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Multivariate Contrasts For Repeated Measures Designs  
Under Assumption Violations 

                        Lisa M. Lix                                                               Aynslie M. Hinds 
    Department of Community Health Sciences                     Department of Community Health Sciences 
                  University of Manitoba                                                       University of Manitoba 

 
 
Conventional and approximate degrees of freedom procedures for testing multivariate interaction 
contrasts in groups by trials repeated measures designs were compared under assumption violation 
conditions. Procedures were based on either least-squares or robust estimators. Power generally favored 
test procedures based on robust estimators for non-normal distributions, but was influenced by the degree 
of departure from non-normality, definition of power, and magnitude of the multivariate effect size. 
 
Key words: à priori contrasts, robust estimators, covariance heterogeneity 
 
 

Introduction 
 
In a doubly multivariate repeated measures 
(RM) design, subjects provide data at K 
successive points in time or for each of K 
experimental conditions on p dependent 
variables. For example, measures of physical, 
social, psychological, and spiritual quality of life 
may be collected at multiple occasions during a 
course of treatment or therapy. A grouping 
factor (i.e., experimental vs. control group) is 
often included, resulting in a multivariate design 
in which both within-subjects main and 
interaction effects can be tested. 

One approach for analyzing multivariate 
RM design is to follow statistically significant 
multivariate omnibus tests with multiple post 
hoc contrasts. Typically researchers will 
examine either strongly restricted contrasts, 
which are defined on the between- and/or  
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within-subjects factor levels for a single 
dependent variable, or moderately restricted 
contrasts, which are defined on between-subjects 
and/or within-subjects factor levels for two or 
more dependent variables (Elliot & 
Barcikowski, 1994). A multivariate 
simultaneous test procedure (STP) will control 
the familywise error rate (FWR), the probability 
of making at least one erroneous decision 
regarding the null hypothesis for the contrasts, to 
the nominal level of significance, α (Bird & 
Hadzi-Pavlovic, 1983; Elliot & Barcikowski, 
1994). The FWRs for both types of contrasts 
tend to be well below the nominal level of 
significance, α. In addition, these contrasts may 
have low power to detect effects in multivariate 
designs. 

An alternate approach is to bypass the 
omnibus test in favor of à priori multivariate 
contrasts which test focused hypotheses on the 
between-subjects or within-subjects factor levels 
for a linear combination of the dependent 
variables (Huberty, 1994; Huberty, Chou, & 
Benitez, 1994; Keselman et al., 1998; 
Krishnaiah & Reising, 1985). These multivariate 
contrasts enable researchers to draw conclusions 
about the localized source of an effect while 
taking account of the correlation across repeated 
measurements and dependent variables.  

One issue in conducting these a priori 
contrasts in multivariate designs is controlling 
the FWR. Timm (2002) has recommended the 
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use of STPs based on the Bonferroni inequality 
or the studentized maximum modulus. If the 
development of confidence intervals for these 
multivariate contrasts is not of primary concern, 
a stepwise procedure may also be considered 
(Keselman, Lix, & Kowalchuk, 1998; Tamhane 
& Dunnett, 1999). 

A second issue is the choice of a test 
statistic and its associated derivational 
assumptions. In multivariate between-subjects 
designs, it is known that conventional 
procedures for testing post hoc contrasts are 
sensitive to violations of the assumptions of 
normality and covariance heterogeneity, which 
underlie the usual multivariate analysis of 
variance (MANOVA) tests (Bird & Hadzi-
Pavlovic, 1983; Sheehan-Holt, 1998). In 
multivariate RM designs, the two conventional 
approaches for testing effects are the 
multivariate mixed model (MMM) and doubly 
multivariate model (DMM) approaches 
(Thomas, 1983; Boik, 1988, 1991).  

The MMM rests on the stringent 
assumption of multivariate sphericity (M-
sphericity). M-sphericity is the assumption that 
all pairwise differences of the repeated 
measurements exhibit a common variance for all 
dependent variables. In addition, both the MMM 
and DMM approaches rest on the assumptions of 
homogeneity of the covariances across between-
subjects factor levels and multivariate normality. 
Because M-sphericity is not likely to be satisfied 
in practice, the DMM approach has been 
recommended over the MMM approach. 
However DMM tests are sensitive to violations 
of the assumptions of covariance homogeneity 
and multivariate normality. 

The purpose of this article is to compare 
the conventional DMM procedure to procedures 
that employ approximate degrees of freedom 
(ADF) multivariate test statistics that do not rest 
on the assumption of covariance homogeneity 
for testing multivariate contrasts in repeated 
measures designs. Recent research (Lix, Algina, 
& Keselman, 2003; Lix, Keselman, & Hinds, in 
press) has derived multivariate ADF tests using 
robust estimators instead of the usual least-
squares estimators which are known to be 
sensitive to departures from multivariate 
normality. Thus, it should be possible to obtain a 
test for multivariate contrasts in RM designs that 

is robust to both covariance heterogeneity and 
multivariate non-normality in multivariate RM 
designs, while controlling the FWR to α. 
  
Definition of Test Statistics 

Let ,+= εXβY  where Y= [Yijkl], and 
Yijkl is the score for the ith individual (i = 1 ,…, 

nj;  Nn
J

j
j =∑

=1
) in the jth group (j = 1 ,…, J), on 

the kth (k = 1 ,…, K) repeated measurement and 
lth dependent variable (l = 1 ,…, p). Then X is 
an N x J design matrix with rank(X) = J, β is a J 
x L (L = K x p) matrix of nonrandom parameters 
(i.e., population means), and ε is an N x L matrix 
of random error components. Each row of Y 
contains the L-dimensional response vector 
where the first K columns correspond to the 
repeated measurements obtained on the first 
dependent variable, the next K columns 
correspond to the repeated measurements 
obtained for the second dependent variable, and 
so on.  

