in 
drop out rates across mechanisms is not 
problematic. Each condition was replicated 2500 
times. When there were five time points, the 
drop out rates for the jth time point (j = 1, …, 5) 
were equal to the drop out rates for the jth time 

point in the design with nine time points. All 
hypothesis tests were conducted with a nominal 
alpha of .05. 

 
Results 

 
Type I error rates and power are reported in 
Table 1 for the MCAR and MAR conditions and 
in Table 2 for the MNAR conditions.  All 
procedures exhibited adequate control of the 
Type I error rate. Power differences were 
negligible in the MCAR conditions and in the 
MAR conditions when the correlation between 
the slope and intercept was positive and very 
small in the MAR conditions when the 
correlation between the slope and intercept was 
negative.  Larger differences emerged in the 
MNAR conditions and clearly indicated lower 
power for the PMMAR procedure than for the 
other procedures. Among the remaining 
procedures NRM is the most powerful, though 
the advantage is fairly small, ranging from about 
.004 to .061. 

Table 3 contains means and standard 
deviations (empirical standard errors) of the 
estimates for the MCAR and MAR conditions 
when 11 0γ = .  Table 4 contains the same 
information for the MNAR conditions.  When 

11 0γ = none of the procedures had an average 
estimate that was significantly different from 
zero and, across all conditions, empirical 
standard errors were fairly similar. 

Table 5 contains means and standard 
deviations of the estimates for the MCAR and 
MAR conditions when 11 0γ ≠ .  As expected 
from theory PMMAR produced unbiased 
estimators under the MCAR and MAR missing 
data mechanisms. The other procedures 
produced unbiased estimators in the MCAR 
conditions and in the MAR conditions when the 
correlation between the slope and intercept was 
positive.  When the correlation between the 
slope and intercept was negative with MAR 
data, all procedures, except PMMAR (No/No) 
produced slightly biased estimators. The 
estimator for the NMR (No/Yes) procedure was 
less biased, although the difference was small. 
(Biased estimators are delineated in the tables in 
bold face type.) 
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Figure 1. Percent of Data that is Not Missing by Occasion and Missing Data Mechanism 
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Table 1. Type I Error and Power Rates for MCAR and MAR Conditions. 

 
Missing 

Data 
  

Covariates 
 

5-levels 
 

9-levels 
 

Mechanism 
 

Correlation 
 

SCR1 
 
NRM 

 
Type I Error 

 
Power 

 
Type I Error 

 
Power 

 
MCAR 

 
Positive 

 
No 

 
No 

 
.046 

 
.623 

 
.056 

 
.613 

   
Yes No .046 .624

 
.056 

 
.607

   
No Yes .046 .624

 
.056 

 
.613

   
Yes Yes .046 .625

 
.055 

 
.608     

Negative 
 

No 
 

No 
 

.052 
 

.628 
 

.054 
 

.614 
   

Yes 
 

No 
 

.055 
 

.623 
 

.055 
 

.601 
   

No 
 
Yes 

 
.052 

 
.630 

 
.054 

 
.614 

   
Yes 

 
Yes 

 
.054 

 
.623 

 
.055 

 
.601 

  
 

      
 

MAR  
 

Positive 
 

No 
 

No 
 

.048 
 

.592 
 

.048 
 

.604 
   

Yes 
 

No 
 

.052 
 

.592 
 

.049 
 

.602 
   

No 
 
Yes 

 
.050 

 
.594 

 
.048 

 
.604 

   
Yes 

 
Yes 

 
.053 

 
.592 

 
.047 

 
.604 

  
 

      
  

Negative 
 

No 
 

No 
 

.055 
 

.616 
 

.049 
 

.607 
   

Yes 
 

No 
 

.052 
 

.625 
 

.045 
 

.615 
   

No 
 
Yes 

 
.056 

 
.632 

 
.044 

 
.631 

   
Yes 

 
Yes 

 
.052 

 
.622 

 
.044 

 
.616 
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Table 2. Type I Error and Power Rates for MNAR Conditions. 
 

