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On A Simple Method For Analyzing Multivariate Survival  
Data Using Sample Survey Methods 

 
Pingfu Fu              J. Sunil Rao 

Department of Epidemiology and Biostatistics  
Case Western Reserve University 

 
 
A simple technique is illustrated for analyzing multivariate survival data. The data situation arises when 
an individual records multiple survival events, or when individuals recording single survival events are 
grouped into clusters.  Past work has focused on developing new methods to handle such data. Here, we 
use a connection between Poisson regression and survival modeling and a cluster sampling approach to 
adjust the variance estimates. The approach requires parametric assumption for the marginal hazard 
function, but avoids specification of a joint multivariate survival distribution. A simulation study 
demonstrates the proposed approach is a competing method of recent developed marginal approaches in 
the literature. 
 
Key words: sampling; design effect; survival analysis; clustered data 
 
 

Introduction 
 

Clustered survival events can occur in a number 
of ways.  The form receiving considerable 
attention has been the scenario of when an 
individual is subject to experiencing repeat 
events (recurrent or multiple-type) over time.  
An illustration of this is the case where a child is 
diagnosed with chronic lung disease (CLD) for a 
period of time. The disease may or may not 
resolve.  If resolution occurs, the child is 
susceptible to repeat occurrences of CLD over 
time (Norton, et. al., 2001). The time to the start 
of each CLD episode can be thought of a series 
of clustered events where the clustering unit is 
the child.   
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There have been a number of different 
methods proposed to handle inference in this 
situation. These include Andersen and Gill (AG) 
model (1982), Prentice, Williams and Peterson 
(PWP) model (1981), and Wei, Lin and 
Weisfeld (WLW) model (1989). In AG model, 
each subject is treated as a multi-event counting 
process with essentially independent increments; 
PWP model is a conditional approach; and 
WLW model is marginal method, in which one 
obtains the estimated coefficients, ignoring 
correlation, followed by fix of the variance of 
estimated coefficients. 

More recently, Segal and Neuhaus 
(1993) showed how to use Poisson regression 
techniques to analyze such data. Their method 
made use of generalized estimating equation 
(GEE) machinery (Liang & Zeger, 1986) for 
doing point estimation. Robust inference was 
handled by using sandwich estimators for 
variance estimates of estimated regression 
parameters. In all of these applications, much of 
which has recently become widely available 
(Therneau & Grambsch, 2000) and can be fitted 
by major statistical software, such as SAS (SAS 
Institute, Cary, NC) and Splus (Insightful Corp., 
Seattle, Washington).  

Survey sampling is another area where 
clustered events are quite common. The design 
effects approach, which is based on sample 
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survey techniques, has been used for analyzing 
such data. Design effect represents the estimated 
inflation in the variance of estimated coefficients 
due to correlated observations in each cluster 
(Rao and Scott, 1999). In order to account for 
the correlation among observations within each 
cluster, we can either transform the data by a 
design effect and apply standard methods 
afterwards assuming independence, or apply 
standard methods assuming independence, and 
then adjust the variances of the estimates by 
design effects. Work in non-survival setting 
includes that by Rao and Scott (1992, 1999) and 
Bieler and Williams (1995). In this paper, we are 
going to use the design effect approach under 
the survival analysis-Poisson regression and 
show how the design effects method can very 
simply handle clustered survival events, too.  

Our method is similar to Segal and 
Neuhaus’s approach in terms of the variance 
estimate - both use a sandwich estimator, but 
differ with respect with in the “filling”. It's well-
known that the Liang-Zeger’s GEE application 
of quasi-likelihood on which Segal and 
Neuhaus’s is based is essentially a special case 
of Binder’s method (Binder, 1983) applied to 
with-replacement cluster sampling. Paik (1988) 
has shown that the GEE methods can lead to 
considerably biased parameter estimates in small 
sample settings. This is part of the motivation 
for the alternative approach we propose. Our 
method is parametric, and marginal, thus, it 
sacrifices the semi-parametric specification of 
AG, PWP and WLW. However, it provides 
another platform using only regular Poisson 
regression to analyze multivariate survival data. 
 