The null hypothesis for a multivariate 
contrast is  
 
                ,:0 0mβcψ ==H                          (1) 
 
where c is a vector that contains the contrast 
coefficients for the between-subjects effect and 

( )ulm ′⊗= , where l = Ip, the p x p identity 
matrix, ⊗  is the Kronecker product symbol, and 
u defines the contrast coefficients for the within-
subjects effects.  The best linear unbiased 
estimator for ψ, which can be obtained by the 
least-squares method, is ,ˆˆ mβcψ = where 

.)ˆ 1 YXXXβ ′′(= −  
Multivariate interaction contrasts are 

considered in this manuscript. There are a 
number of different types of interaction contrasts 
that may be defined for RM designs (Boik, 
1993; Lix & Keselman, 1995). Tetrad contrasts, 
which are the simplest to define, test for 
differences between pairs of levels of two 
factors. For example, in a multivariate RM 
designs with J = 3 and K = 4, a tetrad contrast 
involving the first two levels of the between-
subjects factor and the first and third levels of 
the within-subjects factor would require contrast 
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vectors of c = [1 -1 0] and u'=[1 0 -1 0]. 
Under a DMM approach, H0 is tested 

with one of several well-known multivariate 
tests that are functions of the eigenvalues of 
H(H+E)-1, where 
 

                 ( )[ ] ,ψcXXcψH ′′′=
−− ˆˆ

11               (2) 
and  
 
        ( )[ ] ,1 YmXXXXIYmE ′′−′′= −

N         (3) 
 
where IN is an identity matrix of dimension N. 
The tests are the Lawley-Hotelling trace, Pillai-
Bartlett trace, Roy’s largest root, and Wilk’s 
lambda (Timm, 2002). If the multivariate 
contrast is a single-degree of freedom contrast 
on the p dependent variables, then all of these 
procedures will reduce to Hotelling’s (1931) T2. 

When covariances are heterogeneous, 
Keselman and Lix (1997) demonstrated that 
DMM tests will produce inflated Type I error 
rates for omnibus tests of multivariate within-
subjects effects, particularly when group sizes 
are unequal. Keselman and Lix (1997) showed 
than an ADF multivariate Welch-James (WJ) 
procedure due to Johansen (1980) can be used to 
test multivariate within-subjects main and 
interaction effects under covariance 
heterogeneity provided that sample sizes are 
sufficiently large. Moreover, Vallejo, Fidalgo, 
and Fernandez (2001) and Lix, Algina, and 
Keselman (2003) also demonstrated that a 
multivariate extension of the Brown and 
Forsythe (BF; Brown & Forsythe, 1974) 
procedure could be used to test within-subjects 
omnibus effects. The advantage of one 
procedure over the other depends on the 
omnibus effect of interest, total sample size, and 
the degree of covariance heterogeneity in the 
data. 

Let Sj represent the sample covariance 
matrix for the jth group,  

                       ,
j

j
j n

mSm
W

′
=                          (4) 

and W = ∑
=

J

j
j

1
.W  The WJ test statistic is  

 

                     .ψWψ ′= − ˆˆ 1
WJT                        (5) 

 
The statistic TWJ/C, where C = p + 2A – 6A(p + 
2), is distributed as Fα[νWJ1,νWJ2], the (1 – α) 
percentile of the F distribution with νWJ1 = p, 
νWJ2 = p(p + 2)/3A, and 
 

( ) ( )[ ] ).1(2/
2

1
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For the BF procedure, define  
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and ∑=
=

J

j
j

1

** .WW  The test statistic is  
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which is distributed as Fα[νBF1,νBF2]. The 
computations for νBF1 and νBF2 are lengthy, and 
the reader is referred to Vallejo et al. (2001) and 
Lix, Algina, and Keselman (2003) for the 
appropriate formulas. 

Lix, Algina, and Keselman (2003) 
examined the WJ and BF procedures when least-
squares estimators are replaced with robust 
estimators based on trimmed means. To define 
these procedures, let Y(1)jkl ≤ Y(2)jkl ≤ ⋅⋅⋅ ≤ )jkl(n j

Y , 

represent the ordered observations associated 
with the jth level of the between-subjects factor, 
the kth level of the repeated measures factor and 
the lth dependent variable. Let gj = [γnj], where γ 
represents the proportion of observations that are 
to be trimmed in each tail of the distribution and 
[x] is the greatest integer ≤ x. The effective 
sample size for the jth group is hj = nj – 2gj. The 
trimmed mean is estimated by 

 

                t
1

1ˆ .
j jn g

jkl (i)jkl
i jj

µ Y
h g

−

= +

= ∑                         

(9) 
Wilcox (1995a,b) has recommended that 20 
percent trimming be adopted. It should be noted 
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that this is a univariate perspective on trimming, 
in which the most extreme scores for each 
column of Y are trimmed independently of the 
extreme scores in each of the other columns. 

In order to obtain the sample 
Winsorized covariances, the sample Winsorized 
mean must first be computed and it is obtained 
by replacing the gj smallest values with the γ 
percentile score, and the gj largest values with 
the (1 - γ) percentile score 
 

             
,1ˆ

1
wj ∑=

=

jn

i
ijkl

j
kl Z

n
µ

                           (10) 

where 
 

.)jklg(nijkl )jklg(n

)jklg(nijkl)jkl(gijkl

)jkl(gijkl)jkl(gijkl

jjjj

jjj

jj

YYY

YYYY

YYYZ

−−

−+

++

≥=

<<=
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 if

 if

 if

1

11

 

 
The sample Winsorized covariance is required to 
obtain a theoretically valid estimate of the 
standard error of a trimmed mean. The 
covariance matrix of the Winsorized sample, 

[ ]qjqj σ ′= ww ˆS , is  
 

( )( )
( ) ,

1-

ˆˆ
ˆ 1

w

w
j

qwjqqijq

n

i
qjqqijq

qq n

µZµZ
σ

j

′′
=

′′

′

−−
=
∑

     (11) 

 
for q, q′ = 1, …, L. 

