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Abstract—The Recent studies have shown the practicality and usefulness of decentralized paradigms in the context of designing 

Urban Drainage Networks for meeting present and future objectives for sustainability and resilience. However, there isn't a single, 

comprehensive framework that can be used right away. In order to list all conceivable combination of outlet candidates and the related 

layouts in the Urban Drainage Networks, this is achieved by combining a unique deterministic graph-theory-based layout generator 

with a deterministic multi-objective combinatorial optimization. By dividing a big, completely centralised network into many smaller 

branches, the strain on the centralized pipes is redistributed, leading to more economical alternatives. Urban Drainage Network layout 

characteristics including the length area index (LAI), average reliability index (ARI), and negative slope index (NSI) are optimized 

using a novel hybrid optimisation model called the Archimedes Search and Rescue Optimisation Algorithm (ASROA).The ASROA 

model is a conceptual combination of the search and rescue optimization method (SAR) and the basic Archimedes optimisation 

algorithm (AOA). The fascinating physics concept known as Archimedes' Principle provided the impetus for developing this AOA 

model. It simulates the notion that an object's buoyant force, whether fully or partly submerged, is proportional to the weight of the 

displaced fluid. The Search and Rescue (SAR) optimization technique is presented in this study as a solution to restricted engineering 

optimization problems. This metaheuristic algorithm simulates human exploration and search and rescue activities. This layout 

parameter optimization is significantly reducing the computational effort. 

.Keywords—Urban Drainage Networks (UDNs),ASROA,Length Area Index (LAI), Average Reliability Index (ARI), Negative Slope 

Index (NSI),Graph Theory 

 

 

I. INTRODUCTION 

One of the most important infrastructures in each 

community, urban drainage networks (UDNs), is to blame 

for both structural (like blockage-induced failure) and 

functional (like blockage-induced failure) problems [1]. 

However, because to the numerous links between UDNs, 

assessing construction, maintenance, administration, and 

operational management in isolation is not feasible. In 

addition, the aging of natural resources, urbanization, 

population increase, and climate change have the potential 

to seriously impair urban water systems, particularly UDNs, 

and to present serious health risks. Resilience enters the 

scene at this point [2-4]. Resilience is the system's capacity 

to minimize the consequences of a failure and quickly and 

safely recover from any unusual loading demands. UDNs 

must thus be prepared to manage both typical and 

unforeseenly high loading conditions. While most study has 

concentrated on the resilience of sewage network 

rehabilitation, the effect of the system's topological layout 

on resilience at the design stage has been disregarded [4]. 

Typically, sewage systems are built with a centrally 

situated network of pipes that are linked to a single 
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treatment facility or outlet. However, centralized UDNs 

have come under heavy fire because they impose large 

financial burdens on stakeholders and governments, 

particularly in poor nations [5–6]. A few studies have 

highlighted the issues with centralised infrastructure that go 

beyond economic ones,  

 

 

 

 

including ecological and environmental issues, climate 

change vulnerability, and developing countries' limited 

ability to quickly adjust. 

Sewage overflow prevention is essential to reducing public 

health concerns and safeguarding the environment from 

contaminated water. Surface waterways may be exposed to 

partly or fully untreated sewage as a result of sanitary sewer 

overflows (SSOs) or combined sewer overflows (CSOs) [7].  

Because untreated sewage overflows contain suspended 

particles, toxics, nutrients, debris, and other contaminants, 

they pose a serious threat to the quality of the water. Sewer 

pipe capacity may be exceeded by rainfall-derived input and 

infiltration (RDII) from rainy weather flows, leading to an 

SSO. Equipment malfunctions, undersized sewer pipes, 

power outages, silt buildup, pipe breaks, leaking manholes, 

offset joints, debris and grease blockages in the sewer 

conduits, and other issues can also result in SSOs.When an 

SSO occurs, sewage overflows onto parks, streets, and 

waterways [8–9]. Furthermore, there is a chance that this 

sewage will back up into basements, posing a health risk to 

anyone who comes into touch with it and causing property 

damage [10–11]. Under the jurisdiction of the Clean Water 

Act, which Congress authorized, the Environmental 

Protection Agency (EPA) has established wastewater 

regulations for the industry and started pollution 

management programs in response to growing public 

expectations for high-quality services [12]. To ensure that 

wastewater flows are reliably conveyed without producing 

overflows or backups, comprehensive modeling and 

analysis of these sewage systems is required in order to 

propose excellent, inexpensive solutions for increasing 

system integrity and performance. 

Planning and building more effective sewage collection 

systems often make use of drainage network simulation 

models [13–14]. Adding more storage volume, increasing 

pumping capacity, expanding conduit capacity (larger 

interceptors), adding new sewer pipes or treatment capacity, 

increasing pumping capacity, and maximizing the use of the 

system's current storage by utilizing real-time operational 

controls are among the options for system improvement that 

are routinely assessed [15–16]. The difficult aspect is 

figuring out which update, or which improvements together, 

will address the flooding problem most efficiently for the 

least amount of money. The same update strategy is not 

beneficial for all collecting systems [17–18]. Different 

systems respond to remedial actions differently in terms of 

cost and efficacy. The present evaluation procedure that is 

used to choose an upgrade choice is time-consuming and 

often results in neither the optimal not the most cost-

effective update for collecting systems [19]. This method 

assesses the hydraulic performance of the present system 

for several design options (modifications) under various 

loads and operating situations using a drainage network 

simulation model [20]. 

 

The primary contributions of this study are as follows:  This 

study presents a methodology for creating and optimising 

decentralisation scenarios concerning the layout of sewage 

configurations.  

 It builds a graph from the primary input data 

enabling graph analysis for (de)centralized layout 

generation  

 The produced Pareto-front solutions are then 

converted to the SWMM input files. 

