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Abstract 

 

Numerous numerical patterns and triangles have surfaced, and each of these triangles has 

unique qualities related to the numbers that make them up. In this work, we have examined a 

number triangle made up of whole numbers ordered according to modulo arithmetic and we 

have looked at a few intriguing characteristics of its elements. We have shown many 

theorems that aid in our comprehension of the composition and patterns of numbers using this 

number triangle. 

 

Keywords: Number Triangle, Modulo Arithmetic, Perfect Square, Properties of Number 

Triangle 

 

1. Introduction 

Numerous intriguing number triangles have surfaced, and each of these triangles has 

examined significant characteristics related to the numbers inside the triangle. In this article, 

we will use modulo arithmetic to build a basic number triangle in which the whole numbers 

are organized in each row in a certain sequence. This article will explain the fascinating 

mathematical characteristics of this number triangle. In this work, we have proved eight 

theorems. 

  

 

2. Construction of Number Triangle 

 

Take a look at the number triangle made of whole numbers that follows. 
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Figure 1 shows that row 𝑝 includes 𝑝 numbers if we take 𝑝 to be the row number, where 𝑝 is 

a natural integer.  This triangle is analogous to the most famous Pascal’s Triangle whose 

entries are connected to binomial coefficients.  

 

Further we notice from Figure 1, that the number located in pth row and qth position (when 

read from left to right) where 𝑝≥ 1, q ≥ 1 is given by  

 

𝑎(𝑝, 𝑞) ≡ (𝑝2 + 𝑞2 + 1) 𝑚𝑜𝑑(𝑝 + 𝑞)                                      (2.1)” 

 

 We now offer some findings on the number triangle shown in Figure 1 using equation (2.1). 

Properties of Number Triangle 

3.  Theorem 1  

For p ≥ 1, 

𝑎(𝑝, 𝑝)     ≡ 1 𝑚𝑜𝑑 2𝑝                                          (3.1) 

Proof: Using (2.1) we have 

𝑎(𝑝, 𝑝) ≡ (𝑝2 + 𝑝2 + 1) 𝑚𝑜𝑑(𝑝 + 𝑝) 

 ≡ (2𝑝2 + 1) 𝑚𝑜𝑑(2𝑝) 
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Thus,  𝑎(𝑝, 𝑝) ≡ 1 𝑚𝑜𝑑 2𝑝 

                                                                                                                                                    ■               

4. Theorem 2  

For p ≥ 3, 

𝑎(𝑝, 𝑝 − 1) ≡ (𝑝 + 1) 𝑚𝑜𝑑 (2𝑝 − 1)                      (4.1)        

Proof: “Using (2.1) we have 

𝑎(𝑝, 𝑝 − 1) ≡ (𝑝2 + (𝑝 − 1)2 + 1) 𝑚𝑜𝑑(2𝑝 − 1) 

               ≡ (2𝑝2 − 2𝑝 + 2) 𝑚𝑜𝑑(2𝑝 − 1) 

                                        ≡ [2𝑝(𝑝 − 1) − 𝑝 + 1 + 𝑝 + 1]  𝑚𝑜𝑑(2𝑝 − 1) 

                                              ≡ [2𝑝(𝑝 − 1) − 1(𝑝 − 1) + 𝑝 + 1]  𝑚𝑜𝑑(2𝑝 − 1) 

                                       ≡ [(2𝑝 − 1)(𝑝 − 1) + (𝑝 + 1)]  𝑚𝑜𝑑(2𝑝 − 1)” 

Thus,  𝑎(𝑝, 𝑝 − 1) ≡ (𝑝 + 1) 𝑚𝑜𝑑 (2𝑝 − 1). 