To control the FWR for multiple tests, 
either a STP or a stepwise procedure may be 
adopted. For univariate RM designs under 
assumption violations, Lix and Keselman (1995) 
showed that the latter are more powerful, and 
recommended the use of either a step-up or step-
down procedure based on the Bonferroni 
inequality, such as Hochberg’s (1988) test.  
Under Hochberg’s procedure, one begins by 
rank ordering the p-values corresponding to the 
statistics used for testing the hypotheses H(1), …, 
H(B), so that p(1) ≤ p(2)  ≤ … ≤ p(B) represent the 
ordered p-values. The decision rule is to reject 

H(m') (m' ≤ m; m = B ,…, 1) if p(m) ≤ α/(B – m + 
1). Testing begins with the hypothesis 
corresponding to the largest p-value, p(B). If p(B) 
≤ α , all B hypotheses are rejected; if not, H(B) is 
retained and testing moves to H(B-1). If p(B-1) ≤ α 
/2, H(C-1) is rejected, as are all remaining 
hypotheses; if not H(B-1) is also retained, and p(B-

2) is compared to α/3, and so on. This continues, 
if all previous hypotheses have been retained, 
until p(1) is compared to α/B. 
 

Methodology 
 
A Monte Carlo study was used to evaluate the 
Type I error and power of the DMM, WJ and BF 
procedures for multivariate interaction contrasts. 
These three tests were investigated for a 
multivariate repeated measures design 
containing a single between-subjects factor with 
J = 3 levels and a single within-subjects factor 
with K = 4 levels.  

The following variables were 
manipulated in the study. These were: (a) 
number of dependent variables, (b) total sample 
size, (c) equality/inequality of the group sizes, 
(d) the coefficient of variation of the group sizes 
for unbalanced designs, (e) degree of 
equality/inequality of the group covariance 
matrices, (f) nature of the pairing of group sizes 
and group covariance matrices, (g) multivariate 
normality/nonnormality, and (h) the non-null 
hypothesis for power comparisons. The degree 
of correlation between the dependent variables 
was set at ρ = .80. Keselman and Lix (1997) 
included both small and large p and ρ in their 
study; the former increased the total sample size 
required to obtain a robust solution for the WJ 
procedure, while the latter variable had little 
influence on the Type I error performance of the 
WJ procedure, which is consistent with previous 
research (Keselman & Lix, 1997). The pooled 
covariance of the repeated measurements had a 
non-spherical structure, with a value for ε, the 
index of non-sphericity, of ε = .57. The pooled 
covariance matrix had an average variance of 
1.0 and average covariance of 0.5.  

The procedures were investigated for p 
= 2 and 4 dependent variables for total sample 
sizes ranging from 60 to 120. The WJ test is 
likely to perform less optimally for small to 
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moderate sample sizes, particularly for non-
normal distributions (Keselman et al., 2000). 
Both balanced and unbalanced designs were 
included in the study. For unbalanced designs, 
the sample size conditions were selected based 
on previous research (Keselman & Lix, 1997; 
Vallejo et al., 2001; Lix, Algina, & Keselman, 
2003). Table 1 contains the values of the total 
sample sizes that were examined, along with the 
values of the coefficient of variation of the 
group sizes, ∆nj, where 

 
 

          

( )
.

/
1

2

n

Jnn
n

J

j
j

j

∑
=

−

=∆                  (12) 

 
Table 1. Group Sizes (njs) and Coefficient of 
Variation of Group Sizes (∆nj) for Balanced and 
Unbalanced Designs. 
 

N nj ∆nj 
60 20, 20, 20 0 

 18, 20, 22 .08 
90 30, 30, 30 0 

 24, 30, 36 .16 
 18, 30, 42 .33 

120 40, 40, 40 0 
 30, 40, 50 .20 
 24, 40, 56 .33 
 18, 40, 62 .45 

 
 
This coefficient ranged in value from .08 to .45 
when group sizes were unequal. 

The procedures were investigated when 
the group covariance matrices were equal and 
unequal. For the latter case, the elements of the 
group covariance matrices were in a 1:3:5 ratio. 
These conditions are consistent with those 
selected by Keselman and Lix (1997) and 
Vallejo et al. (2001).  

Both positive and negative pairings of 
group sizes and covariance matrices were 
investigated. A positive pairing refers to when 
the largest nj is associated with the covariance 
matrix containing the largest element values; a 
negative pairing refers to the case in which the 
largest nj is associated with the covariance 

matrix with the smallest element values. 
Type I error and power rates were 

obtained when the data were both multivariate 
normal and non-normal in form. With respect to 
the former condition, pseudorandom observation 
vectors Yij from a multivariate normal 
distribution with mean vector βj and covariance 
matrix Σj were obtained using the SAS generator 
RANNOR (SAS Institute, 1999b). To obtain 
each Yij, a row vector of L deviates in which 
each element has a standard normal distribution 
(i.e., Zij), was transformed to a vector of 
multivariate observations via a triangular 
(Cholesky) decomposition, ,T

ijjij LZβY +=  
where L is a upper triangular matrix satisfying 
the equality LTL = Σj. In this study, Σj was of the 
form Σj = (Ωj ⊗ ρp) where ρp represent the p-
dimension correlation matrix for the dependent 
variables and Ωj represents the K-dimension 
covariance matrix associated with a particular 
dependent variable for the jth group. 

Two non-normal distributions were 
investigated: skewed and long-tailed. The 
skewed distribution had the same skewness (γ1) 
and kurtosis (γ2) values as a lognormal 
distribution, in which γ1 = 6.18 and γ2 =110.93. 
The long-tailed distribution had skewness and 
kurtosis values equivalent to those of a double-
exponential distribution, with γ1 = 0 and γ2 = 3. 

These distributions and their associated 
measures of skewness and kurtosis are 
representative of those encountered in 
educational and psychological research (Micceri, 
1989). The data were generated by the method 
developed by Fleishman (1978) and extended to 
the multivariate situation by Vale and Maurelli 
(1983). 

