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Variance Stabilizing Power Transformation for Time Series 
 

Victor M. Guerrero            Rafael Perera 
Department of Statistics 

Instituto Tecnológico Autónomo de México 
 
 
A confidence interval was derived for the index of a power transformation that stabilizes the variance of a 
time-series. The process starts from a model-independent procedure that minimizes a coefficient of 
variation to yield a point estimate of the transformation index. The confidence coefficient of the interval 
is calibrated through a simulation. 
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Introduction 
 
Applied model-based statistical analysis usually 
requires some assumptions to be satisfied by the 
data under study. When working with time-
series, covariance-stationarity is often required 
to begin the modeling process. Therefore it is 
reasonable to look for a variance stabilizing 
transformation that will make the data get closer 
to fulfilling this assumption. Within the 
forecasting area, recall de Bruin and Franses’ 
(1999) conclusion that data transformations 
should be considered prior to forecasting. 

There are two approaches to search for 
the transformation. (i) Select the transformation 
before actually building a statistical model for 
the time series, or (ii) decide which 
transformation to use during the model building 
process. In the latter approach both model form 
and parameter estimation interact with the 
search for the transformation.  
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  In the former, the scale where the 
analysis should be carried out is fixed before 
attempting to build a statistical model. This 
approach allows the analyst to select a 
transformation without conditioning on or 
interfering with a given model. Therefore it is 
called model-independent. 

The focus in this article is on a model-
independent method that is useful to select a 
power transformation that best stabilizes the 
variance of a time series variable 0Zt > , for 
t=1,…,N. Such a method was proposed by 
Guerrero (1993) as a tool to be employed when 
the analyst wants to use the power 
transformation family: T(Zt)= Zt

λ  if λ≠0 and 
T(Zt)= log(Zt) if λ=0 or when using its Box-Cox 
version: Zt

 (λ)=(Zt
λ-1)/ λ if λ≠0 and Zt

 (λ)=log(Zt) 
if λ=0.   

One of the most important works that 
proposed the second approach for choosing a 
transformation is the textbook by Box and 
Jenkins (1976). They suggested using the Box-
Cox transformation in order to validate not only 
the constant variance assumption, but all the 
underlying assumptions of an Auto-Regressive 
Integrated Moving Average (ARIMA) model by 
estimating the transformation index (λ) together 
with the model parameters. Chen and Lee (1997) 
proposed a Bayesian method to choose the value 
of λ for a given model structure. Those works 
are supported by sound statistical theory, 
although in practice they present the problem 
that the model form may depend on the 
transformation selected. In fact, Gourieroux and 
Jasiak (2002) have shown that the 
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autocorrelations (hence the ARIMA model 
structure) change as a function of the nonlinear 
transformation employed. Therefore, fixing the 
model form before selecting the transformation 
index could be inappropriate in some cases. 

An advantage of the second approach 
for choosing the transformation is that a measure 
of variability, as well as a reference distribution, 
can be obtained for the estimated transformation 
index. Thus, it is possible to discriminate among 
different alternative values of λ based on à priori 
considerations. For instance, deciding whether 
the data should be analyzed in the original scale 
(λ = 1) or in logarithms (λ = 0), can be 
performed on the basis of the data at hand. This 
does not happen with the first approach because 
no model form and no reference distribution 
exist that will support the decision on an 
empirical basis. This fact can be considered a 
drawback of this approach. In this article, we 
consider this problem and work out a feasible 
solution by means of a confidence interval for 
the true λ value. 
    In the following section a summary of 
Guerrero’s (1993) method is presented that 
produces a point estimate of the index λ by 
minimizing a coefficient of variation. Then, a 
confidence interval is derived for the true value 
of λ. Approximate expressions for some sample 
moments involved in the calculations are 
provided, and a reference distribution for the 
true coefficient of variation employed by the 
method is suggested. Some small sample 
simulations are used to calibrate the confidence 
coefficient of the interval and to get an insight 
into the performance of the procedure. Nominal 
confidence levels are related to realized levels 
and, useful empirical results are obtained. A 
section is devoted to illustrate the use of the 
method through some empirical applications. 
These examples help to understand how the 
method works in practice. 
 