 The resulting layouts on Pareto-front are 

hydraulically designed, and are then evaluated for 

resilience and construction costs/life cycle costs. 

The following pattern guided the arrangement of the 

chapters: Chapter 1 provides a basic introduction; Chapter 2 

provides the theoretical background of the literature review 

conducted for this research work; Chapter 3 provides an 

overview of the proposed methodology; Chapter 4 provides 

the use of the proposed algorithm; Chapter 5 summarises 

the experimental results; and Chapter 6 presents the 

research work conclusions. 

II. RECENT RESEARCH WORK: A BRIEF REVIEW 

Numerous research studies on writing that used multi-

objective algorithms based on graph theory and urban 

drainage network layouts have already been carried out 

from a range of perspectives and methodologies. The works 

that have been reviewed are listed below.  

A unique dynamic, multi-objective optimisation method 

has been presented by Giudici et al. [21] to improve the 

sustainability of tiny islands by utilising renewable energy 

sources. The three main contributions of our technique are 

(i) collaborative optimisation of system design and 

operations, (ii) multi-objective optimisation to investigate 

trade-offs between potentially incompatible aims, and (iv) 

dynamic modelling of desalination plant operations. We 

evaluate our method on the real case study of the Italian 

island of Ustica, using a comparative analysis with a 

traditional non-dynamic, least equal optimisation 

methodology.  

An integrated Graph Theory-Based Bi-Level Water Supply 

Planning Model, known as GraBiL, was developed in this 

study as a methodological response to the problem of 

statistical interrelationships of WECN and hierarchical 

decision-making dilemma in regional-scale water network 

planning, as presented by Chenet al. [22]. Compared to the 

current bi-level coding and graph theory-based techniques, 

the GraBiL model has proven more effective in solving the 

spatial layout optimisation challenge in a two-level 

decision-making dilemma. It was considered that there are 

two tiers of competing objectives, for example, maximising 

energy savings and minimising overall system costs. Fuzzy 

uncertainty associated with water load are quantified.  

In an experiment, Najafiet al. [23] improved resilience by 

increasing consumers' access to water and power in the 

wake of natural disasters. Microgrids can provide the 
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electricity needed to re-connect disconnected loads in 

distribution networks when they are run correctly. Within 

the proposed interactive framework, a stochastic power 

management programme for microgrids was created that 

accounts for the reliability of local loads during emergencies 

in addition to predicting the amount of energy that may be 

moved to distribution networks. “During an emergency, 

each microgrid provides a list of bid-quantity energy blocks 

to the distribution system operator (DSO).  

In order to reduce load variation and hydraulic imbalance, 

Ding, et al. [24] proposed a dynamic programming approach 

based on graph theory for the deployment of pipeline 

network architectures and the selection of energy station 

sites. The regional building load was dispersed by using the 

kernel density approach while picking the locations of 

energy stations. To increase the energy supply range of the 

energy station with the lowest load variation rate as the aim, 

a 0-1 dynamic programming approach was proposed. A 

graph theory-based improved Prim approach was developed 

to forecast the pipeline network architecture.  

After experimenting to optimise the UDS layout, 

Bakhshipouret al. [25] propose simplified cost and structural 

resilience indices in this work, which can be used as 

heuristic parameters. Graph connection data is all that these 

indexes employ, and it uses a lot less computing power than 

hydraulic simulation. By using simpler objective functions 

for optimisation, the viable search space's complexity and 

the number of blind searches were significantly decreased. 

To demonstrate the application and advantages of the 

recommended strategy, a real case study in the southwest 

Iranian city of Ahvaz was looked into. In terms of 

generating robust and realistic UDNs and requiring less 

processing power, the suggested design seems promising.  

A unique approach that combines a combinatorial 

optimisation process and an improved hybrid community 

detection algorithm has been tested by Shao, Y. et al. [26]. 

During the node clustering phase, the hybrid approach, 

which was based on the improved modularity index, allows 

for the quick development of partition solutions with a more 

uniform distribution of water demand and reduced boundary 

pipe widths. Then, utilising a three-step optimisation 

process that comprises preliminary hydraulic analysis, 

searching for a suboptimal solution, and multi-objective 

optimisation in the partition dividing phase, the location of 

flow metres and isolation valves in WDNs was swiftly and 

successfully resolved.  

A novel complex networks analysis-based method for 

assessing computational complexity and efficiency of water 

quality in a WDS was developed and extensively tested by 

Sitzenfrei[27] (R2 values in comparison with state-of-the-art 

nodal water qualities are reached in the range of 0.95 to 

0.95). The recommended model was successfully used in a 

design study to identify the design solutions that exceeded 

water quality norms, with an accurate identification rate 

ranging from 96% to 100%. The computational efficiency 

was discovered to be 4.2e-06 lower than that of 

contemporary” models.  

 

A. BACKGROUND OF RECENT RESEARCH WORK 

Most authors of research on optimum UDNs have focused 

on different approaches to optimally size UDN pipes, with 

little emphasis on designing and refining UDN topological 

layouts. Furthermore, a great deal of these research solely 

considered centralised design. These acts, as previously 

stated, do not promote resilience and sustainability methods 

or long-term goals. In steep areas, designers often produce 

and optimise layout configurations based on the street's 

terrain and the related steepness. They do this by tracking 

the natural ground slope gravitationally to a specific 

discharge point.Throughout the process, engineering 

decisions have a critical role in determining the degree to 

which a near-optimal solution is produced. This difficulty is 

further compounded when large-scale catchments and 

decentralisation considerations are included. There isn't a 

systematic or all-encompassing framework that can 

generate the optimal decentralised arrangements for these 

terrains, notwithstanding the possibility of success and 

maybe even subjective success. “Several strategies have 

been proposed for decentralized/hybrid urban water 

management systems, including reducing the degree of 

centralization (DC) or splitting off a portion of a centralised 

tree-like network into a cluster of trees. On-site runoff 

controls made available by low-impact building, best 

management practices, green infrastructure, and water-

sensitive urban design are examples of alternative 

hybridization strategies. 