For each distribution, a vector of 
constants, w = [a b c d]T was obtained using 
Fleishman’s method, to provide the desired 
degree of multivariate skewness and kurtosis. 
An intermediate covariance matrix (i.e., λj) was 
computed so that Yij would have the desired Σj. 
Elements of this intermediate matrix were 
computed using Vale and Maurelli’s (1983) 
Equation 11 (p. 467), which involves finding the 
roots of a third-degree polynomial; these roots 
were computed using the SAS/IML 
POLYROOT function (SAS Institute, 1999a). 
The vector of univariate standard normal 
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deviates was transformed to a vector of 
multivariate normal deviates via the Cholesky 
decomposition, ,)( T

ijjij ZLβλZ λ+=  where 
Z(λ)ij is the vector of transformed variates, and 
Lλ is an upper triangular matrix of dimension L 
satisfying the equality jλLL =λλ

T .  
Next, each element of Yij was obtained 

by computing the zero through third powers of 
the corresponding elements of Z(λ)ij, so that 

])()()(1[( 32
ijklijklijklijkl λZλZλZλZ =)  which 

represents the vector of powers of the klth 
components of Z(λ)ij. From this, Yijkl = Z(λ)ijklw. 

Three definitions of power were 
considered when non-null hypotheses were 
investigated. These were any-contrast power, 
that is, the power to detect at least one non-null 
hypothesis, all-contrast power, the power to 
detect all non-null contrasts, and average-per-
contrast power, the average probability of 
detecting at least one non-null contrast. We 
examined the procedures when the effect size 
(f2; Cohen, 1988) for the omnibus test of the 
within-subjects interaction was small and large 
for two patterns of non-null means.  

For pattern 1, the first dependent variable 
had non-null means, while the second dependent 
variable had null means. For pattern 2, both 
dependent variables had the same non-null 
means. For patterns 1 and 2 respectively, the 
small effect size was equal to .16 and .08, 
respectively. The large effect size was 1.35 and 
.80 for patterns 1 and 2, respectively. The large 
effect size was selected to enable comparisons of 
all-contrast power across the investigated 
procedures; all-contrast power was zero for the 
small effect size. 

The simulation program was written in 
the SAS/IML programming language (SAS 
Institute, 1999a). For the investigation of the 
FWR, the following factors were completely 
crossed: number of dependent variables (2), total 
sample size (3: small, moderate, large), 
relationship between group sizes and covariance 
matrices (4: equal group sizes/equal covariance 
matrices, equal group sizes/unequal covariance 
matrices, positive pairing of group sizes and  
 
 
 

covariance matrices, negative pairing of group 
sizes and covariance matrices), and population 
distribution (3: normal, double exponential, 
lognormal). The degree of sample size inequality 
was nested within total sample size.  

For the investigation of power, the 
following factors were completely crossed for p 
= 2: total sample size, relationship between 
group sizes and covariances, population 
distribution, effect size (2: small, large), pattern 
of non-null means (2: non-null means on one 
dependent variable, non-null means on both 
dependent variables). For p = 2, five thousand 
replications of each condition were performed 
using a .05 significance level. For p = 4, because 
of the size of the matrices and the computations 
required, only three thousand replications were 
conducted. For each replication, the 
conventional DMM, WJ and BF tests were 
computed using least-squares and robust 
estimators. 

 
Results 

 
Type I Error 

Table 2 contains the empirical 
percentages of FWR for the conventional (i.e., 
DMM), BF and WJ procedures for both least-
squares and robust estimators for p = 2. Bold 
values are not contained within the bounds for 
Bradley’s (1978) liberal criterion of robustness, 
which, for the five percent level of significance 
that was adopted, is 2.5 to 7.5 percentage points. 

The data reveal that when the data were 
multivariate normal and least-squares estimators 
were adopted, the conventional test for 
multivariate contrasts could control the FWR 
when sample size was small or moderate for all 
conditions with the exception of negative 
pairings of group sizes and covariance matrices, 
and the positive pairing when ∆nj = .33. When 
sample size was large, the FWR was outside the 
bounds of Bradley’s (1978) criterion for almost 
all of the positive and negative pairing 
conditions. When the data were normal, both the 
BF and WJ ADF procedures based on least-
squares estimators controlled the rate of Type I 
errors across all of the investigated conditions.  
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Table 2. Empirical Percentages of Familywise Type I Error for Robust and Least Squares Estimators for 
Multivariate Interaction Contrasts, p = 2. 

Note: + pair = positive paring of group sizes and covariance matrices; - pair=negative paring of group sizes and covariance 
matrices. Bold values are outside the range 2.5 - 7.5. LS = Least Squares estimators; RE=Robust estimators.  

  Normal Double Exponential Lognormal  
N 

 
Test Pairing ∆nj LS RE LS RE LS RE 

60 DMM = nj; = Σj 0 3.99 2.34 3.80 2.22 1.66 2.40 
 BF   2.55 0.89 2.29 0.78 0.44 0.78 
 WJ   3.85 1.90 3.35 1.71 0.85 1.73 
 DMM = nj; ≠ Σj  0 7.11 4.72 6.72 4.25 2.76 4.56 
 BF   3.24 1.25 2.85 1.10 0.66 0.93 
 WJ   3.97 1.93 3.58 1.85 1.03 1.66 
 DMM + pair 0.08 5.30 3.73 5.12 3.38 2.01 3.62 
 BF   3.50 1.45 3.30 1.22 0.65 1.25 
 WJ   3.78 2.10 3.44 1.92 0.94 1.78 
 DMM - pair 0.08 9.13 5.87 7.88 5.48 3.62 5.78 
 BF   2.92 1.08 2.43 0.92 0.53 0.94 
 WJ   3.92 1.97 3.17 1.81 1.02 1.75 