Multivariate survival data and GEE 

 
Assume that we have a sample of failure 

time data represented by 
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 where for observation k of individual j of 
treatment group i, Tijk denotes a failure time, ijkδ  

is an event indicator taking the value 1 if Tijk is 
uncensored and 0 otherwise, and xijk is a p-
dimensional vector of covariates.  There are 
assumed to be mi individuals within treatment 
group i and G treatment groups in total. Let S(t), 
f(t) and )(tλ be the survival distribution, density 
function and hazard function respectively for 
random variable T where 0≥t  is a generic 
survival time. 

Following Segal and Neuhaus (1993), 
we assume that the marginal hazard function for 
the kth observation of the jth individual in the ith 
treatment group involves covariates xijk through 
Cox’s proportional hazards model 
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where β is a p-dimensional vector of regression 
parameters, and )(0 tλ is the baseline hazard 
function.  Thus 
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where )(0 tΛ  is the cumulative baseline hazard 
function.  As in Segal and Neuhaus, we depart 
from the standard Cox proportional hazards 
model which does not assign a parametric form 
for )(0 tλ .   

Under the standard assumption of 
independent censoring, the likelihood for the kth 
observation of jth individual in the ith treatment 
group is  
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where )exp()()( '

0 ijkijk xtt βµ Λ=  and α are the 
parameters specifying the baseline survival 
distribution. 
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Because the ijkδ takes on values of only 
0 or 1, the first term in (1) can be thought of as a 
Poisson random variable with mean ijkµ . A log-
linear model for the hazard function implies a 
log-linear model for ijkµ  through 

 ijkijk xt '
0 ))(log()log( βµ +Λ= . 

 
As mentioned earlier, we will give 

parametric form to )(0 tλ or )(0 tΛ , say for 
example, by letting tt =Λ )(0 . Then f(t) is 
simply an exponential density with mean 

)exp( ' xβ− , and maximum likelihood estimates 
for the regression parameters β can be found by 
fitting a Poisson regression model where 
response is the censoring variable with an offset 

ijktlog .  
By assuming the independence of 

responses within each cluster, Segal and 
Neuhaus (1993) handle the clustering by fitting a 
corresponding GEE model (Liang and Zeger, 
1986) and use robust sandwich estimators for 
inference on the regression parameters. 
Obviously, using GEE machinery, we can also 
assume different variance and covariance 
structure built in to the procedure. The difficulty 
is the justification of the structure chosen. They 
also illustrate how to fit Weibull regression 
models and piecewise exponential models by 
changing the offset or augmenting with a time-
dependent covariate respectively. 
 
Adjusting inference by design effects 

In randomized clinical trials, the usual 
primary research question is what is the 
treatment difference among all the treatments? 
Let’s assume that correlated observations form a 
cluster which can be a patient, a family or a 
community, etc., and assume the observations 
between clusters are independent. The idea 
behind design effect approach we are using is 
first to derive Taylor linearization for implicitly 
defined parameter vectors, which was developed 
by Binder (1983) in generalized linear models, 
and then apply a between-cluster variance 
estimator for the linearized statistic, as described 
by Bieler and Williams (1995). The details of 
the design effect approach for our case are the 

following. Let mi be the number of clusters 
randomized to the treatment i, i = 1, 2, …, G; nij 
be the number of observations for cluster j in ith 
treatment, j = 1, 2, …, mi; ijkδ  be the censoring 
indicator from the kth observation of jth cluster 
from ith treatment, k =1, 2,…, nij; 
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covariates (i.e. treatment, sex, race, etc.) for the 
ijkth observation; )',...,,( 21 pββββ =  

and ijkijkE µδ =)( . From earlier developments 

(section 2), treat ijkδ as if it were Poisson, a log 
link function is used in the generalized linear 
model, i.e. βµ ijkijk x'log =  and 
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The log-likelihood equations are then 
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The set of estimated Poisson regression 
coefficients, β̂ , that  maximize )(βl  are found 
by solving the following  score equations: 
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This can be done using the Newton-Raphson 
method. Then 
 

).ˆ'exp()(ˆ 0 βµ ijkijkijk xtΛ=  
 
Since ijkµ  may contain other nuisance 
parameters, we have to estimate them from the 
likelihood function. For example, if we assume 
Weibull baseline hazard, 1

0 )( −= ννλ tt , the 
shape parameter ν can be estimated by 
  

,
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and an iterative procedure can be used to find 
the estimates of  β and other nuisance 
parameters. 