 
Missing 

Data 

  
Covariates 

 
5-levels 

 
9-levels 

 
Mechanism 

 
Correlation 

 
SCR1 

 
NRM 

 
Type I Error 

 
Power 

 
Type I Error 

 
Power 

 
MNAR-SI 

 
Positive 

 
No 

 
No 

 
.056 

 
.236 

 
.061 

 
.356 

   
Yes 

 
No 

 
.056 

 
.363 

 
.061 

 
.414 

   
No 

 
Yes 

 
.055 

 
.383 

 
.060 

 
.423 

   
Yes 

 
Yes 

 
.055 

 
.363 

 
.061 

 
.414 

  
 

      
  

Negative 
 

No 
 

No 
 

.052 
 

.237 
 

.056 
 

.303 
   

Yes 
 

No 
 

.052 
 

.418 
 

.047 
 

.453 
   

No 
 
Yes 

 
.049 

 
.474 

 
.049 

 
.525 

   
Yes 

 
Yes 

 
.053 

 
.420 

 
.047 

 
.464 

  
 

      
 
MNAR-Y  

 
Positive 

 
No 

 
No 

 
.055 

 
.507 

 
.051 

 
.553 

   
Yes 

 
No 

 
.055 

 
.552 

 
.051 

 
.562 

   
No 

 
Yes 

 
.053 

 
.556 

 
.051 

 
.571 

   
Yes 

 
Yes 

 
.054 

 
.550 

 
.051 

 
.560 

  
 

      
  

Negative 
 

No 
 

No 
 

.053 
 

.514 
 

.053 
 

.519 
   

Yes 
 

No 
 

.050 
 

.581 
 

.052 
 

.600 
   

No 
 
Yes 

 
.046 

 
.604 

 
.055 

 
.622 

   
Yes 

 
Yes 

 
.050 

 
.577 

 
.052 

 
.597 
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Table 3. Mean and Standard Deviation of the Difference between the Control and Treatment Group 
( 11 0γ = ): MCAR and MAR Conditions. 
 

 
Missing 

Data 

  
Covariates 

 
5-levels 

 
9-levels 

 
Mechanism 

 
Correlation 

 
SCR1 

 
NRM 

 
MEAN 

 
SD 

 
MEAN 

 
SD 

 
MCAR 

 
Positive 

 
No 

 
No 

 
0.068 

 
3.544   

 
0.044 

 
2.056 

   
Yes 

 
No 

 
0.069 

 
3.557   

 
0.045 

 
2.073 

   
No 

 
Yes 

 
0.067 

 
3.544   

 
0.044 

 
2.056 

   
Yes 

 
Yes 

 
0.069 

 
3.557   

 
0.045 

 
2.074 

  
 

      
 

 
 

Negative 
 

No 
 

No 
 

0.047 
 

3.518 
 

0.023 
 

2.018 
   

Yes 
 

No 
 

0.051 
 

3.548 
 

0.027 
 

2.050 
   

No 
 
Yes 

 
0.048 

 
3.518 

 
0.023 

 
2.019 

   
Yes 

 
Yes 

 
0.051 

 
3.548 

 
0.027 

 
2.049 

  
 

      
 

MAR 
 

Positive 
 

No 
 

No 
 

0.003 
 

3.543 
 

-0.016 
 

2.066 
   

Yes 
 

No 
 

-0.017 
 

3.579 
 

-0.009 
 

2.067 
   

No 
 
Yes 

 
-0.006 

 
3.541 

 
-0.016 

 
2.037 

   
Yes 

 
Yes 

 
-0.015 

 
3.568 

 
-0.012 

 
2.047 

  
 

      
 

 
 

Negative 
 

No 
 

No 
 

-0.047 
 

3.622 
 

-.004 
 

1.973 
   

Yes 
 

No 
 

-0.088 
 

3.610 
 

-.019 
 

2.006 
   

No 
 
Yes 

 
-0.078 

 
3.558 

 
-.021 

 
1.954 

   
Yes 

 
Yes 

 
-0.084 

 
3.600 

 
-.017 

 
1.994 
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Table 4. Mean and Standard Deviation of the Difference between the Control and Treatment Group 
( 11 0γ = ): MNAR Conditions. 
 