90 DMM = nj; = Σj 0 4.09 2.75 3.71 2.50 1.93 2.69 
 BF   3.02 1.46 2.72 1.31 0.75 1.34 
 WJ   3.88 2.47 3.50 2.27 1.01 2.21 
 DMM = nj; ≠ Σj  0 6.95 5.20 6.44 4.93 3.07 5.59 
 BF   3.75 1.88 3.40 1.81 0.78 1.85 
 WJ   3.74 2.37 3.64 2.22 1.00 2.37 
 DMM + pair 0.16 3.82 3.18 3.55 2.84 1.59 3.23 
 BF   4.07 2.35 3.45 2.03 1.08 1.90 
 WJ   3.76 2.63 3.27 2.26 0.91 2.28 
 DMM - pair 0.33 2.30 1.79 2.37 1.71 1.04 1.79 
 BF   4.36 2.65 4.38 2.48 1.57 2.36 
 WJ   3.70 2.39 3.58 2.36 1.12 2.37 
 DMM = nj; = Σj 0.16 12.00 8.69 11.17 8.36 5.86 7.90 
 BF   3.54 1.74 3.15 1.47 0.70 1.39 
 WJ   3.80 2.52 3.53 2.19 1.06 2.14 
 DMM = nj; ≠ Σj  0.33 18.84 14.73 18.26 14.72 10.85 14.35 
 BF   2.90 1.38 2.62 1.15 0.60 1.01 
 WJ   3.80 2.44 3.59 2.04 1.16 1.88 

120 DMM = nj; = Σj 0 4.10 3.11 3.85 2.88 2.15 3.15 
 BF   3.21 1.89 3.10 1.76 1.00 1.74 
 WJ   4.01 2.78 3.66 2.48 1.34 2.68 
 DMM = nj; ≠ Σj  0 7.06 5.65 6.34 5.12 3.30 5.58 
 BF   4.12 2.44 3.47 2.10 1.19 2.21 
 WJ   4.02 2.59 3.48 2.30 1.30 2.52 
 DMM + pair 0.20 3.27 2.55 3.38 2.58 1.72 2.79 
 BF   4.43 2.74 4.33 2.71 1.63 2.51 
 WJ   4.09 2.62 3.71 2.60 1.17 2.73 
 DMM - pair 0.33 2.38 1.93 2.24 1.90 1.09 2.21 
 BF   4.64 3.29 4.47 2.95 1.84 2.93 
 WJ   3.98 2.72 3.63 2.64 1.27 2.73 
 DMM = nj; = Σj 0.45 1.50 1.30 1.51 1.26 0.99 1.33 
 BF   4.78 3.22 4.62 3.05 2.61 3.26 
 WJ   3.74 2.62 3.43 2.48 1.35 2.64 
 DMM = nj; ≠ Σj  0.20 13.43 10.85 13.12 10.85 7.37 11.00 
 BF   3.45 1.95 3.25 1.71 0.88 1.47 
 WJ   3.90 2.28 3.36 2.15 1.05 2.07 
 DMM + pair 0.33 19.41 15.10 18.49 15.67 11.59 14.54 
 BF   3.54 1.70 2.90 1.45 0.62 1.29 
 WJ   3.99 2.44 3.35 2.13 1.18 2.23 
 DMM - pair 0.45 26.89 23.04 26.11 23.11 17.83 20.58 
 BF   3.07 1.45 2.37 1.15 0.52 1.12 
 WJ   3.64 2.29 3.33 2.00 1.26 2.18 
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When the data were normal and robust 
estimators were adopted, the DMM test 
remained liberal for negative pairing conditions 
when sample size was moderate or large. The 
DMM, BF, and WJ procedures were frequently 
conservative, but this degree of conservatism 
decreased as the total sample size increased.  

The results for symmetric and skewed 
distributions were substantially different. For the 
symmetric double exponential distribution, the 
FWR results for least-squares estimators was 
similar to those obtained for the normal 
distribution. That is, the DMM test was liberal 
for all negative pairing conditions and 
conservative for positive pairings when the 
degree of group size imbalance was large. The 
FWR for the ADF tests was well controlled. The 
same liberal tendencies of the DMM test were 
observed even when robust estimators were 
adopted, while the ADF tests were frequently 
conservative. 

When the data were obtained from the 
skewed lognormal distribution, the error rates 
for the conventional and ADF procedures based 
on least-squares estimators were almost always 
conservative, except for negative pairings of 
group sizes and covariances when the DMM test 
could be liberal. When robust estimators were 
adopted, the FWRs for the DMM test could still 
be liberal. Those for the ADF tests tended to be 
less conservative than when least-squares 
estimators were adopted, and became even less 
so as total sample size increased.  

The results for p = 4 (not reported) were 
similar to those provided in Table 2. However, 
the FWR for the conventional test were even 
more inflated than when p = 2. For example, 
when N = 120 and ∆nj = .20, the FWR was 
18.14 and 12.32 percent for the double 
exponential distribution for least-squares and 
robust estimators, respectively. 
 
Power  

Table 3 contains the empirical 
percentages of any-contrast and average-per- 
contrast power for conventional and ADF 
procedures for the first mean pattern when the 
effect size was small. The data are averaged over 
all total sample size conditions. For the second 
mean pattern, any-contrast power attained its 
upper bound across most of the conditions; 

therefore these data are not reported. To 
interpret these results, we describe mean power 
differences of less than ten percentage points as 
small, between ten and 20 percent as moderate, 
and those of greater than 20 percent as 
substantial.  

When the data followed a multivariate 
normal distribution, procedures based on least-
squares estimators were more powerful than 
those based on robust estimators. The 
differences in any-contrast power were moderate 
to large. For average-per-contrast power they 
were small to moderate. For positive and 
negative pairing conditions, the differences in 
any-contrast power for the BF and WJ 
procedures were small; for positive pairings the 
BF test was slightly more powerful than the WJ 
test. 

When the data had a multivariate heavy-
tailed distribution, any-contrast power and 
average-per-contrast power rates for the 
procedures based on least-squares estimators 
were larger than those based on robust 
estimators. However, the differences were 
generally small. The exception was for any-
contrast power for the BF and WJ procedures for 
negative pairings of group sizes and covariances, 
where the differences were moderate.  