 

III. PROPOSED METHODOLOGY 

By creating a graph from the major input data (i.e., street 

maps and the impervious layer), graph analysis may be 

used to produce (de)centralized layouts in combination with 

multi-objective combinatorial optimisation. Next, the 

generated Pareto-front solutions are transformed into the 

input files for the storm water management model. 

Following a thorough pre-screening process using design 

rainfall events, the resultant Pareto-front layouts are 

hydraulically developed and then assessed for resilience 

and life cycle/construction costs.Figure 1 illustrates how the 

suggested technique is configured. 



J. Suganthi 

                                                                                         184 

 

 
Fig 1: Configuration of proposed methodology 

A. GRAPH REPRESENTATION OF URBAN DRAINAGE 

NETWORK LAYOUTS 

To generate the initial layouts and base graphs, the first 

open street maps of the locations under examination are 

acquired. The vertices of these maps are intersections or 

road junctions, while the edges are streets or segments. This 

spatial network is then used to collect data from the 

Thiessen polygon-formed sub-catchment (such as 

impervious layers) at each road crossing. After the street 

network is mapped to the region's digital elevation model 

(DEM), which provides the ground elevation data for each 

node/junction, the base graph (original layout) of the area is 

eventually created. In this way, the architecture of urban 

drainage networks (UDNs) may be explained using the 

mathematical concept of graph theory.Imagine a graph G 

with many vertices (such outlets, storage areas, and 

manholes) and many links (like conduits, weirs, and pumps) 

or edges. Furthermore, the graph edges may use various 

weighting factors, including pipe sizes, lengths, and 

hydraulic characteristics. The first metric in this research is 

the shortest route between nodes i and j, where the cost, 

expressed as the sum of (positive) edge weights, is lowest. 

The edge lengths are utilised as weighting factors in the 

shortest route method, which is used during the layout-

generating step.  

Another notion employed in this research is the degree of a 

node, which indicates the amount of edges connecting to a 

node. In a directed graph, where each edge points in a 

certain direction, each node is represented by two distinct 

degrees: the outdegree, which shows the number of edges 

entering the node, and the indegree, which shows the 

number of edges leaving the node.  

The next topological network parameter used is edge 

betweenness centrality (EBC), which counts the number of 

shortest paths connecting each pair of nodes in a graph. 

Since every node in an urban drainage network is linked to 

at least one output node, the shortest path between any two 

nodes may be found. We next count the number of shortest 

routes that connect each input node (i) to the output node 

(j). Moreover, in contrast to the traditional method of 

calculating EBC, which increases the counts by 1 if an edge 

e is a segment of the shortest route, we include the 

contribution runoff area Ri from each (inlet) node (i) 

towards the EBC values. The total impervious area at each 

edge may be calculated more easily as a result. 

 The expression for this measurement, known as "runoff 

edge betweenness centrality"
R

eEBC , is as follows: 

 
1  1

  ,   
ON IN

R

e i

j i

EBC i j e R
 

   

     (1) 

B. LAYOUT GENERATOR FOR CENTRALIZED AND 

DECENTRALIZED SYSTEMS 

Establishing an optimal and cost-effective UDNs design 

requires careful consideration of the layout of an Urban 

Drainage Networks, which shows the location and 

arrangement of pipes, junctions, manholes, and the 

direction of sewage flow.Our approach is not appropriate 

for the perfectly flat terrain, where we assume that there is 

no effective ground slope to determine the directions. 

C. DIRECTION MODIFIER MODULE (FOR STEEP 

TERRAINS) 

The primary goal of this module is to reverse the flow of 

edges, or pipes, on steep terrain. The primary driving force 

is to maintain the existing orientations while changing 

certain problematic ones and enforcing negative slopes, 

which need larger excavation volumes. This tactic may be 

useful, particularly over steep, uneven terrain. As a matter 

of fact, steep terrain in certain areas indicates patterns for 

tracking, following, and constructing gravity pipelines; yet, 

pipes still need to be built against the natural slope of the 

land. These directions must thus be adjusted to point in the 

direction of the potential outlet.  

A directed looping graph is produced after this process is 

finished (i.e., there are no more converged nodes), and it is 

then simple to distinguish between the slopes of the edges, 

or directions, that are positive or favourable. This makes it 

possible for us to subsequently identify the layout that, 

while still permitting decentralisation with various outlet 

configurations, minimises the total negative slopes. This 

approach (but all possible sewer manholes) is much more 

beneficial when not all possible sewer linkages are included 

in the design creation. Pipes with negative slopes may be 

readily identified and avoided, requiring bigger 

construction volumes in order to produce an inexpensive 

loop-free drainage network.  
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D. LAYOUT GENERATOR MODULE FOR STEEP AND FLAT 

AREAS 

For the creation of sewer systems in steep terrain, the flow 

directions on the base graph must be adjusted when there is 

only one exit. Thus, if just the centralised dendric 

arrangement (one outlet) is needed, the edges in the directed 

looping graph that generate the loops may be readily 

severed from their upstream ends. However, the 

transformation of such a directed base network into a 

decentralised one may now begin if the number and location 

of outlet options are given. The decentralisation approach 

for flat terrain is comparable to that for steep terrain in 

several aspects. Apart from that, we are left with no edge 

flow directions since there is no effective ground slope. 

 
1. beginning the procedure with a directed base graph, 

where the ground's natural heights dictate the flow 

directions Finding the converged node (node H) and any 

predecessors (nodes I and M) after flipping or reversing the 

direction of the edge that connects to the dead-end node 

(edge ML). 

 
4. Using the shortest route (edge IH to HI) to reverse the 

red-colored arrows (edges) that emerged in separate 

directions in step (3), and then identifying the next 

convergent node (node J) and its predecessors. 3. 