 
Missing 

Data 

  
Covariates 

 
5-levels 

 
9-levels 

 
Mechanism 

 
Correlation 

 
SCR1 

 
NRM 

 
MEAN 

 
SD 

 
MEAN 

 
SD 

 
MNAR-SI 

 
Positive 

 
No 

 
No 

 
0.024 

 
3.809 

 
0.009 

 
2.049 

   
Yes 

 
No 

 
0.022 

 
3.810 

 
-0.007 

 
2.053 

   
No 

 
Yes 

 
0.024 

 
3.765 

 
0.004 

 
2.039 

   
Yes 

 
Yes 

 
0.020 

 
3.807 

 
-0.006 

 
2.049 

  
 

      
 

 
 

Negative 
 

No 
 

No 
 

0.058 
 

3.667 
 

-0.010 
 

2.015 
   

Yes 
 

No 
 

0.071 
 

3.706 
 

0.002 
 

2.023 
   

No 
 
Yes 

 
0.054 

 
3.610 

 
-0.004 

 
1.946 

   
Yes 

 
Yes 

 
0.071 

 
3.702 

 
0.004 

 
2.018 

  
 

      
 
MNAR-Y 

 
Positive 

 
No 

 
No 

 
-0.040 

 
3.608 

 
-0.054 

 
1.929 

   
Yes 

 
No 

 
-0.035 

 
3.601 

 
-0.054 

 
1.937 

   
No 

 
Yes 

 
-0.039 

 
3.582 

 
-0.053 

 
1.928 

   
Yes 

 
Yes 

 
-0.036 

 
3.599 

 
-0.056 

 
1.935 

  
 

      
 

 
 

Negative 
 

No 
 

No 
 

-0.087 
 

3.564 
 

-0.022 
 

2.037 
   

Yes 
 

No 
 

-0.097 
 

3.506 
 

-0.026 
 

1.990 
   

No 
 
Yes 

 
-0.094 

 
3.435 

 
-0.020 

 
1.954 

   
Yes 

 
Yes 

 
-0.098 

 
3.503 

 
-0.026 

 
1.985 
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Table 5. Mean and Standard Deviation of the Difference between the Control and Treatment Group ( 11 0γ ≠ ): 
MCAR and MAR Conditions. 
 

 
Missing 

Data 

  
Covariates 

 
5-levels 

 
9-levels 

 
Mechanism 

 
Correlation 

 
SCR1 

 
NRM 

 
MEAN 

 
SD 

 
MEAN 

 
SD 

 
MCAR 

 
Positive 

 
No 

 
No 

 
8.080 

 
3.523 

 
4.573 

 
1.996 

   
Yes 

 
No 

 
8.073 

 
3.527 

 
4.569 

 
2.012 

   
No 

 
Yes 

 
8.081 

 
3.523 

 
4.573 

 
1.996 

   
Yes 

 
Yes 

 
8.073 

 
3.527 

 
4.570 

 
2.012 

  
 

      
 

 
 

Negative 
 

No 
 

No 
 

8.080 
 

3.513 
 

4.500 
 

2.073 
   

Yes 
 

No 
 

8.064 
 

3.544 
 

4.506 
 

2.106 
   

No 
 
Yes 

 
8.083 

 
3.514 

 
4.501 

 
2.073 

   
Yes 

 
Yes 

 
8.064 

 
3.544 

 
4.505 

 
2.105 

  
 

      
 

MAR 
 

Positive 
 

No 
 

No 
 

7.989 
 

3.595 
 

4.546 
 

2.058 
   

Yes 
 

No 
 

8.037 
 

3.630 
 

4.530 
 

2.060 
   

No 
 
Yes 

 
7.992 

 
3.595 

 
4.499 

 
2.039 

   
Yes 

 
Yes 

 
8.018 

 
3.620 

 
4.501 

 
2.040 

  
 