The associated sample information 
matrix for estimating β is 
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Under cluster sampling, the inverse of the 
information matrix is no longer a valid estimate 
of the variance β̂  (Binder, 1983). To address 
this problem, Binder (1983) gave a general 
method for deriving the variance of parameter 
estimators under clustering in survey sampling, 
which satisfy estimating equations of the form: 
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where the sum is over the observations. Thus, 
using Taylor series linearization: 
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By the delta method, the variance of β̂  is then 
estimated by 

,)'()()ˆ(ˆ 11 −−= IVIV Uβ  
                                    (3) 
 
where 
                         

)].ˆ([ˆ βUVVU =  
 
Binder (1983) gave conditions under which (3) 
consistently estimates the asymptotic variance of  
β̂ . In order to obtain a cluster covariance matrix 

of )ˆ(βU , we first linearize )ˆ(βU , and then 
apply a between-cluster variance estimator for 
the linearized statistic. To this end, let 
  
                               ijkijkijk rxZ ˆ'=  

where ijkijkijkr µδ −=ˆ  is the residual for the kth 
observation of the jth cluster from the ith 
treatment group. Accumulations of these 
linearized vectors are first formed at the cluster 
level, namely, 
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The associated between-cluster within treatment 
group mean square matrix is 
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where im  denotes the number of clusters in 
treatment group i and  
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depicts the p x p matrix of sample mean squares 
and cross products from treatment group i, with 
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Following (3), the estimated variance for β is 
given by  
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                    )'.()(ˆ 11 −−= ISIV zβ  
 
The above estimate of the variance of β̂  is 
called a “modified sandwich estimate” and 
converges to the true variance of β̂  when the 
number of the clusters tends to infinity (Binder, 
1983). If the total number of the clusters is 
small, then this estimate will be sharply biased 
towards zero, and some other estimate must be 
considered. Generally speaking, when the 
clusters are independent, the sum of the 
linearized vectors for each cluster, ijZ  in (4) can 

be unbiasedly estimated because β̂  is usually a 
consistent estimate of β under usual regularity 
conditions without taking the correlation 
structure into account. Unlike the quasi-
likelihood GEE approach of Liang and Zeger 
(1986), explicit specification of a correlation 
structure in the cluster is unnecessary, which is 
also mentioned in Bieler and Williams (1995). 
 

Methodology 
 

Generally speaking, there are two approaches for 
analyzing multivariate survival data. One is 
conditional model, and other is a marginal 
model. Conditional models induce dependence 
by including frailties (random effects) while 
marginal approach directly models fixed effects. 
We will employ a marginal-based approach 
when conducting simulations in order to 
evaluate the performance of the proposed design 
effect based approach. We specify a marginal 
survival distribution, and estimate the 
parameters characterizing the distribution. This 
approach however does not define the joint 
distributions for generating multivariate survival 
data, and thus the effect of dependence in 
repeating events over time cannot be studied.  
Hence we use a random effects approach as in 
Segal and Neuhaus (1993) where the joint 
distributions are forced to have proportional 
margins and a patterned covariance matrix.   

We use positive stable mixing 
distributions (Hougaard, 1986) along with the 
random effects approach. Let ijkT be the survival 
times of observation k of individual j with 
treatment group I conditional on an observed 

covariate jζ . In this setup we assume that ijkT ‘s 
in different clusters are independent.   

Now assume ζ to be positive stable 
with index α. The Laplace transform for ζ is 

).exp())(exp( αζ ssE −=−  If we now define 
another random variable ijkY  to be Weibull 
distributed with scale parameter 

)'exp( ijkxβ and shape parameter a, 

then a
jijkijk YT /1−= ζ . 

Thus, the ijkT ’s within a cluster are 
multivariate Weibull with Weibull margins 
having scale )'exp( ijxαβ  and shape aα .  The 

correlation between )log( ijkT and )log( ijlT is 

then just 21 α−  for lk ≠ .  The generation of 
positive stable variates jζ can be done using 
Splus which employs Chambers et al.’s (1976) 
algorithm.   