Selection of the Transformation 
 Guerrero (1993) proposed two methods 
for selecting the power transformation index λ. 
Underlying these methods is the theoretical 
result that states that the choice of the 
transformation index should be done in such a 
way that ( )[ ] ( )[ ] cZE/Zvar 1

t
2/1

t =λ−  holds valid 

for all t and some constant 0c > . To use this 
result, it is necessary to estimate both the mean 
and the variance involved. In applied time series 
analysis there is usually only one observation at 
each time t, therefore ( )tZvar  cannot be 
estimated and that result cannot be applied 
directly. In order to operationalize the result, 
work with the observations grouped into H≥2 
subseries. This enables the calculation of pairs 
of sample means and standard deviations, for 
example, ( )hh S,Z  for h=1,...,H, and then search 
for the λ value that produces 
 
           cZ/S 1

hh =λ−  for h=1,…,H          (1) 
 
for some constant c>0. The elements in this 
equation are given by ∑= =

R
1r r,hh R/ZZ  and 

( ) ( )∑ −−= =
R

1r
2

hr,h
2
h 1R/ZZS , where r,hZ  

denotes the rth observation of subseries h. The 
subseries { }R,hr,h1,h Z,...,Z,...,Z , for h=1,...,H, 
are formed by grouping R consecutive 
observations of the original series 
{ }N,...,1t:Zt = , trying to keep homogeneity 
between the subseries. For this to happen they 
must be equal-sized. Therefore, some number 
(n) of observations, with 0≤n<R, will have to be 
left out of the calculations, leaving R=(N-n)/H. 
The subseries size must be chosen appropriately, 
and be equal to the length of the seasonality, if 
such an effect is present in the series. 

The proposed methods stemmed from 
two empirical interpretations of equation (1). 
The first one led to minimizing the coefficient of 
variation of λ−1

hh Z/S  as a function of λ. This 
method is not linked to a formal statistical model 
and therefore no assumptions need to be 
validated to be applied correctly in practice. The 
second empirical interpretation led to a method 
based on a simple linear regression in 
logarithms. The assumption of zero error 
autocorrelation that underlies this method needs 
careful attention as it is seldom valid when 
working with time series. Thus, the main 
method, because of its robustness against 
violation of assumptions, is the one that 
minimizes relative variation. We shall 
concentrate on that method. 
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A Confidence Interval for λ 
 To be able to make inferences about λ, 
estimated as the minimizer of the coefficient of 
variation, we require a reference statistical 
distribution. To get such a distribution we start 
by assuming that the random variables 

( ) λ−=λ 1
hhh Z/SW  for h=1,…,H, can be 

represented by a Moving Average model of 
order 1. That is ( ) 11 aW =µ−λ  and 

( ) 1hhh aaW −θ−=µ−λ   for  h=2,…,H, with { }ha  
a zero-mean white noise Gaussian process, µ>0 
and θ a constant parameter such that 1<θ  to 
ensure it is invertible. Thus, ( )[ ] µ=λhWE , 

( )[ ] 2
hWvar σ=λ  and ( ) ( )[ ] ρ=λλ 'hh W,Wcorr  if 

1h'h ±= , and zero otherwise, with  
( ) ( )5.0 ,5.01/ 2 −∈θ+θ−=ρ .  
Such a model makes sense because λ is 

obtained in such a way that ( ) ( )λλ H1 W,...,W  are 
approximately constant, but a slight 
autocorrelation structure is expected in the 
process ( ){ } Wh λ  given that hZ  and hS  are 
calculated from time series observations. This 
assumption was validated by the simulations 
reported below as the expected behavior was 
observed. For the sake of simplicity, do not 
write ( ) ( )λσλµ 2  ,  and ( )λρ  even though these 
parameters are functions of λ. 

The sample counterparts of µ and σ2 will 
be denoted as ( )∑ λ= =

H
1h h H/Wm  and 

( )[ ] ( )∑ −−λ= =
H

1h
2

h
2 1H/mWse  so that 
( ) se/mCV =λ  is the sample coefficient of 

variation. In what follows we shall derive an 
approximate distribution for CV(λ), from which 
a confidence interval for the true λ value can be 
obtained. Several proposals may be found in the 
literature to obtain the distribution, hence 
confidence intervals, for a Normal coefficient of 
variation (see Vangel, 1996, and the references 
therein), but none of them allows for 
autocorrelation in the observations. 

We first apply the Theorem in Appendix 
1 (known as the Delta Method) to the bivariate 
case, with seX1 = , mX2 =  and 
( ) 2121 X/XX,Xg = , to get 

( )[ ] ( ) ( )mE/seE  CVE ≈λ  and 
 

( )
2

2 2 2

var   

( ) var( ) var( ) 2cov( , )  
( ) ( ) ( ) ( ) ( )

CV

E se se m se m
E m E se E m E se E m

⎡ ⎤λ ≈⎣ ⎦
⎡ ⎤

+ −⎢ ⎥
⎣ ⎦

. 