                                                                                                                                                    ■ 

5.Theorem 3  

For p≥ 3, 

𝑎(𝑝, 𝑝 − 2) ≡ 3 𝑚𝑜𝑑 (2𝑝 − 2)                            (5.1) 

 

Proof: “Using (2.1) we have 

𝑎(𝑝, 𝑝 − 2) ≡ (𝑝2 + (𝑝 − 2)2 + 1) 𝑚𝑜𝑑(2𝑝 − 2) 

                    ≡ (2𝑝2 − 4𝑝 + 4 + 1) 𝑚𝑜𝑑(2𝑝 − 2) 

                                             ≡ [2𝑝(𝑝 − 2) − 2𝑝 + 4 + 2𝑝 + 1]  𝑚𝑜𝑑(2𝑝 − 2) 

                                         ≡ [(2𝑝 − 2)(𝑝 − 2) + (2𝑝 + 1)] 𝑚𝑜𝑑(2𝑝 − 2) 

  ≡ (2𝑝 + 1) 𝑚𝑜𝑑 (2𝑝 − 2) 

          ≡ (2𝑝 − 2 + 3) 𝑚𝑜𝑑 (2𝑝 − 2)” 

Thus,  𝑎(𝑝, 𝑝 − 2) ≡  3 𝑚𝑜𝑑 (2𝑝 − 2). 

                                                                                                                                                    ■ 

6. Theorem 4 

For p ≥ 3, 

𝑎(𝑝, 1) ≡ 3 𝑚𝑜𝑑 (𝑝 + 1)                            (6.1) 

 

Proof: Using (2.1) we have 

𝑎(𝑝, 1) ≡ (𝑝2 + 12 + 1) 𝑚𝑜𝑑(𝑝 + 1) 

                                   ≡ (𝑝2 + 12 + 2𝑝 − 2𝑝 + 1) 𝑚𝑜𝑑(𝑝 + 1) 
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                                           ≡ [(𝑝 + 1)2 − 2𝑝 − 2 + 2 + 1)] 𝑚𝑜𝑑(𝑝 + 1) 

                   ≡ (−2(𝑝 ∓ 1) + 3) 𝑚𝑜𝑑(𝑝 + 1) 

Thus,  𝑎(𝑝, 1) ≡ 3 𝑚𝑜𝑑 (𝑝 + 1) 

                                                                                                                                                    ■ 

7. Theorem 5 

For p ≥ 7, 

𝑎(𝑝, 𝑝 − 4) ≡ 9 𝑚𝑜𝑑 (2𝑝 − 4)                            (7.1) 

 

Proof: Using (2.1) we have 

 

𝑎(𝑝, 𝑝 − 4) ≡ (𝑝2 + (𝑝 − 4)2 + 1) 𝑚𝑜𝑑(2𝑝 − 4) 

                      ≡ (2𝑝2 − 8𝑝 + 16 + 1) 𝑚𝑜𝑑(2𝑝 − 4) 

                                               ≡ [2𝑝(𝑝 − 4) − 4𝑝 + 16 + 4𝑝 + 1]  𝑚𝑜𝑑(2𝑝 − 4) 

                                         ≡ [(2𝑝 − 4)(𝑝 − 4) + (4𝑝 + 1)] 𝑚𝑜𝑑(2𝑝 − 4) 

            ≡  (4𝑝 − 8 + 9) 𝑚𝑜𝑑 (2𝑝 − 4) 

                  ≡ (2(2𝑝 − 4) + 9) 𝑚𝑜𝑑 (2𝑝 − 4) 

 

                                                        ≡ 9 𝑚𝑜𝑑 (2𝑝 − 4) 

 

Thus,  𝑎(𝑝, 𝑝 − 4) ≡ 9 𝑚𝑜𝑑 (2𝑝 − 4) 

 

                            ■ 

8. Theorem 6 

For p ≥ 8, 

𝑎(𝑝, 2)  ≡ 9 𝑚𝑜𝑑 (𝑝 + 2)    (8.1) 

Proof: Using (2.1) we have 

 

𝑎(𝑝, 2) ≡  (𝑝2 + 22 + 1) 𝑚𝑜𝑑(𝑝 + 2) 

                                ≡  (𝑝2 + 4 + 4𝑝 − 4𝑝 + 1) 𝑚𝑜𝑑(𝑝 + 2) 

                          ≡   ((𝑝 + 2)2 + 1 − 4𝑝) 𝑚𝑜𝑑(𝑝 + 2) 

     ≡   (1 − 4𝑝) 𝑚𝑜𝑑 (𝑝 + 2) 