In order to examine the performance of 
the newly proposed method for estimating 
regression parameters, we studied a number of 
scenarios.  We first looked at varying the cluster 
size from 10,5=k  and also the number of 
clusters 50,20=C .  The survival data was 
generated using the procedure just described 
with shape parameter 2=α  and one covariate 

3=β  for simplicity which are chosen 
arbitrarily. 

The index of the positive stable 
distribution α was varied from 0.3 to 0.7 
indicating decreasing levels of correlation 
between log survival times within a cluster. 
Survival times were censored at fixed times 
instead of random censoring to 10% and 20% 
censoring percentage. For each combination of 
experimental conditions, we conducted 200 
simulations, and report biases of the regression 
parameter estimates from Poisson regression and 
GEE as well as mean variance of three types, i.e. 
naive, robust and new approach.   

We fit Segal and Neuhaus’s GEE-based 
method with independence correlation structures 
and compared the performance to the new 
method. The comparison will be made in terms 
of bias and variance. Since there is no explicit 
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formula available for the variance of β̂  in this 
complex situation, so we don’t know the true 
variance of β̂ . We use following approach to 
check the underestimation or overestimation of 
the estimate from each method in this finite 
sample situation. Let B be the number of 
simulations (in our case, we set 200=B , iβ , 

pi ,...,1= be the true value of the coefficients, 

ijβ̂  be the estimates of iβ̂  in iteration j,  where 

Bi ,...,1= , and 2
,ˆ jiσ  be the variance estimate of 

iβ̂  in jth simulation after correction which 
accounts for the correlation of survival times 
within each cluster, then one way to check the 
biases of the variance estimate is the following 
efficiency quantity: 
 

,
)~var())~((

ˆ
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2

ii

i
i m
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σ
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where 

B
j iji /ˆˆ 22 ∑= σσ , 

)'ˆ,...,ˆ(~
,1, iBiiii βββββ −−=  

 
and )~( im β is the sample mean of iβ

~
and 

)~var( iβ  is the sample variance of iβ
~

. If 1>ir , 
then the variance is empirically overestimated, if 

1<ir , then the variance is empirically 
underestimated. 

The simulation was conducted in S-plus. 
Our approach can be implemented with minor 
programming, a call of glm function and several 
other lines of coding for matrix manipulation 
(the program is available upon request).  

Tables 1-4 give the results of the 
simulation. Notice first, as number of clusters 
increases, the smaller the bias in estimating the 
scale parameter a, and the regression coefficient 
β for Segal and Neuhaus’s approach and our 
approach.  

This is because the estimates are 
consistent when the number of clusters gets 
large; and there is no systematic difference of 
the biases when the cluster size, percentage of 

censoring, and value of index parameter α 
change. 

Secondly, the variance estimate of β̂  by 
the new method, the robust variance as well as 
naive variance estimates decrease when the 
number of cluster increases. Varying the cluster 
size does not change the variance, and there is 
no obvious evidence that a different percentage 
of censoring gives substantially different results. 
But increasing value of the index α, which 
changes the correlation of survival times in each 
cluster, does decrease the variance estimate in 
all three different types of estimates. This is 
because increasing α decreases correlation 
among the survival times within each cluster. 

The naive variance estimates 
overestimate or underestimate the variance 
badly; the robust variance estimate and the new 
method usually underestimate the variance 
except in one case by our method with r = 1.008 
(C = 20, cen = 20% and α = 0.4). Overall, our 
method gives r values closer to 1 than the GEE 
approach, because correlation structure is not 
needed explicitly in calculating the variance of 
β̂  as it is in GEE approach. The larger the 
number of clusters is the closer the r values are 
to 1. 

 
A real data example (CGD) 
 The well-known Chronic 
Granulomatous Disease (CGD) dataset, which is 
described in the Appendix D of Fleming and 
Harrington (1991), has been analyzed by many 
authors. CGD is a group of inherited rare 
disorders of the immune function characterized 
by recurrent pyogenic infections which usually 
present early in life and may lead to death in 
childhood. Phagocytes from CGD patients ingest 
microorganisms normally but fail to kill them, 
primarily due to the inability to generate a 
respiratory burst dependent on the production of 
superoxide and other toxic oxygen metabolites.  