However, when the data had a 
multivariate skewed distribution, the procedures 
based on robust estimators were consistent more 
powerful than those based on least-squares 
estimators. This held true for both any-contrast 
and per-contrast power. The power differences 
were small to moderate. The WJ procedure was 
more powerful than the BF test with robust 
estimators across all of the investigated 
conditions. 

Table 4 provides all-contrast and 
average-per-contrast power when the effect size 
was large for both the first and second mean 
patterns. Again, when the data followed a 
multivariate normal distribution, procedures 
based on least-squares estimators were always 
more powerful than those based on robust 
estimators. The differences in all-contrast power 
between the procedures based on least-squares 
estimators and those based on robust estimators 
were moderate to large for the first mean pattern. 
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The greatest difference was for the WJ 

procedure for both the positive and negative 
pairing conditions, where the difference in 
power was 25.5 and 27.2 percent for the positive 
and negative pairing conditions, respectively. 
The smallest difference was for the BF 
procedure. For the second mean pattern, the 
differences between least-squares and robust 
estimators were small to moderate when the data 
were normally distributed. Again, the greatest 
differences were for the WJ procedure. For per-
contrast power, the differences between least-
squares and robust estimators were small to 
moderate. The largest difference for both mean 
patterns was for the BF procedure (13.1 percent) 
when group sizes and covariance matrices were 
negatively paired.  

For normally distributed data with least-
squares estimators, the differences among the 
procedures varied considerably depending on the 
relationship between the group sizes and  

 
 

 
 

covariances. When the design was balanced and 
covariances were unequal, the WJ procedure 
was substantially more powerful than the BF 
procedure, and moderately more powerful than 
the DMM. The difference in power between the 
BF and WJ procedures was substantial for both 
the positive and negative pairing conditions for 
both mean patterns. This same pattern was 
evident when robust estimators were adopted. 

For the double exponential distribution, 
the difference between procedures based on 
least-squares and robust estimators were small 
for both all-contrast and per-contrast power. The 
procedures based robust estimators were more 
power than those based on least-squares 
estimators for both types of power. Again, the 
differences between procedures based on least-
squares and robust estimators were largest for 
the BF procedure.   

 
 

 
Table 3. Empirical Percentages of Power for Robust and Least Squares Estimators for Multivariate Interaction 
Contrasts, p = 2; Small Effect Size, Mean Pattern 1. 
 

Normal Double Exponential Lognormal 
 ANCP PCP ANCP PCP ANCP PCP 

Test Pairing LS RE LS RE LS RE LS RE LS RE LS RE 

DMM = nj; = Σj 76.44 53.03 22.10 10.04 76.27 69.86 21.45 16.66 77.17 88.43 19.04 26.67 
BF  72.17 44.28 20.15 7.81 71.66 61.12 19.31 13.44 68.60 81.57 14.71 21.39 
WJ  74.92 48.72 20.96 8.77 74.95 65.66 20.45 14.82 79.24 85.06 19.55 24.07 

DMM 
= nj; ≠ Σj 78.49 57.99 22.01 10.93 78.64 73.32 21.53 17.01 79.90 89.14 20.02 26.00 

BF  70.29 42.59 17.80 6.96 70.16 58.57 17.22 11.62 68.57 77.42 14.51 17.89 
WJ  66.53 37.89 19.42 6.79 66.54 54.54 18.93 12.36 73.59 85.44 18.93 21.34 

DMM + pair 80.61 62.00 20.03 11.00 80.70 78.25 19.59 17.18 81.56 93.17 17.98 25.24 
BF  81.19 61.93 22.00 11.76 81.40 76.55 21.44 17.67 80.66 90.55 17.94 24.62 
WJ  75.95 53.25 24.51 10.74 76.19 70.47 23.90 18.27 80.06 87.69 22.29 29.40 

DMM - pair 83.19 67.15 28.72 15.72 82.86 79.49 27.97 23.14 83.27 93.18 25.40 35.05 
BF  62.12 31.13 14.10 4.48 60.66 45.59 13.65 7.73 61.42 69.90 12.51 14.37 
WJ  63.23 34.63 16.99 5.59 63.13 50.91 16.63 10.26 72.30 75.12 18.02 19.41 

 
Note: ANCP = Any-contrast power; PCP = average-per-contrast power; LS = Least-squares estimators; RE = robust 
estimators. 
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When the data were obtained from a 

skewed distribution, the results also favor the 
procedures based on robust estimators. For all-
contrast power, the power differences were 
moderate to substantial. Moreover, the WJ 
procedure demonstrated substantially greater 
power than the BF procedure across most of the 
investigated conditions. It was also more 
powerful than the DMM test when the design 
was balanced but covariances were unequal, and  
for positive pairings of group sizes and 
covariances.  

 
Conclusion 

 
The purpose of this article was to examine 
procedures for conducting multivariate a priori 
contrasts in RM designs. Conventional tests for 
multivariate within-subjects effects are sensitive 
to violations of the assumptions of covariance 
homogeneity and multivariate normality. 
Approximate degrees of freedom procedures are 
an appealing alternative because they are robust 
to heterogeneous covariance matrices. 
Furthermore, these tests can be extended to the 

Table 4. Empirical Percentages of Power for Robust and Least Squares Estimators for Multivariate Interaction Contrasts, 
p = 2; Large Effect Size. 
 