      
 

 
 

Negative 
 

No 
 

No 
 

8.109 
 

3.657 
 

4.493 
 

2.053 
   

Yes 
 

No 
 

8.279 
 

3.670 
 

4.597 
 

2.054 
   

No 
 
Yes 

 
8.199 

 
3.625 

 
4.550 

 
2.001 

   
Yes 

 
Yes 

 
8.261 

 
3.661 

 
4.574 

 
2.043 
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Table 6 contains means and standard 
deviations of these estimates for the MNAR 
conditions when 11 0γ ≠ .  In these conditions the 
PMMAR (No/No) estimator was clearly more 
biased than were the other estimators.  In most 
conditions the NRM estimator was less biased 
than were the SCR1 (Yes/No) and SCR1&NRM 
(Yes/Yes) estimator, though in many conditions 
the differences among the three procedures were 
negligible. 

 
Discussion 

 
We compared the performance of four 

data analysis procedures, which varied in terms 
of the covariates employed: no covariates, 
SCR1, NRM, and SCR1 and NRM.  As 
expected from theory, when the missing data 
mechanism was MCAR or MAR there was no 
advantage to including SCR1, NRM, or both in 
the model.  However, including SCR1 and/or 
NRM did not have a negative impact on the 
results.  For the MNAR missing mechanisms 
including SCR1 and/or NRM improved power 
and reduced bias relative to the analysis without 
covariates.  However, including SCR1 in 
addition to NRM did not enhance power or 
reduce bias relative to including only NRM as a 
covariate. And in some conditions including 
only NRM did enhance power and or reduce 
bias relative to the analyses that included SCR1 
in addition to or in place of NRM. 

 
Additional Results 

 
Given our results and the fact that 

Overall et al. (1999) used both NRM and SCR1 
as covariates and that Ahn et al. (2000) used 
only SCR1 as a covariate in their PROC MIXED  
analyses that included a random statement, but 
not a repeated statement, the question arises as 
to when is it necessary to employ SCR1 or 
SCR1 and NRM as covariates.  To explore this 
question we simulated data using the treatment 
and baseline dependent missing data mechanism 
employed by Overall and his colleagues.  In 
Overall et al. and Ahn et al. there was no 
between-subject random variation in the subject-
specific slopes; accordingly, we included 
conditions like those studied by Overall and his 

colleagues as well as conditions in which there 
was between-subject random variation in the 
subject-specific slopes.  For the latter analyses  
 

15.21 0.00
0.00 82.81

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

D  

 
and accordingly the treatment and baseline 
dependent missing data mechanism does not 
result in indirect selection on the slope, as would 
occur if the covariance between the subject-
specific slopes and intercepts were non-zero. We 
refer to the treatment and baseline dependent 
conditions without slope variation as MNAR-
I.NSV since the missing data mechanism is 
MNAR; that is, the missing data indicator is 
dependent on the intercept, and, there is no slope 
variations.  The other conditions are referred to 
as MNAR-I.SV. Type I error rates and power 
results are presented in Table 7.  The results 
indicate that when the probability of missing 
data depends on the subject-specific intercept, 
but not the slope, it is essential to control for 
SCR1 (baseline score) and the addition of NRM 
(number of repeated measurements) does not 
enhance control of the Type I error rate or 
power. 
 Results in Overall et al. (1999) suggest 
that a two-stage endpoint analysis is more 
powerful than the PROC MIXED   analysis that 
includes SCR1 and NRM. Results in Ahn et al. 
(2000) suggest that the endpoint analysis is more 
powerful than the PROC MIXED analysis that 
includes SCR1 only. As noted in our 
introduction, Algina and Keselman (2003) did 
not find the endpoint analysis to be more 
powerful than the other procedures in the study. 
However, as noted above, Algina and Keselman 
simulated data with random variation in the 
subject-specific slopes, but Overall and his 
colleagues did not.  To determine whether 
random variation in the subject-specific slopes 
accounts for the results with regard to the 
endpoint analysis, we estimated Type I error 
rates and power under the two MNAR-I missing 
data mechanisms.  In all endpoint analyses both 
SCR1 and NRM were included as covariates. 
Results, shown in Table 7, indicate that the 
endpoint analysis controlled the Type I error rate  
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Table 6. Mean and Standard Deviation of the Difference between the Control and Treatment Group 
( 11 0γ ≠ ): MNAR Conditions. 
 