 
Then, evaluate each term in this expression as 
indicated in Appendix 2, so that µ=)m(E ,  
 

[ ] H/H/)1H(21)mvar( 2 −ρ+σ= , 
( )[ ]{ } 2/11H2/1H/21  )se(E −−ρ−σ≈ ,  

 
[ ])1H(2/  )sevar( 2 −σ≈  and 0  )m,secov( ≈ . Hence, 

( )[ ] ( )
2/1

1H2
1

H
21    CVE ⎥

⎦

⎤
⎢
⎣

⎡
−

−
ρ

−
µ
σ

≈λ  

and 
 

( ) ( )

( )
( )

2

2

2

2

var    
2 1

2 H-12 1 2 11 1  1
2 1 H

CV
H

H
H H H

σλ
µ

ρσ ρ
µ

≈⎡ ⎤⎣ ⎦ −

⎧ ⎫⎡ ⎤ ⎡ ⎤−⎪ ⎪⎛ ⎞+ − − +⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ −⎝ ⎠⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭
 

[ ]22 )1H(2/  µ−σ≈  
 

where the last approximation follows from the 
fact that σ/µ must be close to zero, since λ is 
chosen to accomplish that goal. It is clear that 
E[CV(λ)]→ µσ / as ∞→H and that it is a 
decreasing function of ρ. In fact, when ρ≥0 we 
observe that E[CV(λ)]< µσ /  for all H, and the 
opposite occurs when ρ<0. Similarly, it is easy 
to see that var[CV(λ)]→0 as ∞→H . 

Because the variance of CV(λ) is 
proportional to the square of its mean, the 
logarithm becomes an adequate variance-
stabilizing power transformation (see Guerrero, 
1993, eq. 4). In turn, assume that (roughly) 
log[CV(λ)]~N(η,δ²). From the Lognormal 
distribution, E[CV(λ)]=exp(η+δ²/2) and 

( )[ ] ( )[ ] ( )η+δ−δ=λ 2exp1expCVvar 22 . Thus, solve 
for η and δ², to get  

 
( )[ ]{ } 2/CVElog 2δ−λ=η

( ) ( )[ ]{ } 2/2/1-H21/-/H2-1log/log  2δ−ρ+µσ≈  
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and 
( )[ ]
( )[ ] ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+
λ

λ
=δ 1

CVE

CVvarlog
2

2  

 
( ) ( )[ ]{ }1H2/1H/21logH/21log −−ρ−−ρ−≈  

 
It is known that 
 

( )
⎭
⎬
⎫

⎩
⎨
⎧ −≥

δ
η−λ

≈α− αzCVlogPr1

( ) ( )[ ]
( )

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

δ−
ρ−

−−ρ−
µ
σ

≥λ= αzexp
H/21

1H2/1H/21CVPr
2/1

 

 
with αz  the 100α upper percentile of the unit 
Normal distribution. The previous assertion 
leads us to an approximate 100(1-α)% 
confidence interval for the true coefficient of 
variation. Because, there is a one-to-one 
correspondence between coefficient of variation 
and λ value, it follows that an approximate 
100(1-α)% confidence interval for λ is given by 
 

( )
( )( )

[ ] ( )

1

1/ 21 2 /
: exp

1 2 / 1/ 2( 1)

CI

CV H
z

H H

−α

α

λ =

⎧ ⎫λ − ρσ⎪ ⎪λ ≤ δ⎨ ⎬µ − ρ − −⎪ ⎪⎩ ⎭

. 

                                                 (2) 
 

In order for this confidence interval to 
be useful in practice, estimate ( )λCV  as the 
minimum sample coefficient of variation, 
denoted as ( )λ̂CV . Similarly, use the estimated 
first-order autocorrelation coefficient, 
 

( ) ( )
( )

1
h 11

2

1

ˆ ˆ W
ˆ

ˆ

H
hh

H
hh

W m m

W m

−

+=

=

⎡ ⎤ ⎡ ⎤λ − λ −⎣ ⎦ ⎣ ⎦ρ =
⎡ ⎤λ −⎣ ⎦

∑
∑

 

 
and an estimate of δ,  say δ̂ , can be obtained by 
using ρ̂  in place of ρ . Keep in mind that the 
interval (2) was derived from several 
approximations, in such a way that the actual 
confidence level may differ from the nominal 
level and calibration is required. 