Attempting to apply the lengths as weight shortest route 

method across the unconstrained base network from the 

converged node and its predecessors to the output (node A) 

(nodes F, I, K and O) 

 
5. Repeating step (3), 6. choosing the quickest route among 

all the red arrows in step (4) to reverse those that appeared 

to be going in the opposite directions in step (5) (edge IJ to 

JI). 

 
7.Stopping the process when there are no more converged 

nodes. 

Steep Terrain 

 
(1) starting the process with a directed base graph with two 

outlet options and flow directions based on ground 

elevations (outlets A and L)

 
(2) depending on their shortest/closest distance to each 

outlet, assigning the nodes to the outlets across the 

undirected base network (lengths as weight) 

 
(3) Deleting the joint edges (edges GK, FJ, and EI) that are 

a component of both partitions and overlaying the left 
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directed base graph to take use of the topography

 
(4) Applying a direction modifier to each base graph that 

has been divided, adding and removing the joint edges 

(edges RE, SJ, TG, and the edge QJ), and simultaneously 

adding additional nodes (nodes Q, R, S and T) 

Flat terrain 

 
(1) starting the process with a base graph that is undirected 

and has two outlet possibilities (outlets A and O); outlet O is 

transported to P and connected to the method by a single 

edge (a pipe) (edge OP) 

 
(2) depending on their smallest route to each outlet, 

allocating the nodes to the outputs across the undirected 

base network (lengths as weight) 

 

(3) Eliminating the junction edges on both partitions (edges 

GK, FJ and El)

 
(4) Running the shortest path method with the lengths as 

weights, adding and removing the joint edges (edges RI, SJ, 

TG, and edge QH), and simultaneously adding additional 

nodes (nodes Q, R, S and T) 

E.  LAYOUT OBJECTIVE FUNCTIONS 

It is feasible to investigate the design costs (and, therefore, 

the optimal layout) of all generated layout combinations 

once certain features, such as pipe diameters, lengths, and 

excavation depths, are known ahead of time. Except for 

pipe lengths, none of the entrance modes are identified 

during the planning stage. Furthermore, if every possible 

arrangement were hydraulically built in order to calculate 

costs, there would be an enormous computational demand 

[28]. Consequently, computational efficiency may be 

significantly increased by eliminating a set of sewer layouts 

that perform badly in comparison to the other solutions 

before submitting it to the hydraulic design and 

optimisation. Consequently, three simple and generalised 

layout cost functions are presented that function with 

respect to the readily attainable surface slope, cumulative 

runoff area, and edge (pipe) lengths.These functions are the 

length area index (LAI), average reliability index (ARI), 

and negative slope index (NSI). The following provides an 

explanation of each: 

F. LENGTH AREA INDEX (LAI)  

The expense of a layout in proportion to the length and 

slope flow rate function of each pipe is taken into 

consideration by Walters and Smith (1995) in their widely 

used layout goal functions in the area. At this stage of the 

planning process, however, none of the hydraulic 

properties, such as flow rates, are known. In this instance, 

volumetric flow discharges may be estimated using proxies, 

the total contributing impervious areas [29].  This 

measurement, LAI, provided in Eq. (2), illustrates a 

correlation between the accumulated runoff contributing 

area of each edge ,cum eR and the edge lengths eL . 

 

,

1

e E

e cum e

e

LAI L R




    

       (2) 
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Where, LAI is denoted as the length area index [m2], eL is 

denoted as the edge length [m], and ,cum eR is denoted 

as the cumulative runoff contribution area of edge e . 

Furthermore, the graph connect matrix makes it simple to 

determine the length of every edge. In this paper, we present 

a unique graph-theory based method for calculating the total 

runoff contribution with each edge/pipe or ,cum eR , for 

which Eq. (1) is suitable to sewage tree-shaped networks. 

The obtained values for 
R

eEBC  in Equation (1) correlate to

,cum eR in Equation (2), which represents the total 

contributing impervious areas. This straightforward graph 

theory relationship leads to a quick approach to ascertain the 

total runoff area for every pipe. 

G. AVERAGE RELIABILITY INDEX (ARI)  

The creators of this index, Haghighi and Bakhshipour 

(2016), said that the average dependability of sewage 

collecting systems could be estimated by looking at the 

population impacted by a blockage and the impact it had on 

the region upstream. Put another way, when system 

reliability increases, the effect of restrictions on the 

individuals at upstream levels decreases. Nonetheless, this 

metric is aligned here since it was intended to function in 

connection with the network of stormwater conveyance 

systems rather than public sewage systems based on the 

cumulative sewage output [30].  In light of this, Eq. (3) may 

be used to determine the reliability index of each individual 

edge (pipe) eRI as a function of both the total runoff area 

totalR and the cumulative contributing runoff of each edge 

(pipe), denoted as 
,cum eR . Higher pipe dependability is 

associated with lower levels of 
,cum eR . 

,
100 1 (%)

cum e

e

total

R
RI

R

 
   

 
  

      (3) 

Where, eRI indicates the reliability index of every single 

edge (pipe), 
,cum eR , indicates the cumulative contributing 

runoff of every edge, and totalR indicates the total runoff 

area.  

The average of all the edges is used to extend the eRI of 

each single edge to the rest of the network (E). This 

measurement (Eq. (4)) is also known as the average 

reliability index (ARI) [31]. Different runoff distribution 

and progression toward the outlet are triggered in this 

context by generating varied (de)centralized contribute to 

ensuring (topological layouts). In order to focus on the 

optimal runoff area distribution for every created 

structure/layout, ARI is used as another objective function. 

1

e E

ee
RI

ARI
E






   

      (4) 

where ARI is the average reliability index for the entire 

network, eRI is the reliability index (ha/ha) for each pipe or 

edge, and E is denoted as the total number of edges (pipes). 