 
Missing 

Data 

  
Covariates 

 
5-levels 

 
9-levels 

 
Mechanism 

 
Correlation 

 
SCR1 

 
NRM 

 
MEAN 

 
SD 

 
MEAN 

 
SD 

 
MNAR-SI 

 
Positive 

 
No 

 
No 

 
5.005 

 
4.000 

 
3.279 

 
2.090 

   
Yes 

 
No 

 
6.469 

 
3.988 

 
3.587 

 
2.083 

   
No 

 
Yes 

 
6.644 

 
3.933 

 
3.610 

 
2.066 

   
Yes 

 
Yes 

 
6.480 

 
3.984 

 
3.575 

 
2.078 

  
 

      
 

 
 

Negative 
 

No 
 

No 
 

4.779 
 

4.079 
 

3.041 
 

2.164 
   

Yes 
 

No 
 

6.972 
 

4.122 
 

3.909 
 

2.190 
   

No 
 
Yes 

 
7.392 

 
4.001 

 
4.077 

 
2.086 

   
Yes 

 
Yes 

 
7.033 

 
4.116 

 
3.939 

 
2.180 

  
 

    
   

 
MNAR-Y 

 
Positive 

 
No 

 
No 

 
7.218 

 
3.679 

 
4.084 

 
1.972 

   
Yes 

 
No 

 
7.532 

 
3.659 

 
4.143 

 
1.970 

   
No 

 
Yes 

 
7.563 

 
3.644 

 
4.133 

 
1.964 

   
Yes 

 
Yes 

 
7.520 

 
3.657 

 
4.123 

 
1.969 

  
 

      
 

 
 

Negative 
 

No 
 

No 
 

7.303 
 

3.661 
 

4.049 
 

2.060 
   

Yes 
 

No 
 

7.839 
 

3.605 
 

4.398 
 

2.030 
   

No 
 
Yes 

 
7.950 

 
3.546 

 
4.434 

 
1.985 

   
Yes 

 
Yes 

 
7.846 

 
3.602 

 
4.394 

 
2.028 
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Table 7. Type I Error and Power Rates for MNAR-I Conditions. 
 

 
Missing 

Data 

  
Covariates 

 
5-levels 

 
9-levels 

 
Mechanism 

 
Data  

Analysis 

 
SCR1 

 
NRM 

 
Type I 
Error 

 
Power 

 
Type I 
Error 

 
Power 

 
MNAR-I.NSV 

 
Proc Mixed 

 
No 

 
No 

 
.072 

 
.521 

 
.092 

 
.714 

   
Yes 

 
No 

 
.053 

 
.698 

 
.058 

 
.909 

   
No 

 
Yes 

 
.070 

 
.525 

 
.091 

 
.717 

   
Yes 

 
Yes 

 
.053 

 
.698 

 
.059 

 
.909 

  
Endpoint 

 
Yes 

 
Yes 

 
.056 

 
.522 

 
.050 

 
.557 

        
 
MNAR-I.SV 

 
Proc Mixed 

 
No 

 
No 

 
.068 

 
.477 

 
.080 

 
.508 

   
Yes 

 
No 

 
.054 

 
.628 

 
.056 

 
.666 

   
No 

 
Yes 

 
.067 

 
.480 

 
.079 

 
.510 

   
Yes 

 
Yes 

 
.055 

 
.628 

 
.056 

 
.665 

  
Endpoint 

 
Yes 

 
Yes 

 
.064 

 
.461 

 
.057 

 
.383 

        
 
Table 8. Type I Error and Power Rates for CD Conditions. 