To appreciate numerically the effect that 
α, H and ρ have on the length of the confidence 
interval, some calculations are presented in 
Table 1 for selected values of those constants. 
This table shows values of the function  
 

( ) ≡ρα   ,H,f
( ) ( )[ ]{ }1H2/1H/21/H/21)zexp( 2/1 −−ρ−ρ−δ α  

 
which is the expanding factor of ( )λCV  that 
defines the length of ( )λα−1CI . It is clear that 
( )ρα ,H,f  gets smaller as: (i) α gets larger, (ii) H 

gets larger (in fact, ( ) 1,H,f →ρα  as 
)H ∞→ and/or (iii) ρ moves from positive to 

negative values. The first two of these 
conclusions have a clear interpretation in terms 
of confidence and sample size. The third has no 
clear explanation, but it should be borne in mind 
when trying to understand why two similar 
situations, differing only in the sign of ρ, will 
yield different results (especially when α and H 
are small). In practical applications, typically 
H≥6, so that ρ should not be expected to be the 
decisive factor in defining the size of the 
confidence interval, but we should be aware of 
its potential relevance. 

In order to better understand how the 
method works, in Figure 1 the graph is presented 
of CV(λ) against λ for the Sales Data that will be 
considered as an illustrative example below. 
Observe that the confidence interval is obtained 
by slicing the curve produced by the coefficient 
of variation of the variable λ−1

hh Z/S , for 
h=1,...,H, as a function of λ. The minimum of 
this curve yields ( )λ̂CV and the required 
confidence interval is built by projecting on the 
horizontal axis the points where the curve 
reaches ( ) ( )ραλ ˆ,H,fˆCV , for a given α value. 
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Methodology 
 

The confidence interval for λ was derived from 
several approximations that may cause the actual 
confidence level to differ from its nominal level. 
In order to calibrate the confidence coefficient, a 
small simulation study based on the following 
two model specifications was conducted. 
 
Figure 1. 95% Confidence interval for λ built 
from CV( λ̂ ) for the Sales Data. 
 
 
 
  
 
 
 
 
 
 
 
 
 
1) tttt ISTZ ++= , 

where 
12

,
1

,t t q t q
q

T t S D
=

= = δ∑ with 1D q,t =  if 

qi12t +=  for i = 0,1,…,H-1 and 0D q,t =  

otherwise. { }tI  ∼ independent ( )2
t,0N σ  with 

( ) ( )λ−=σ 12
t

2
t ZE  and ( ) ttt STZE += . 

 
 
 

 
2) ( ) 1tt2t1tt aaZZ1Z −−− θ−+φ−φ+= , where 
{ }ta  ∼ independent ( )2

t,0N σ  with 
( ) ( )λ−=σ 12

t
2
t ZE  and 
( ) ( )[ ] ( )φ−φ−φ−= 1/2ZE t

t . 
 

The first one is a seasonal model with 
seasonality length R=12. The parameter values 
for the seasonal effects were chosen as 21 =δ , 

42 =δ , 53 =δ , 04 =δ , 15 −=δ , 26 −=δ , 
37 −=δ , 38 −=δ , 29 −=δ , 010 =δ , 111 =δ , 
112 −=δ  so that ∑ =δ=

12
1q q 0 . The sample sizes 

were of the form N=12H, with H=6, 12, 20, 30. 
The second is an ARIMA(1,1,1) model with 
initial values 1Z0 = , and 2Z1 =  with parameter 
values 7.0=φ  and 3.0=θ . In this case, the 
subseries size was taken as R = 4 and the sample 
sizes were N=24, 48, 80, 120, so that the values 
of H became again 6, 12, 20 and 30. Another 
exercise was carried out with the latter model 
and R=3, and sample sizes N=18, 36, 60, 90 to 
get the same values for H as before. For both 
models, λ=0,0.5,1 was employed; thus, when 
λ≠1 there is nonconstant variance, because it 
depends on the mean of the series. 

Jennings’ (1987) suggestion about the 
way that simulation studies should be reported 
was followed in order to provide information not 
only on coverage rates but also on bias. In Table 
2, some results are presented from the 
simulations for the seasonal model. Similarly, 
Tables 3 and 4 show the corresponding results 
for the nonseasonal model, with R=4 and R=3, 
respectively. 

 
Table 1: Expanding factor of CV(λ) as a function of α, H and ρ. 