Normal Double Exponential Lognormal 
 ACP PCP ACP PCP ACP PCP 

Test Pairing LS RE LS RE LS RE LS RE LS RE LS RE 

Mean Pattern 1 

DMM = nj; = Σj 27.18 8.39 83.72 75.02 25.93 19.93 83.48 81.58 17.54 37.66 81.06 26.67 
BF  23.23 5.35 81.71 71.53 21.56 14.16 81.32 78.27 10.59 26.94 76.95 21.39 
WJ  25.55 6.96 82.98 73.37 24.32 17.22 82.77 80.10 18.28 33.45 80.87 24.07 

DMM 
= nj; ≠ Σj 27.34 7.43 83.20 73.92 25.81 19.73 82.90 80.96 18.00 38.88 80.77 26.00 

BF  20.07 3.14 79.44 68.02 18.35 10.66 79.03 75.30 9.87 20.66 75.56 17.89 
WJ  41.99 16.87 87.70 77.13 40.75 33.02 87.52 85.14 33.45 56.71 85.74 21.34 

DMM + pair 15.49 2.68 79.19 71.21 13.99 10.46 78.78 77.78 8.23 23.46 76.28 25.24 
BF  19.06 3.13 79.95 70.93 17.06 11.48 79.48 77.56 7.21 21.43 75.61 24.62 
WJ  42.30 16.80 88.52 80.02 41.26 34.10 88.37 86.73 33.53 60.78 86.74 29.40 

DMM - pair 46.56 22.23 89.11 81.53 45.16 40.49 88.90 87.86 35.92 67.46 86.81 35.05 
BF  23.12 2.75 80.27 67.21 21.17 9.62 79.81 75.12 14.64 24.70 76.58 14.37 
WJ  49.24 22.06 89.22 78.33 47.90 42.27 88.97 87.55 38.12 69.81 86.65 19.41 

Mean Pattern 2 
DMM = nj; = Σj 13.20 6.81 80.22 75.33 14.07 17.73 80.65 81.86 32.86 66.41 87.23 94.94 

BF  9.13 3.71 78.17 72.05 9.73 11.32 78.49 78.66 23.09 54.93 83.72 92.52 
WJ  11.95 5.62 79.47 73.83 12.94 15.13 79.97 80.50 34.36 61.33 87.50 93.86 

DMM = nj; ≠ Σj 11.89 5.58 79.37 74.29 12.24 16.60 79.70 81.27 33.98 69.45 87.45 95.40 
BF  5.49 1.67 75.42 68.62 5.85 7.14 75.70 75.69 21.19 49.44 82.76 90.99 
WJ  26.95 14.33 85.05 77.84 28.09 31.37 85.50 85.91 54.42 80.62 92.28 97.34 

DMM + pair 3.71 1.67 74.72 71.32 4.08 7.37 75.15 77.50 19.22 59.08 82.89 93.86 
BF  3.97 1.42 75.42 70.88 4.33 6.82 75.75 77.16 17.30 55.87 82.28 93.00 
WJ  25.74 13.79 85.59 80.07 27.12 31.13 86.04 86.94 54.14 85.22 92.52 98.09 

DMM - pair 31.83 18.80 86.62 81.63 32.80 37.91 86.88 88.06 54.95 87.20 92.32 98.22 
BF  6.10 1.35 76.14 67.78 6.90 5.99 76.57 75.39 28.14 57.49 84.40 93.19 
WJ  34.33 17.84 87.18 79.21 35.76 40.28 87.57 88.47 60.65 89.10 93.43 98.56 

 
Note: ACP = All-contrast power; PCP = average-per-contrast power; LS = Least-squares estimators; RE = robust 
estimators. 
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case of non-normal data by substituting least-
squares estimators with robust estimators which 
are insensitive to the presence of skewed 
distributions and/or extreme observations. 
 Consistent with results for omnibus tests 
of the interaction (Keselman & Lix, 1997), the 
data show that error rates of conventional tests 
of multivariate interaction contrasts can become 
inflated when the group with the smallest 
number of observations exhibits the greatest 
degree of heterogeneity. These tests can also 
become conservative when there is a positive 
relationship between group sizes and 
covariances. The liberal and conservative 
tendencies do not disappear as  sample size 
increases, and they become exacerbated as the 
dimension of the data increases. 

Approximate degrees of freedom 
procedures based on least-squares estimators 
will perform well under violations of covariance 
homogeneity. These procedures will never be 
liberal under departures from multivariate 
normality. They may lose a moderate amount of 
power compared to procedures based on least-
squares estimators. For the moderate degree of 
kurtosis that characterized the double 
exponential distribution, the differences in 
power between the tests based on robust 
estimators and those based on least-squared 
estimators were negligible, but did not always 
favor robust estimators. This power difference 
depended on the magnitude of the effect, the 
nature of the non-null means, and the definition 
of power that was adopted by the researcher. 
When the data were obtained from skewed 
distributions, the procedures based on robust 
estimators demonstrated clear power advantages 
in terms of detecting all contrasts of interest. 
Average-per-contrast power and any-contrast 
contrast power also favored robust estimators.  

Previous research suggests that the 
Welch-James procedure should be selected over 
the Brown-Forsythe test when covariances and 
group sizes are negatively paired (Vallejo et al., 
2001; Lix, Algina, & Keselman, 2003), this 
recommendation does not hold for all of the 
conditions investigated in this simulation study.  

The choice of a procedure for testing 
within-subjects effects in multivariate repeated 
measures designs is complex, and depends on a 
number of factors. In this article, we advocate 

testing a set of hypotheses that enable the 
researcher to identify the localized source of 
multivariate interaction between a grouping 
factor and a repeated measures factor. If the data 
are in fact multivariate normal, then there is a 
modest gain in power to be obtained from 
adopting least-squares estimators. If the data are 
non-normal, there are power advantages by 
adopted a multivariate procedure that is robust to 
covariance heterogeneity and multivariate non-
normality, particularly when the data are 
skewed. Which robust procedure to adopt is a 
function of the magnitude of the effect and the 
pattern of the non-null means. In closing, it 
should be noted that a SAS/IML (SAS Institute, 
1999a) program to implement the Welch-James 
procedure with robust estimators for a variety of 
univariate and multivariate designs is available 
in Keselman, Wilcox, and Lix (2003). 

 
References 

 
Bird, K. D., & Hadzi-Pavlovic, D. 

(1983). Simultaneous test procedures and the 
choice of a test statistic in MANOVA. 
Psychological Bulletin, 93, 167-178. 