 
Missing 

Data 

  
Covariates 

 
5-levels 

 
9-levels 

 
Mechanism 

 
Data  

Analysis 

 
SCR1 

 
NRM 

 
Type I 
Error 

 
Power 

 
Type I 
Error 

 
Power 

 
CD.NSV Proc Mixed  

No 
 

No 
 

.053 
 

.676 
 

.046 
 

.882 
   

Yes 
 

No 
 

.054 
 

.688 
 

.049 
 

.879 
   

No 
 
Yes 

 
.054 

 
.680 

 
.046 

 
.883 

   
Yes 

 
Yes 

 
.054 

 
.686 

 
.049 

 
.878 

  
Endpoint 

 
Yes 

 
Yes 

 
.050 

 
.602 

 
.051 

 
.616 

        
 

CD.SV 
Proc Mixed  

No 
 

No 
 

.052 
 

.635 
 

.058 
 

.605 
   

Yes 
 

No 
 

.052 
 

.626 
 

.060 
 

.598 
   

No 
 
Yes 

 
.052 

 
.634 

 
.057 

 
.603 

   
Yes 

 
Yes 

 
.052 

 
.626 

 
.060 

 
.598 

  
Endpoint 

 
Yes 

 
Yes 

 
.051 

 
.568 

 
.054 

 
.494 

         



ALGINA & KESELMAN 286 

in all conditions, but was not more powerful 
than the PROC MIXED   analysis that controlled 
the Type I error rate. 

Algina and Keselman (2003) also did 
not include a treatment dependent drop-out 
condition like that included in Overall et al. 
(1999) and Ahn et al. (2000) and this may 
account for differences in terms of the endpoint 
analysis. Table 8 contains Type I error rates and 
power for a treatment dependent drop out 
condition like that included in Overall et al. and 
Ahn et al. We refer to this condition as CD.  In 
CD conditions with between-subject random 
variation in the subject-specific slopes (CD.SV) 
reported in Table 8 

 
15.21 -12.42
-12.42 82.81
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

D . 

 
However, we also conducted simulations with 

12 12.42D =  and 12 0.00D =  and the general 
pattern of results was the same as those reported 
in Table 8: the endpoint analysis controls the 
Type I error rate, but was not more powerful 
than the PROC MIXED   analyses. 
 

Conclusion 
 
In summary, we believe our results provide 
some clarification to the findings reported by 
Overall et al (1999) and Ahn et al. (2000), 
clarification, we believe, that adds to the 
importance of their contributions to the literature 
regarding the analysis of missing data in 
randomized longitudinal two-group designs. 
 First, with the regard to the controversy 
of including baseline scores as both independent 
and dependent variables in the analysis, our 
results show that it is not always necessary to 
include the baseline score as a covariate. Except 
when the distribution of the missing data 
depended exclusively on the subject-specific 
intercept, neither Type I error control nor power 
to detect effects was enhanced by including 
baseline as a covariate in addition to specifying 
the number of repeated measurements as a 
covariate in the model. However, it is also true 
that including the baseline as an additional 
covariate did not detract from control of the 
Type I error rate and detracted noticeably from 

power only when the probability of missing data 
depended on the subject-specific slopes and 
intercepts.  

When the probability of a missing value 
depended on the subject-specific intercept, our 
results, along with those reported by Overall et 
al. (1999) indicate that the baseline score should 
be specified as a covariate in the model. In this 
case, however, no additional gains in terms of 
Type I error control or power to detect effects, is 
acquired by including as a second covariate 
number of repeated measurements. 

Lastly, the findings from our study 
indicate that an endpoint analysis need not be 
more powerful than the single-stage PROC 
MIXED analysis presented by Overall et al. 
(1999). That is, like Overall et al., we also found 
the endpoint analysis to be effective in 
controlling the rate of Type I error and to have 
power similar to that for the single-stage 
procedures when data are not missing at random. 
However, our findings indicate that the single-
stage strategy was never less powerful than the 
two-stage endpoint analysis and was in some 
cases substantially more powerful. In general, 
our recommendation for analysis would be to 
include both covariates in Overall et al.’s single-
stage procedure. 
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