 
α H\ρ -0.45 -0.25 -0.05 0 0.05 0.25 0.45 

0.01 2 5.75 7.86 12.1 13.9 16.2 39.7 544 
 6 2.06 2.18 2.33 2.36 2.40 2.58 2.80 
 50 1.26 1.27 1.28 1.28 1.28 1.29 1.29 

0.05 2 3.69 4.83 6.99 7.87 8.98 19.4 189 
 6 1.68 1.77 1.87 1.90 1.92 2.05 2.20 
 50 1.18 1.19 1.19 1.19 1.19 1.20 1.21 

0.1 2 2.92 3.73 5.22 5.82 6.56 13.3 108 
 6 1.50 1.58 1.66 1.68 1.71 1.81 1.93 
 50 1.14 1.14 1.15 1.15 1.15 1.16 1.16  
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Table 2: Observations below\above of a 100(1-α)% nominal confidence interval for λ and actual α, with Model 1 and 
R=12 (1000 samples). 
 

    λ  Actual α  
H α nomz  0 0.5 1 average actz  
6 0.005 2.575 5\5 9\13 4\10 0.015 2.170 
 0.045 1.695 16\29 25\26 24\26 0.049 1.651 

 0.050 1.641 18\32 26\26 26\26 0.051 1.635 
 0.125 1.150 44\55 52\50 45\45 0.097 1.299 
 0.130 1.128 44\58 56\53 49\47 0.102 1.270 

12 0.040 1.750 3\6 11\1 3\4 0.009 2.365 
 0.045 1.695 4\6 11\2 3\4 0.010 2.326 
 0.195 0.860 19\25 35\23 28\19 0.050 1.645 
 0.200 0.841 21\27 36\25 29\19 0.052 1.626 
 0.295 0.539 40\48 61\50 59\40 0.099 1.289 
 0.300 0.521 42\48 63\53 60\41     0.102 1.270 

20 0.125 1.151 5\2 9\4 3\4 0.009 2.365 
 0.130 1.128 5\3 9\4 5\4 0.01 2.326 
 0.295 0.539 30\20 28\16 29\24 0.049 1.651 
 0.300 0.521 32\20 31\16 29\26 0.051 1.635 
 0.365 0.341 40\39 56\45 51\54 0.095 1.310 
 0.370 0.330 43\42 57\47 57\59 0.102 1.270 

30 0.190 0.879 5\1 12\2 8\2 0.010 2.326 
 0.195 0.860 6\1 14\2 8\2 0.011 2.290 
 0.335 0.421 18\17 37\15 30\24 0.047 1.679 
 0.340 0.411 18\18 40\16 33\26 0.050 1.645 
 0.395 0.251 37\35 76\25 60\58 0.097 1.300 
 0.400 0.251 38\36 81\28 61\61 0.102 1.270 

 
Table 3: Observations below\above of a 100(1-α)% nominal confidence interval for λ and actual α, with Model 2 and 
R = 4 (1000 samples). 

    λ  Actual α  
H α nomz  0 0.5 1 average actz  
6 0.005 2.575 8\9 7\12 9\13 0.019 2.075 
 0.040 1.752 19\23 14\38 20\31 0.048 1.665 

 0.045 1.695 21\23 14\46 23\36 0.054 1.607 
 0.115 1.202 39\45 24\82 42\60 0.097 1.299 
 0.120 1.175 39\46 24\87 43\66 0.102 1.270 

12 0.035 1.812 1\3 0\10 7\6 0.009 2.365 
 0.40 1.751 1\4 0\12 7\7 0.010 2.326 
 0.165 0.974 10\19 11\61 20\28 0.050 1.645 
 0.170 0.954 10\19 12\63 20\28 0.051 1.635 
 0.245 0.693 19\41 20\113 37\65 0.098 1.353 
 0.250 0.675 22\48 21\119 38\68     0.105 1.254 

20 0.075 1.434 0\0 1\9 4\11 0.008 2.410 
 0.080 1.405 1\0 1\10 4\13 0.010 2.326 
 0.220 0.772 6\4 10\56 20\54 0.050 1.645 
 0.225 0.755 6\5 10\58 20\57 0.052 1.626 
 0.305 0.510 13\21 19\111 34\97 0.098 1.353 
 0.310 0.496 14\21 20\112 35\101 0.101 1.275 

30 0.105 1.254 0\0 2\17 1\9 0.010 2.326 
 0.110 1.227 0\0 2\17 3\10 0.011 2.290 
 0.270 0.611 2\3 11\66 16\53 0.050 1.645 
 0.275 0.599 2\3 11\68 18\57 0.053 1.619 
 0.340 0.411 7\10 24\117 37\94 0.096 1.308 
 0.345 0.400 9\11 27\124 39\95 0.102 1.270  
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In these tables, the nominal confidence 
levels of the intervals were selected by trial and 
error. That is, we increased the confidence level 
by an amount of 0.005 units and looked for the 
levels that yield actual coverage rates of 99%, 
95% and 90%, which are the most commonly 
used in practice. The actual α values were 
obtained by averaging over the different 
coverage rates obtained for λ=0,0.5,1. The group 
size R=12 was used for the monthly seasonal 
series because this is the usual practice. There is 
no commonly accepted value for nonseasonal 
time series. For instance, Guerrero’s (1993) 
advice was to employ R=2 in order to minimize 
the loss of information by grouping. However, 
with this choice the estimation of variability 
required is very poor and perhaps a value R>2 
could perform better. By looking at Table 2 it is 
reasonably clear that H=6 serves to obtain actual 
confidence levels similar to the nominal ones. 