H. NEGATIVE SLOPE INDEX (NSI)  

We were able to effectively change the directed base 

graph's flow directions for steep terrains. As a result, we are 

able to calculate the slope of each edge and identify those 

with favorable/positive or unfavorable/negative slope for 

the flow direction [32]. The slope of a pipe or edge e is 

calculated as the length eL divided by the sum of its 

upstream and downstream nodes' ground elevations ( eUE

and eDE , respectively). In Eq. (5) the slope index (SI) is 

described. 

( ) /e e e eSI UE DE L     

      (5) 

Where, eSI is the slope index of edge e [m/m], eUE is the 

upstream elevation of edge e  [m], eDE is the downstream 

elevation of edge e  [m], and eL is the length of edge e  

[m].  

Because greater excavation volumes are produced by the 

hydraulic pipe sizing, the associated edge's slope is 

negative (unfavourable slope) if the surface level of the 

upstream node/manhole is less compared to the 

downstream node/manhole. Therefore, through layout 

improvement in steep terrain, maximising the net negative 

slope index of all edges, or NSI (experiencing negative 

values), is a very important objective function. In Eq. (6), 

the NSI computation is displayed. 

 
1

0
e E

e e

e

NSI SI SI




     

      (6) 

Where, NSI is the (total) negative slope index [m/m], and 

eSI is the slope index of edge e [m/m] 

I. OPTIMIZATION OF LAYOUT SOLUTIONS  

The degree of centralisation (DC) for the given layout 

alternatives is first determined using a modified and generic 

metric based on the total number of intake nodes and the 

number of chosen exits, as described in this Section. After 

that, a brief description of multi-objective optimisation is 

given, which is the process of selecting the best possible 

arrangement scenarios.  

We must first determine how disconnected a system is, or 

how much water is being discharged to different outlets, as 

the purpose of this research is to design both centralised 

and decentralised topological layouts [33]. It is challenging 

to evaluate and compare the degree of centralisation with 
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several other networking (based on the amount of potential 

and selected outlets) since the literature-based index clearly 

illustrates the notion of decentralisation for each network. In 

light of this, this research proposes a new metric that may be 

used as a generic tool to expand and generalise the DC 

index (degree of centralisation) across all networks, 

including stormwater and sewage systems.The number of 

(selected) output nodes (ONs, up to IN-1) and the total 

number of intake nodes (IN) have a linear relationship, 

according to Eq. (7):  

 10

10

log
100 1 %

log

sON

IN
DC

 
   

 
    

      (7) 

This formula implies that DC equals 0% (complete 

decentralisation) if every intake node serves as an output 

node; however, in real life, this is not possible. Furthermore, 

only a completely centralised single output node can 

achieve 100% DC.  

Because of the deterministic behaviour of the suggested 

layout generating method in this research, there is only one 

unique sewer layout choice for every scenario of potential 

outlet placement. It is necessary to look at all possible 

combinations of outlet positions (DC) in order to determine 

the optimal layout with a certain outlet location or locations 

and the right number of outlets. In a (multi-objective) 

combinatorial optimisation, the only variable used to make 

decisions was the quantity of possible outlet candidates. 

After the layout target functions were established for each 

outlet arrangement scenario, the Pareto front was created by 

minimising LAI and maximising ARI for flat regions and 

minimising LAI and maximising ARI and NSI for steep 

areas. These Pareto-front solutions are then applied to the 

hydraulic design.  

 

 

J. HYDRAULIC PIPE SIZING  

The UDNs (urban drainage networks) must be designed 

with consideration for a number of constraints, including the 

telescopic pattern, minimum cover depth, maximum 

excavation depth, and minimum and maximum slope, in 

order to guarantee that the stormwater collection system 

satisfies all essential hydraulic and technical requirements. 

Three primary components make up the optimisation 

framework used in this hydraulic design method.  

An adaptive algorithm that can adapt to the optimization's 

limitations is used in the urban drainage networks 

optimisation process in stormwater collecting systems. 

Furthermore, a module that makes use of the UDNs graph's 

connection matrix—which can be derived from the planned 

layout—is used to narrow the scope of the optimisation 

search and save computing power. An optimisation engine 

that uses metaheuristics, such simulated annealing, is then 

used to solve the optimisation issue. The efficient and 

effective optimisation of the UDNs to satisfy the essential 

hydraulic and technical criteria is made possible by this 

combination of components.  

K. RESILIENCE ASSESSMENT  

When deciding on the final network, resilience of the 

UDNsis just as important as design costs (CC for steep 

terrain and (LCC for flat area)), particularly in light of 

continuing climate change effects. To thoroughly capture 

the respect to sustainable development the functional 

resilience response of the UDNs, the performance of the 

constructed (de)centralized structures is assessed during 

low-, medium-, and high-intensity design storms. For the 

steep case study and the flat case study, respectively, a 

cluster of storm occurrences with intervals of 5, 20, and 50 

years is chosen. A hydraulic set of performance (HPI) is 

displayed in Eq. (8) to satisfy this demand  

 100 1 %
flooding

runoff

V
HPI

V

 
    

 
  

      (8) 

Where, HPI  is denoted as the hydraulic performance 

indicator, 
floodingV is denoted as the total ponded flood 

volume [m3], and 
runoffV  is denoted as total runoff 

volume [m3]. 

IV. PROPOSED ASROA TECHNIQUE 

The basic Archimedes optimisation algorithm (AOA) and 

the search and rescue optimisation algorithm (SAR) are 

conceptually combined in the ASROA model. The 

intriguing Archimedes' Principle is a rule of physics that 

served as motivation for the creation of this AOA model. It 

mimics the idea that the buoyant force applied to an 

object—whether submerged entirely or perhaps partially—

is proportionate to the weight of the displaced fluid. This 

paper presents the Search and Rescue (SAR) optimisation 

approach for solving limited engineering optimisation 

issues. This metaheuristic algorithm mimics how people 

might explore and conduct rescue and search missions. This 

optimisation of the layout parameters helps to greatly lessen 

the computational load. 
 