Boik, R. J. (1988). The mixed model for 
multivariate repeated measures: Validity 
conditions and an approximate test. 
Psychometrika, 53, 469-486. 

Boik, R. J. (1991). Scheffe’s mixed 
model for multivariate repeated measures: A 
relative efficiency evaluation. Communication in 
Statistics: Theory and Methods, 20, 1233-1255. 

Boik, R. J. (1993). The analysis of two-
factor interactions in fixed effects linear models. 
Journal of Educational Statistics, 18, 1-40. 

Bradley, J. V. (1978). Robustness? 
British Journal of Mathematical and Statistical 
Psychology, 31, 144-152. 

Brown, M. B., & Forsyth, A. B. (1974). 
The small sample behavior of some statistics 
which test the equality of several means. 
Technometrics, 16, 129-132. 

Cohen, J. (1988). Statistical power 
analysis for the behavioral sciences, 2nd ed. 
Hillsdale, NJ: Erlbaum. 

 
 
 



MULTIVARIATE CONTRASTS FOR REPEATED MEASURES DESIGNS 344 

Elliott, R. S., & Barcikowski, R. S. 
(1994). Simultaneous test procedures in 
exploratory multivariate analysis of variance. 
American Educational Research Association 
Conference (1994, New Orleans, Louisiana). 

Fleishman, A. I. (1978). A method for 
simulating non-normal distributions. 
Psychometrika, 43, 521-532. 

Johansen, S. (1980). The Welch-James 
approximation to the distribution of the residual 
sum of squares in a weighted linear regression. 
Biometrika, 67, 85-92. 

Hochberg, Y. (1988).  A sharper 
Bonferroni procedure for multiple tests of 
significance. Biometrika, 75, 800-802. 

Hotelling, H. (1931). The generalization 
of student’s ratio. Annals of Mathematical 
Statistics, 2, 360-378. 

Huberty, C. J. (1994). Applied 
discriminant analysis. New York: John Wiley. 

Huberty, C. J., Chou, T. F., & Benitez, 
E. B. (1994). The study of multivariate group 
contrasts. Advances in Social Science 
Methodology, 3, 123-138.  

Keselman, H. J., & Lix, L. M. (1997). 
Analyzing multivariate repeated measures 
designs when covariance matrices are 
heterogeneous. British Journal of Mathematical 
and Statistical Psychology, 50, 319-338. 

Keselman, H. J., Lix, L. M., & 
Kowalchuk, R. K. (1998). Multiple comparison 
procedures for trimmed means. Psychological 
Methods, 3, 123-141. 

Keselman, H. J., Kowalchuk, R. K., 
Algina, J., Lix, L. M., & Wilcox, R. R. (2000). 
Testing treatment effects in repeated measures 
designs: Trimmed means and bootstrapping. 
British Journal of Mathematical and Statistical 
Psychology, 53, 175-191. 

Keselman, H. J., Wilcox, R. R., & Lix, 
L. M. (2003). A generally robust approach to 
hypothesis testing in independent and correlated 
groups designs. Psychophysiology, 40, 586-596. 

Krishnaiah, P. R., & Reising, J. M. 
(1985). Multivariate multiple comparisons. In D. 
L. Banks, C. B. Read, & S. Kotz (Eds.), 
Encyclopedia of Statistical Sciences, 6, 88-95. 
New York: Wiley & Sons. 

Lix, L. M., Algina, J., & Keselman, H. 
J. (2003). Analyzing multivariate repeated 
measures designs: A comparison of two 

approximate degrees of freedom procedures. 
Multivariate Behavioral Research, 38, 403-431. 

Lix, L. M., & Keselman, H. J. (1995). 
Approximate degrees of freedom tests: A unified 
perspective on testing for mean equality. 
Psychological Bulletin, 117, 547-560. 

Lix, L. M., Keselman, H. J., & Hinds, 
A. (in press). A comparison of procedures for 
the multivariate Behrens-Fisher problem. 
Computer Methods and Programs in 
Biomedicine.  

Micceri, T. (1989). The unicorn, the 
normal curve, and other improbable creatures. 
Psychological Bulletin, 105, 154-166. 
SAS Institute Inc. (1999a). SAS/IML software, 
Usage and reference, version 8. Cary, NC: 
Author. 

SAS Institute Inc. (1999b). SAS 
language reference: Dictionary, version 8. Cary, 
NC: Author. 

Sheehan-Holt, J. K. (1998). MANOVA 
simultaneous test procedures: The power and 
robustness of restricted multivariate contrasts. 
Educational and Psychological Measurement, 
58, 861-881. 

Tamhane, A. C., & Dunnett, C. W. 
(1999). Stepwise multiple test procedures with 
biometric applications. Journal of Statistical 
Planning and Inference, 82, 55-68. 

Thomas, D. R. (1983). Univariate 
repeated measures techniques applied to 
multivariate data. Psychometrika, 48, 451-464. 

Timm, N. H. (2002). Applied 
multivariate analysis. New York: Springer. 

Vale, C. D., & Maurelli, V. A. (1983). 
Simulating multivariate nonnormal  
distributions. Psychometrika, 48, 451-464. 

Vallejo, G., Fidalgo, A., & Fernandez, 
P. (2001). Effects of covariance heterogeneity 
on three procedures for analyzing multivariate 
repeated measures designs. Multivariate 
Behavioral Research, 36, 1-27. 

Wilcox, R. R. (1995a). ANOVA: A 
paradigm for low power and misleading 
measures of effect size? Review of Educational 
Research, 65, 51-77. 

Wilcox, R. R. (1995b). Simulation 
results on solutions to the multivariate Behrens-
Fisher problem via trimmed means. The 
Statistician, 44, 213-225. 
 


	Journal of Modern Applied Statistical Methods
	11-1-2004

	Multivariate Contrasts For Repeated Measures Designs Under Assumption Violations
	Lisa M. Lix
	Aynslie M. Hinds
	Recommended Citation


	Microsoft Word - toc_v3_n2.doc