Thus, it is the failure to generate 
microbicidal oxygen metabolites within the 
phagocytes of CGD patients. There is evidence 
that gamma interferon is an important 
macrophage activating factor which could 
restore superoxide anion production and 
bacterial killing by phagocytes in CGD patients.  
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 In order to study the ability of gamma 
interferon to reduce the rate of serious 
infections, a double-blinded clinical trial was 
conducted in which patients were randomized to 
placebo vs. gamma interferon. The data used 
here, which is a little different from that was 
used by Fleming and Harrington in the example 
(on page 162), has 65 patients   in  the  placebo    
 
 
 

 
group,  63 in  gamma interferon group, of 30 
placebo patients who experienced at least one 
infection, 4 experienced 2, 4 experienced 3, 1 
experienced 4, 1 experienced 5 and 1 
experienced 7; of 14 treatment patients who 
experienced at least one infection, 4 experienced 
2 and 1 experienced 3.  

 
Table 1: Results for simulated multivariate Weibull distribution with number of clusters = 20 and 10% 
censoring.  Mean bias and variance of regression parameter estimates over 200 simulations. 
In the Table, a is scale parameter of Weibull distribution, b is regression parameter, α is index of positive 
stable distribution, k is the cluster size, mi is number of clusters, and cens is percentage of censoring. 

 
Mi = 20, cens = 10% α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 

Bias of a, scale parameter      
k = 5 0.1052 0.1605 0.1236 0.1449 0.09872 

k = 10 0.1429 0.1195 0.1180 0.1118 0.09502 
bias of b, Poisson      

k = 5 0.09133 0.06826 0.12269 0.21668 0.1123 
k = 10 0.15252 0.11607 0.06024 -0.01395 0.1347 

bias of b, GEE      
k = 5 0.09138 0.06829 0.12272 0.21671 0.1123 

k = 10 0.15256 0.11610 0.06027 -0.01392 0.1347 
variance of b, mod. rob.      

k = 5 2.674 1.364 0.7706 0.4536 0.2924 
k = 10 2.546 1.311 0.7452 0.4266 0.2410 

variance of b, naive      
k = 5 3.517 1.6908 1.4923 0.8766 0.6618 

k = 10 1.511 0.8239 0.7739 0.4706 0.3094 
variance of b, robust      

k = 5 2.356 1.201 0.6781 0.3993 0.2575 
k = 10 2.243 1.155 0.6558 0.3754 0.2121 

efficiency (r), new app.      
k = 5 0.8457 0.9160 0.7519 0.6152 0.7793 

k = 10 0.7825 0.7471 0.8183 0.8497 0.6449 
efficiency (r), naive      

k = 5 1.1124 1.1352 1.4561 1.1891 1.7641 
k = 10 0.4643 0.4694 0.8498 0.9373 0.8281 

efficiency (r), robust      
k = 5 0.7451 0.8066 0.6617 0.5416 0.6863 

k = 10 0.6893 0.6580 0.7202 0.7477 0.5676 
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Table 2: Results for simulated multivariate Weibull distribution with number of clusters = 20 and 20% 
censoring.  Mean bias and variance of regression parameter estimates over 200 simulations. 
In the Table, a is scale parameter of Weibull distribution, b is regression parameter, α is index of positive 
stable distribution, k is the cluster size, mi is number of clusters, and cens is percentage of censoring. 
 