4.1. ARCHIMEDES OPTIMIZATION ALGORITHM (AOA) 

The AOA algorithm is a population-based algorithm. In the 

proposed method, the submerged objects are members of 

the population [34]. Like other population-based 

metaheuristic algorithms, AOA starts the search with an 

initial population of objects (candidate solutions) that have 

random volumes, densities, and accelerations. At this 

phase, the fluid's location is randomly assigned to each 

item. AOA evaluates the fitness of the original population 

and then iterates until the termination condition is satisfied. 

AOA updates each item's volume and density after each 

repetition. An object's acceleration varies according on 

whether it collides with any other adjacent objects. An 

object's updated density, volume, and acceleration define its 

new purpose. Below is a thorough mathematical description 

of the AOA phases.  

The mathematical formulation of the AOA method is 

introduced in this section. AOA is theoretically regarded as 

a global optimisation technique as it encompasses both the 

exploration and exploitation phases.  

 

Step 1: Initialization 
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Initialize the positions of all objects here the input is length 

area index (LAI), average reliability index (ARI), and 

negative slope index (NSI) 

Step 2: Random generation 

The initialization procedure generates input parameters 

randomly using the following Equation, 

Step 3: Fitness Function 

Evaluate the fitness values of initial solution candidates as 

in Equation 

         ;   1,  2,  ...,  i i i iO lb rand ub lb i N    

      (9) 

Where, iO is denoted as the i th object in a population of N 

objects. ilb are denoted as the lower bounds  iub are 

denoted as the upper bounds of the search-space, 

respectively 

Initialize volume ( vol ) and density ( den ) for each i th 

object 

 

  iden rand      

      

  ivol rand      

     (10) 

where rand is indicates a D dimensional vector which 

randomly generates number between [0, 1]. And finally, 

initialize acceleration ( acc ) of i th object 

         i i i iacc lb rand ub lb      

     (11) 

Step 4: Update densities, volumes 

The density and volume of object i for the iteration t + 1 is 

updated 

 

 

1

 

1

         

        

t t t

i i best i

t t t

i i best i

den den rand den den

vol vol rand vol vol





   

   

                (12) 

where bestvol and bestden are indicated as the volume and 

density associated with the best object found , and rand is 

indicated as the uniformly distributed random number 

Step 5: Transfer operator and density factor  

After some time has passed since the first collision, the 

objects attempt to attain an equilibrium condition. With the 

aid of the transfer operator T F, which changes search from 

exploration to exploitation, this is done in AOA. 

  
     max

max

t t
T F exp

t

 
  

 
   

                (13) 

Where, transfer T F increases gradually with time until 

reaching 1. Here t  and maxt are denoted as the iteration 

number and maximum iterations, respectively 

1    
     

  

t max

max max

t t t
d exp

t t

    
    

   
  

                (14) 

where 
1  td 

diminishes with time, allowing convergence in 

a previously discovered suitable region 

Step 6.1: Exploration phase 

When an object collides with another, choose a random 

material ( mr ) and change the object's acceleration for 

iteration 1t  . 

1

1 1

    
   

 

t mr mr mr
i t t

i i

den vol acc
acc

den vol



 

 



  

                (15) 

Where, iden is denoted as the density, ivol is denoted as 

the volume and iacc is denoted as the acceleration of object 

i . Where mracc is denoted as the acceleration, mrden  is 

denoted as the density and mrvol  is denoted as the volume 

of random material. 

Step 6.2: Exploitation phase 

If TF > 0.5, there is no collision between objects.  

update object’s acceleration for iteration t + 1 

1

1 1

    
   

   

t best best best
i t t

i i

den vol acc
acc

den vol



 

 



 

     (16) 

Where, the acceleration of the best object is denoted as the 

bestacc  

Step 4.3: Normalize acceleration 

To calculate the change of percentage 

 

   

1
   1

   
     

t
iacc min acct

i norm max acc min acc
acc u l

 

 
    

                (17) 

where u and l, which are set to 0.9 and 0.1, respectively, are 

the normalisation ranges. The percentage of steps that each 

agent isalter is determined by the 
1

,

t

i normacc 
. The 

acceleration value islarge if the item i is far from the global 

optimum, indicating that it is in the discovery phase; 

otherwise, it is in the exploitation phase. This exemplifies 

the transition from the exploration phase to the exploitation 

phase of the search. In a typical situation, the acceleration 

factor starts off with a high value and gets smaller over 

time. This enables search agents to move away from nearby 

solutions and toward the greatest global solution. 

Step 7: Update position 

If T F ≤ 0.5 (exploration phase) 

The i th object’s position for next iteration 1t   

 1 1

1       t t t t

i i i norm rand ix x C rand acc d x x 

      

                (18) 

where a constant called 1C = 2 

 1 1

2       t t t t

i best i norm best ix x F C rand acc d T x x 

        

   (19) 

where a constant called 2C = 6. T is defined by 

3T C TF   and rises over time while being directly 

proportional to the transfer operator. T initially subtracts a 

fixed percentage first from best possible position and grows 

with time in the range. Starting with a low percentage 
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results in a significant gap between the optimal position and 

the present position, which causes the random walk's step 

size to be high. This percentage gradually rises as the search 

goes on in order to reduce the gap between the ideal position 

and the present position. As a result, exploration and 

exploitation are balanced appropriately. 

The flag to change the direction of motion is denoted as F  

1  0.5
   

1   0.5

if P
F

if P

 
 

 
   

     (20) 

Where, 42P rand C    

Step 8: Evaluation  

Use objective function f to evaluate each object, and keep 

in mind the most successful answer so far. 