In Tables 3 and 4, the value of R was 
sought that makes the method work well also for 
H=6, when the series is nonseasonal. It was 
found that R=4 is preferable to R=3 in terms of 
having less bias and more comparable results for 
the different λ values. However, in Tables 2, 3 
and 4, the value of the estimated autocorrelation 
coefficient was not considered, because it was 
not under our control. The simulations were 
carried out with the statistical package S-Plus 
2000 (MathSoft, Inc.). 

On the basis of these simulations, it was 
concluded that the nominal confidence level 
depends on the following factors: (i) the actual 
confidence level, (ii) the value of H, and (iii) the 
value of R. Thus, in order to calibrate the 
confidence intervals we estimated the following 
linear regression model (standard errors in 
parentheses) with 9503.0R 2 = , 1265.0ˆ =σ and 
sample size=69 
 

)0361.0(
z9838.0

)0002.0(
H0028.0

)0091.0(
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0038.0(
R0200.0

)0932.0(
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2
nom ++−−=

 
This result indicates that the Normal 

approximation derived previously requires a 
statistically significant numerical correction. 
With this equation, the appropriate nomz  may be 
calculated, given the values of R and H, as well 
as the desired actz , corresponding to the actual 

confidence level. Such a nominal value can then 
be introduced in expression (2) to obtain an 
appropriate confidence interval. 
 
Illustrative Applications 
 The Sales dataset corresponds to the 
seasonal time series provided by Chatfield and 
Prothero (1973). The original series has N=77 
observations on sales of an engineering firm. A 
time plot of the series without transformation 
appears in Figure 2(a) and power-transformed 
with λ=0.254 in Figure 2(b). This transformation 
index was obtained as minimizer of the 
coefficient of variation with H=6 subseries and 
R=12 observations per subseries (so that n=5 
observations were left out of the calculations). In 
this case the autocorrelation required by the 
confidence interval was estimated as 

2554.0ˆ =ρ . 
The following confidence intervals were 

obtained for the true λ value. 99%:                      
(-0.0594,0.5646); 95%: (0.0216,0.4846); and 
90%: (0.0616,0.4456). Figure 1 shows a graph 
of the coefficient of variation CV(λ) for these 
data, together with a 95% confidence interval for 
λ. Thus, with a confidence level of 95%, it can 
be determined that λ=0 is not supported by the 
data as the index of a variance stabilizing power 
transformation. In other words, the logarithm is 
not a reasonable transformation to stabilize the 
variance of this time series. However, values 
such as λ=0.25 or λ=0.34, are reasonably 
adequate to represent the true value of λ, even 
with 90% confidence. This result is in agreement 
with the basic conclusion reached by previous 
authors (see Guerrero, 1993). 

Now, for comparative purposes, assume 
that no autocorrelation exists in the series 

( ) λ−=λ ˆ1
hhh Z/SˆW , for h=1,…,H, in such a way 

that Vangel´s (1996) proposal can be used. In 
this situation, the 100(1 - α) % confidence 
interval is given by 

( )
( )

1 / 22
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Table 4: Observations below\above of a 100(1-α)% nominal confidence interval for λ and actual α, 
with Model 2 and R=3 (1000 samples). 
 

    λ  Actual α  
H α nomz  0 0.5 1 average actz  
6 0.005 2.575 1\5 2\12 7\11 0.013 2.229 
 0.045 1.695 15\12 7\54 18\39 0.048 1.665 
 0.050 1.641 15\13 7\55 21\40 0.050 1.645 
 0.125 1.150 29\31 19\103 35\74 0.097 1.299 
 0.130 1.128 31\31 21\105 37\78 0.101 1.279 

12 0.040 1.750 1\0 0\17 3\8 0.010 2.326 
 0.045 1.695 1\0 0\19 4\12 0.012 2.259 
 0.150 1.032 5\5 12\61 16\44 0.048 1.669 
 0.155 1.011 5\6 15\63 19\45 0.051 1.635 
 0.250 0.671 9\21 23\118 42\85 0.099 1.289 
 0.255 0.660 10\22 25\120 42\89 0.103 1.268 