Mi = 20, cens = 20% α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 
Bias of a, scale parameter      
k = 5 0.1057 0.1744 0.1304 0.1441 0.10299 
k = 10 0.1357 0.1215 0.1276 0.1165 0.09683 
bias of b, Poisson      
k = 5 0.1076 0.04897 0.10081 0.19289 0.08116 
k = 10 0.1658 0.10761 0.02919 -0.05122 0.11866 
bias of b, GEE      
k = 5 0.1078 0.04907 0.10092 0.19301 0.08126 
k = 10 0.1659 0.10773 0.02929 -0.05112 0.11877 
variance of b, mod. rob.      
k = 5 3.308 1.690 1.0056 0.6356 0.4219 
k = 10 3.120 1.642 0.9672 0.5725 0.3428 
variance of b, naive      
k = 5 4.064 2.159 1.8301 1.1675 0.919 
k = 10 1.809 1.011 0.9245 0.6216 0.433 
variance of b, robust      
k = 5 2.921 1.493 0.8879 0.5616 0.3725 
k = 10 2.751 1.451 0.8540 0.5050 0.3028 
efficiency (r), new app.      
k = 5 0.8984 1.008 0.9238 0.7869 0.9634 
k = 10 0.8430 0.811 0.9650 0.9482 0.8272 
efficiency (r), naive      
k = 5 1.1033 1.2876 1.6810 1.445 2.098 
k = 10 0.4887 0.4993 0.9224 1.029 1.045 
efficiency (r), robust      
k = 5 0.7931 0.8903 0.8156 0.6953 0.8506 
k = 10 0.7432 0.7164 0.8520 0.8364 0.7306 
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Table 3: Results for simulated multivariate Weibull distribution with number of clusters = 50 and 10% 
censoring.  Mean bias and variance of regression parameter estimates over 200 simulations. 
In the Table, a is scale parameter of Weibull distribution, b is regression parameter, α is index of positive 
stable distribution, k is the cluster size, mi is number of clusters, and cens is percentage of censoring. 
 

Mi = 50, cens = 10% α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 
Bias of a, scale parameter      
k = 5 0.04065 0.04009 0.06156 0.05327 0.04993 
k = 10 0.05702 0.05781 0.07181 0.04742 0.02708 
bias of b, Poisson      
k = 5 -0.01885 0.01177 0.03810 0.02688 0.04290 
k = 10 0.10574 0.04004 0.09806 0.12305 0.02239 
bias of b, GEE      
k = 5 -0.01884 0.01178 0.03810 0.02689 0.04291 
k = 10 0.10575 0.04005 0.09806 0.12306 0.02240 
variance of b, mod. rob.      
k = 5 0.9105 0.4661 0.2606 0.1546 0.09552 
k = 10 0.8890 0.4462 0.2436 0.1422 0.08358 
variance of b, naive      
k = 5 1.2961 0.7901 0.5114 0.4461 0.2702 
k = 10 0.8169 0.5408 0.2750 0.2409 0.1648 
variance of b, robust      
k = 5 0.8738 0.4476 0.2501 0.1484 0.09171 
k = 10 0.8532 0.4285 0.2338 0.1365 0.08022 
efficiency (r), new app.      
k = 5 0.860 0.9513 0.8769 0.6957 0.7103 
k = 10 0.955 0.8215 0.7185 0.8391 0.6254 
efficiency (r), naive      
k = 5 1.2242 1.6126 1.7212 2.008 2.009 
k = 10 0.8775 0.9956 0.8111 1.422 1.233 
efficiency (r), robust      
k = 5 0.8253 0.9135 0.8418 0.6678 0.6819 
k = 10 0.9165 0.7889 0.6896 0.8056 0.6003 
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Table 4: Results for simulated multivariate Weibull distribution with number of clusters = 50 and 20% 
censoring.  Mean bias and variance of regression parameter estimates over 200 simulations. 
In the Table, a is scale parameter of Weibull distribution, b is regression parameter, α is index of positive stable 
distribution, k is the cluster size, mi is number of clusters, and cens is percentage of censoring. 
 