A. SEARCH AND RESCUE OPTIMIZATION ALGORITHM 

The mathematical model of the suggested approach for 

resolving a maximisation problem is discussed in this 

section [35]. In SAR, the positions of the people represent 

the optimization problem's solutions, and the quantity of 

hints discovered in these spots serves as the optimization 

problem for these solutions. 

Step 1: Initialization 

The optimisation process in AOA begins with the possible 

solutions shown in equation (20). The optimal candidate 

solution for each duplicate is deemed to be the most 

comprehensive or optimal solution, and they are created at 

random.” 

Step 2: Fitness function 

Throughout the search, the group members collect clue 

information. When they discovered better clues in other 

locations, they left some clues behind, but information about 

them is used to further search efforts. The coordinates of the 

left clues are kept in the model we proposed memory matrix 

(matrix M), while the locations of the persons are kept in a 

location matrix (matrix X). The matrix M has the same 

dimensions as the matrix X. They are N D matrices, where 

N is the number of people and D is the size of the problem. 

The places of the discovered clues are contained in the clue 

matrix (matrix C). Two matrices, X and M, make up this 

matrix. Equation (21) demonstrates how to make C. 

11 1

1

11 1

1

D

N ND

D

N ND

X X

X XX
C

M MM

M M

 
 
 
  

    
   

 
 
  

  

      (21) 

where 1NX represents the location of the first dimension for 

the 
thN human, and M and X  are the memory and human 

position matrices, respectively. 1DM is also where the 
thD

dimension for the first memory is located. The "social 

phase" and "individual phase," two stages of human search, 

are modelled as follows. 

Step 3: Social Phase 

The search direction is determined using the following 

equation by taking into consideration the justifications 

provided in the preceding section and accounting for a 

random clue among the discovered clues. 

  , ,i i kSD X C k i      

     (22) 

where, iX , kC , and iSD stand for the locations of the
thi  

human, the 
thk clue, as well as the 

thi human's search 

direction, respectively. A random integer value between 1 

and 2N called k is selected such that k i . 

It is crucial to note that humans often search in a way that 

covers all targeted areas and avoids returning to previously 

examined areas. As a result, the search should be conducted 

in a way that limits group members' ability to move toward 

one another. To do this, travelling in the path of equation 

should not alter any of iX dimensions (22). The binomial 

transformation function has been used to apply this 

limitation. 

 

 

, , ,

'

, , , ,

,

1 , ( ) ( ),

1 ,

k j i j k j k i

i j i j i j k j

i j

C r X C if f C f X

X X r X C otherwise

X

    
   



2 ,

( 1,..... ),

randif r SE or j j

j D

otherwise

 

 (23) 

where 
,i jX  is denoted as  the new location of the 

thj

dimension for the 
thi  human; 

,k jC is denoted as the 

location of the 
thj dimension for the 

thk found clue; 

( )kf C  and ( )if X are the objective function values for 

the solutions kC and iX , respectively. 

Step 4: Individual Phase 

People conduct searches around their current location in the 

single phase using the social phase's concept of connecting 

various cues. In contrast to the social phase, the individual 

phase sees changes in every aspect of iX . The following 

equation gives the new location of the 
thi individual. 

' 3 ( ), ,i i k mX X r C C i k m        

     (24) 

Where, k and m are denoted as the random integer 

numbers ranging between 1 and 2N. To prevent movement 

along with other clues k and m are chosen in such a way 

that i k m  . 3r is denoted as a random number with a 

uniform distribution ranging among 0 and 1 

Step 5: Boundary Control.  

All solutions in metaheuristic algorithms must be found in 

the solution space; if they are outside the permitted solution 

space, they must be adjusted. Therefore, the following 

equation is used to alter the new position of a human if it is 

outside of the solution space. 
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 
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    (25) 

Where, 
max

jX and 
min

jX  are denoted as the values of the 

maximum and minimum threshold for
thj dimension 

Step 6: Updating Information and Positions.  

The group members are search in accordance with these two 

phases for each iteration, and following each phase, if the 

objective function value in location  ' '( )i iX f X is higher 

than the preceding one  ( )if X , the experience ( )iX are 

stored in a random location of the memory matrix (M) using 

equation (27) and this location are recognised as a new role 

using equation (28). The storage is not updated if this 

location is left, though. 

', ( ) ( ),

,

i i i

n

X IF f X f X
Mn

M otherwise

 



  

     (27) 

' ', ( ) ( ),

,

i i i

i

i

X IF f X f X
X

X otherwise

 



  

     (28) 

where n  is a random integer value between 1 and N , and 

nM is the location of the nth recorded clue in the memory 

matrix. By using this kind of memory update, the algorithm 

becomes more diverse and is also better able to locate the 

global optimum. 

Step 7:  Abandoning Clues.  

Time is an important component in search and rescue 

operations because injured lost persons may not survive if 

search and rescue crews take too long. Therefore, these 

procedures must be carried out in a fashion that allows for 

the fastest possible search of the largest space. Therefore, 

after a set number of searches in the area surrounding his or 

her current position, a humanmove to a new position if they 

are unable to locate any better hints. Unsuccessful search 

number (USN) is initially set to 0 for each individual to 

simulate this behaviour. The USN is set to 0 whenever a 

human discovers superior clues during the first or second 

phase of the search; otherwise, it isrise by 1 point as shown 

in the following equation. 
'1, ( ) ( )

0,

i i iUSN IF f X f X
USN

otherwise

  



 

     (29) 

where iUSN is the amount of times the person i  has failed 

to uncover further useful information, When a person's 

USN exceeds the maximum number of unsuccessful 

searches (MU), they move to a random location in the 

search space using equation (30)  
min max min

, 4 ( ), 1,.... ,i j j j jX X r X X j D    

     (30) 

where 4r is denoted as a random number with a uniform 

distribution ranging between 0 and 1.  