20 0.080 1.405 0\0 3\16 6\5 0.010 2.326 
 0.085 1.370 0\0 3\17 6\7 0.011 2.290 
 0.225 0.755 2\2 11\66 20\42 0.048 1.669 
 0.2300. 0.740 3\2 11\71 20\405 0.051 1.635 
 0.315 0.480 13\10 25\120 39\91 0.099 1.289 
 0.320 0.469 15\10 25\125 40\96 0.104 1.252 

30 0.080 1.405 0\0 4\15 4\8 0.010 2.326 
 0.085 1.370 0\0 4\17 4\11 0.012 2.259 
 0.235 0.721 0\0 7\71 23\46 0.049 1.651 
 0.240 0.709 0\0 7\74 23\48 0.051 1.635 
 0.325 0.451 6\4 18\127 37\105 0.099 1.289 
 0.330 0.440 7\5 19\132 38\113 0.105 1.254 

 
Figure 2. Sales data. (a) Original and (b) power-transformed with λ=0.254. 
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 Because 254.0ˆ =λ , ( ) 0838.0ˆCV =λ , 
H=6 and α=0.05, then 15.12

95.0,5 =χ . The 
confidence interval gets defined by the λ values 
satisfying the inequality σ/µ ≤ 0.1708, where it 
should be recalled that both σ and µ are 
functions of λ. Hence, (see Figure 1) the 95% 
confidence interval obtained is:                          
(-0.0797,0.5717). The corresponding interval (2) 
on the assumption ρ=0, satisfies the inequality 
σ/µ≤0.1519 and becomes (-0.0204,0.5266). Both 
intervals obtained on the no-autocorrelation 
assumption cover the value λ=0, but Vangel’s 
interval is wider than ours. In this exercise, the 
autocorrelation coefficient changed from being a 
negative value to zero, leaving everything else 
constant. This change produced a larger 
expanding factor of CV(λ), hence a wider 
interval. 
 
Blowfly Data 

Nicholson’s blowfly data have been 
analyzed from several angles. Notably among 
these is the one that employs a nonlinear model 
for these data, in place of a power 
transformation (see Young, 2000). Nevertheless, 
because we are mainly concerned with the use of 
power transformations, we emphasize the 
analysis presented in the paper by Chen and Lee 
(1997). These authors used 82 observations of 
the original series (from 218 to 299) for 
comparison with previous works. They also 
mentioned that other authors used either a 
logarithmic or a square root transformation (i.e. 
λ=0 or λ=0.5). Then, they employed their 
method, conditioning on an autoregressive 
AR(1) model form, and made inferences on both 
λ and the parameters of that model (mean, 
autoregressive coefficient and error variance).  

The point estimate of the transformation 
index was obtained as the posterior mean of a 
distribution obtained by Gibbs sampling with a 
uniform prior on the set {0.30, 0.31, ..., 0.50} 
The estimated value, 39.0ˆ =λ  with standard 
error 0.001, clearly differs significantly from 
λ=0 and λ=0.5. However, we believe that Chen 
and Lee´s method is misleading because it 
conditions on the model form, while the other 
methods against which they compared their 
results are model-independent. Moreover, it 
should be recalled that the model form may 

change depending on the value of λ, as indicated 
by Gourieroux and Jasiak (2002), thus the AR(1) 
specification might be in doubt. 

We applied our procedure to the data 
employed by Chen and Lee, without 
conditioning on any given model structure. By 
so doing, λ̂=0.3997, with R=4  and  H=20; so 
that n=2 observations were not used. The point 
estimate of the transformation index took almost 
the same value as that obtained by Chen and 
Lee’s method. The autocorrelation became in 
this case ρ̂ =0.0215 and the confidence intervals 
were 99%: (-1.0448,1.6272); 95%:                     
(-0.6048,1.2892) and 90%: (-0.3328,1.0682). 
These intervals are inconclusive, because even 
with 90% confidence using the data in the 
original scale, in a square root scale or in 
logarithms, produces essentially the same results 
(in terms of variance stabilization). This result 
would have been expected just by looking at the 
graphs shown in Figure 3, where no relevant 
changes are observed in the time series behavior 
by changing the scale. We calculated again the 
interval proposed by Vangel (1996) on the 
assumption that ρ=0 (which may be deemed 
reasonable since ρ̂  is indeed close to zero) with 

λ̂=0.3997, CV(λ)=0.54794, H=20 and α=0.05, 
so that 2

19,0.95χ  = 10.12. The corresponding 95% 
confidence interval was defined by the λ values 
satisfying the inequality σ/µ≤0.851204, (see the 
graph of CV(λ) in Figure 4) that is                     
(-1.7678,2.1393). Thus, the previous conclusion 
holds valid even if the assumption ρ=0 were 
true. 