Mi = 50, cens = 20% α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 
Bias of a, scale parameter      
k = 5 0.04621 0.04515 0.0594 0.04871 0.05098 
k = 10 0.05784 0.06741 0.0750 0.05162 0.02529 
bias of b, Poisson      
k = 5 -0.02937 -0.0003165 0.03197 0.02579 0.03369 
k = 10 0.11790 0.0056062 0.08744 0.11434 0.01731 
bias of b, GEE      
k = 5 -0.02928 -0.0002196 0.03208 0.02589 0.03379 
k = 10 0.11803 0.00057196 0.08756 0.11443 0.01741 
variance of b, mod. rob.      
k = 5 1.064 0.5632 0.3231 0.1986 0.1235 
k = 10 1.040 0.5327 0.3021 0.1795 0.1089 
variance of b, naive      
k = 5 1.5115 0.9028 0.6095 0.5428 0.3484 
k = 10 0.9288 0.6249 0.3331 0.2876 0.2029 
variance of b, robust      
k = 5 1.027 0.5440 0.3129 0.1926 0.1198 
k = 10 1.005 0.5153 0.2930 0.1739 0.1057 
efficiency (r), new app.      
k = 5 0.8992 0.9887 0.9812 0.8340 0.8235 
k = 10 0.9821 0.8901 0.8226 0.9614 0.7481 
efficiency (r), naive      
k = 5 1.2774 1.585 1.8508 2.28 2.323 
k = 10 0.8765 1.044 0.9069 1.54 1.393 
efficiency (r), robust      
k = 5 0.8676 0.9551 0.9502 0.8088 0.7987 
k = 10 0.9490 0.8609 0.7976 0.9311 0.7259 
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In order to check how our method works 
in the real data situation, we fit the CGD using 
the newly proposed approach with single 
treatment indicator covariate without controlling 
other covariates. As we can see in Table 5, the 
coefficients from our method and Segal and 
Neuhaus’s method with independent working 
correlation structure are the same, and the 
coefficients using Andersen-Gill’s and Cox 
model are similar. In Cox model, only the first 
event was used. The former (our method and 
Segal and Neuhaus’s) is different from the latter 
(Andersen-Gill’s model and Cox model) because 
the models are different; the coefficients are 
proportional by a constant, which is the index 
parameter in the positive stable distribution. 
Currently, to obtain an estimate of this 
correlation parameter is problematic as 
mentioned in Segal and Neuhaus (1993). 
Nevertheless, the ratio of )ˆ(./ˆ ββ es  from our 
method is comparable with that from Andersen-
Gill model. Thus, our method is effective to 
detect significance of the treatment effect 
(gamma interferon) though the coefficient is 
underestimated since the index from the positive 
stable distribution is between 0 and 1. 
 
Table 5: Results of fitting the CGD (Chronic 
Granulomatous Disease) dataset of various 
methods under consideration. 
 
 β̂  )ˆ(. βes

 
)ˆ(./|ˆ| ββ es  

New method -0.856 0.2501 3.4226 

Segal and 

Neuhaus 

-0.856 0.2489 3.4389 

Andersen-Gill -1.2765 0.3774 3.3824 

Cox model -1.2062 0.4398 2.7426 

 
 
 
 
 

 
 

Conclusion 
 

It has been known that AG, WLW and PWP 
methods are extensions of survival models based 
on the Cox proportional hazards approach. They  
work well in one situation, but may not be 
appropriate in another (see Kelly and Lim, 2000, 
Therneau and Hamilton, 1997), since each 
method has different risk sets and risk intervals. 
Our new method was developed using a design 
effect approach from survey sampling and works 
well for the multivariate failure data. In addition, 
it’s easy to implement. The strong assumption of 
the parametric form of the survival time can be 
relaxed by extending our method to the 
piecewise exponential case, which makes our 
method more flexible (Aitkin et. al., 1983). No 
covariance structure between the survival times 
in a cluster needs to be specified since it’s 
implicitly built in our method.  

As seen in our simulation study, the 
newly proposed method has slightly better finite 
sample performance than GEE based method. 
One limitation of our design effect method is 
that no time-dependent covariates are allowed. 
We also need to find a method to obtain an 
estimate of correlation parameter, as we saw it in 
Table 5; alternatively, a possible estimation 
strategy proposed by Segal, Neuhaus and James 
(1997) can be used for that. However, this 
limitation does not affect our ability to do 
inference about the regression parameters.  

In our simulation, the censoring indicator is 
generated by fixed censoring time, a work on 
more general censoring mechanism, such as 
“independent censoring”, is needed. In 
conclusion, the method of applying the cluster 
sampling techniques in the multiple failure data 
is a competing method of recent developed 
marginal approaches in the literature. 
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