Step 8: Control Parameters of SAR 

SE (social effect) and MU are the two control factors for 

SAR (maximum unsuccessful search number). In the social 

phase, the SE is employed to regulate how group members 

interact with one another. This variable has a range of [0, 

1]. Greater SE values boost convergence rate while also 

reducing algorithms' capacity for global search. The 

maximum number of unsuccessful searches before leaving 

a hint is indicated by the MU parameter. It falls between

 max0, 2 T where maxT is the maximum number of 

iterations and max2 T is the maximum number of searches 

that may be conducted by a single human. Humans are 

never abandon the hints for the larger ideals of the MU. On 

the one hand, low values of this variable force the third 

member of the group to finish the current clue's search 

before continuing to other locations. Magnitude of this 

parameter, on the other hand, result in a decrease in the 

likelihood of searching in other areas and an increase in 

searches focused on a single clue. The problem's dimension 

is directly related to the MU. The largest number of 

unsuccessful searches also rises as the search space does. 

For each of the tests that followed, the SE value was set to 

0.05, and the MU value was calculated using equation (31). 

These ratios for the SE and MU are suitable for addressing 

single-objective continuous optimization problems, 

according to the analysis of SAR parameters. 

70MU D       

     (31) 

V. RESULT AND DISCUSSION 

First case study: flat terrain 

The proposed algorithm for generating optimal layouts for 

flat terrain was used to create 1,023 scenarios that explored 

all possible combinations of potential outlets. The results 

were plotted on a Pareto front, which shows the trade-off 

between two objectives: maximizing the ARI (a measure of 

the efficiency of the layout) and minimizing the LAI (a 

measure of the length of the pipes in the layout). From the 

Pareto front, five layouts were selected to demonstrate the 

potential consequences of different layout configurations. 

These layouts were chosen to have different numbers of 

outlets, or "DCs," which refers to the points where water is 

discharged from the system. The results showed that 

decentralization (using more outlets) generally led to lower 

LAI and higher ARI, resulting in lower overall costs for 

construction. This is because decentralized layouts use 

more main branches to transport water, rather than relying 

on a few main collectors as in centralized layouts. The NSI 

layout function was not considered for the flat terrain case 

study, as it was assumed that there were no significant 

slopes in the ground. 
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The characteristics of the five selected layouts are 

summarized in Table 2. Layout number 3, which used 69% 

of the available outlets (7 out of 10), was found to be the 

optimal design based on the lowest LCC (total cost). The 

locations of the outlets for this layout are shown in Fig. 6. 

The results of this case study were compared with a similar 

study from the literature (also shown in Table 2). The LCC 

of the optimal design from this study was only 2% different 

from the optimal solution in the literature, but was obtained 

using fewer layout generations (1,023 versus 100,000). This 

demonstrates the efficiency of the proposed framework. 
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Resilience assessment 

Resilience was assessed for the selected layouts, and the 

results are summarized in Table 3. Resilience in the context 

of sewer layouts can be characterized by two main factors: 

the total capacity of the system and the distribution of water 

flow. The centralized layout (number 1) had a larger storage 

capacity, but did not perform as well as the decentralized 

layouts during heavy storms due to its distribution of water 

flow. In comparison, the decentralized layouts had better 

flow distribution, which improved their resilience during 

heavy storms. The optimal decentralized solution in this 

study also outperformed the optimal centralized solution 

from the literature during all storm events, even though the 

latter had a larger total capacity. This is because the 

algorithm used in this study was able to achieve a better 

distribution of water flow. 

Advantages and limitations  

The proposed framework for generating optimal sewer 

layouts in this study is based on a deterministic 

combinatorial optimization approach, which reduces the 

computational demands compared to stochastic optimization 

methods such as metaheuristic algorithms. This allows the 

framework to handle larger network sizes and find near-

optimal solutions more efficiently. However, the number of 

potential outlet combinations increases exponentially with 

the number of outlets, which may make the algorithm less 

efficient for very large networks with many scattered 

population patterns. In practice, the number of outlets is 

often limited by technical and operational constraints, and 

pre-processing can be used to reduce the number of outlet 

candidates. The results of the case studies in this study 

suggest that decentralization can lead to lower construction 

costs and better flow distribution in flat areas, but the 

opposite may be true in steep terrains with unfavorable 

slopes. Further research can be conducted to investigate the 

trade-offs between resilience and economic factors, as well 

as the sensitivity of the results to changes in the layout 

objectives. 

VI. CONCLUSIONS  

This study presents multi-objective urban drainage 

networks based on graph theory and the ASROA technique. 

In order to enumerate layouts in the urban drainage 

networks, a deterministic multi-objective combinatorial 

optimization is coupled with a graph-theory-based layout 

generator, which is determined using the suggested 

ASROA technique. The ASROA technique solves the 

optimization challenge. Based on graph theory, the 

proposed deterministic framework may rapidly and 

efficiently develop decentralized and centralised sewage 

infrastructures that are almost optimal and feasible for both 

level and mountainous terrains.The provided layout costs 

may help pre-screen a number of layout solutions in flat 

and steep locations and help remove a large number of 

solutions before forwarding the solutions to the hydraulic 

design optimization.The framework may be used to any 

degree of input detail or to uneven topographies to provide 

the optimal design for mixed and separate sewage flows. 

Resilience analysis reveals that, even when the overall 

sewer capacity (to receive water flows) decreases, flow 

dispersion via several main collectors—achieved through 

decentralization—significantly lowers the amount of 

floodwaters, especially during intense storm events. We are 

certain that the community will be able to go on 

investigating and putting into practice decentralized 

solutions if our thorough work is integrated into 

mainstream UDN design software, which is used by both 

the commercial and non-commercial sectors, like the 

SWMM family. 
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