           ≡ ( 9 − 4𝑝 − 8) 𝑚𝑜𝑑 (𝑝 + 2) 

              ≡ ( 9 − 4(𝑝 + 2))𝑚𝑜𝑑 (𝑝 + 2) 

                                                        ≡  9 𝑚𝑜𝑑 (𝑝 + 2) 
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Thus,  𝑎(𝑝, 2)  ≡ 9 𝑚𝑜𝑑 (𝑝 + 2) 

                                                                                                                                                    ■ 

9. Theorem 7 

𝑎(𝑝, 𝑞) ≡ 0 𝑚𝑜𝑑(𝑝 + 𝑞) 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 2𝑝𝑞 ≡ 1 𝑚𝑜𝑑(𝑝 + 𝑞)     (9.1) 

 

Proof: Using (2.1) we have 

𝑎(𝑝, 𝑞) ≡   (𝑝2 + 𝑞2 + 1) 𝑚𝑜𝑑(𝑝 + 𝑞) 

𝑎(𝑝, 𝑞) ≡ 0 𝑚𝑜𝑑(𝑝 + 𝑞) ⟺ (𝑝2 + 𝑞2 + 1) ≡ 0 𝑚𝑜𝑑(𝑝 + 𝑞) 

                                                 ⟺ (𝑝 + 𝑞)² + 1 ≡ 2𝑝𝑞 𝑚𝑜𝑑(𝑝 + 𝑞) 

                           ⟺ 1 ≡ 2𝑝𝑞 𝑚𝑜𝑑(𝑝 + 𝑞) 

                           ⟺ 2𝑝𝑞 ≡ 1 𝑚𝑜𝑑(𝑝 + 𝑞) 

Thus,  𝑎(𝑝, 𝑞) ≡ 0 𝑚𝑜𝑑(𝑝 + 𝑞) ⟺ 2𝑝𝑞 ≡ 1 𝑚𝑜𝑑(𝑝 + 𝑞) 

                                                                                                                                                    ■ 

10. Theorem 8 

 

𝑎(𝑝, 𝑞) is a perfect square of the form m2 if and only if 2𝑝𝑞 + (𝑚2 − 1) ≡ 0 𝑚𝑜𝑑(𝑝 + 𝑞) 

for some integer m      (10.1) 

 

Proof: Using (2.1) we have 

𝑎(𝑝, 𝑞) ≡   (𝑝2 + 𝑞2 + 1) 𝑚𝑜𝑑(𝑝 + 𝑞) 

𝑎(𝑝, 𝑞) is a perfect square ⟺ (𝑝2 + 𝑞 + 1) ≡ 𝑚2 𝑚𝑜𝑑(𝑝 + 𝑞) 

                                          ⟺ (𝑝2 + 𝑞2 + 1) + 2𝑝𝑞 ≡ 𝑚2 + 2𝑝𝑞 𝑚𝑜𝑑(𝑝 + 𝑞) 

                                           ⟺ (𝑝 + 𝑞)² + 1 ≡ 𝑚2 + 2𝑝𝑞 𝑚𝑜𝑑(𝑝 + 𝑞) 

                                                ⟺ 2𝑝𝑞 + (𝑚2 − 1) ≡ 0 𝑚𝑜𝑑(𝑝 + 𝑞) 

𝑎(𝑝. 𝑞) is a perfect square ⟺ 2𝑝𝑞 + (𝑚2 − 1) ≡ 0 𝑚𝑜𝑑(𝑝 + 𝑞) 

                                                                                                                                                    ■ 

11. Conclusion 

 

Using a basic number triangle (as shown in Figure 1), which is made up of whole numbers 

created in each row by modulo arithmetic operations, such that the 𝑝th row has 𝑝 whole 

numbers. In this work, we have proven eight fascinating theorems using the built number 

triangle's elements. These findings will aid in our comprehension of the composition and 

characteristics of the triangle under consideration.  Similarly by considering suitable function 

similar to that of in (2.1), we can construct various other number triangles and investigate 

their properties. One can also consider mod 2, mod 3, and so on for the entries of the number 

triangle in Figure 1, and look out for some patterns obtained through such entries.  
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