Similarly, the graph of CV(λ) shown in 
Figure 4 shows why the intervals are so wide: 
CV(λ) is extremely flat for the range of usual λ 
values employed in practice. This is an example 
where the data are basically insensitive to the 
choice of a variance stabilizing transformation. 
To test this idea, we estimated the same AR(1) 
model for the data with the following choices of 
the transformation index: λ=1,0.39,0.  
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The Maximum Likelihood estimation 

results appear in Table 5, where it may be 
observed that the estimated AR coefficients ( )1φ̂  
are almost the same in the three different scales. 
The Ljung-Box statistics Q(24-1), when 
compared against a Chi-square distribution with 
23 degrees of freedom, show no evidence of 
inadequacy.  
  

 
 The other two estimated parameters 
(mean 0φ̂  and residual standard error σ̂ ) depend 
heavily on the scale of the analysis and do not 
allow  a direct comparison. The t-statistics 
indicate that the estimated coefficients are 
significantly different from zero in the three 
cases and the residual graphs (not shown) are 
also very similar, showing no evidence of 
nonconstant variance by visual inspection. Thus, 

 
Figure 3. Blowfly data. (a) Original, (b) power-transformed with λ=0.3997, and (c) log-transformed.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.  Confidence interval for λ with blowfly data. 
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it may be concluded that choosing one particular 
power transformation, within those indexed by 
λ=1,0.39,0, depends on some criterion different 
from variance stabilization. Perhaps, the 
forecasting ability of the model should be 
studied in the different scales, as Chen and Lee 
(1997) finally did, in order to select the λ value, 
but that task was outside the scope of this article. 
 
Table 5. Estimation results of the AR(1) model 
for blowfly data with different choices of λ. 
 

λ 1 0.39 0 

0φ̂  4249.83 63.448 8.311 

t - stat 11.35 28.27 96.63 

1φ̂  0.735 0.726 0.712 
t - stat 10.09 10.07 9.83 
σ̂  890.83 5.500 0.221 

Q(24 – 1) 12.08 11.15 11.92 
 

 
Conclusion 

 
This article presents a procedure to calculate a 
confidence interval for the true index of a power 
transformation that best stabilizes the variance 
of a time series. This is useful as it enables a 
time series analyst to make statistical inferences 
about the transformation index, without relying 
on a model-dependent method. The procedure 
was derived from a study of the approximate 
mean and variance of the minimum coefficient 
of variation employed for choosing the 
transformation. Then, a small simulation study 
allowed us to calibrate the confidence 
coefficient. This calibration was justified 
because our analytical results were derived from 
several approximations that may yield inaccurate 
results in practical applications.  

The coverage rates were found to be 
dependent on the nominal size of the confidence 
level, the subseries size R and the number H of 
subseries used. The simulations led to practical 
conclusions. For instance, the appropriate 
subseries size, when there is no seasonality in 
the time series, was found to be R = 4, while the 
length of the seasonal period is adequate for a 
seasonal time series (i.e. R = 12 for a monthly 
time series). A more extensive simulation study 

would be required to consider negative λ values 
as well as some other time series models, in 
order to get more conclusive results. 

The empirical illustrations provided 
evidence on the use the method may have in 
practical applications. The first example 
provided an empirical confirmation that our 
method can be trusted, because we obtained 
essentially the same results that were established 
previously by means of Maximum Likelihood. 
However, our method was applied with less 
effort, and we did not rely on knowledge of the 
model structure of the time series, as is required 
by the Maximum Likelihood method. The 
second illustration tested the recommendations 
derived from the simulation study. In fact, it was 
found that our method led to sensible results and 
it is relatively easy to apply it. 
  Finally, it is interesting to note that the 
confidence interval for the minimum coefficient 
of variation can also be used to construct 
confidence intervals for any coefficient of 
variation. Therefore, the results obtained here 
may lead to further research in the area of 
inference for a coefficient of variation in 
general. 
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Appendix 

1. Approximate variances and covariances of functions of random variables 
 1) Theorem. Let ( )'X,...,X k1=X be a k-dimensional random vector, g(X) be a real-valued function 
defined on kR  and ( ) ∞<iXE  for i = 1,…,k. Assume that the partial derivatives ( ) ii X/)(g'g ∂∂= XX  all 
exist and let ( )[ ]XE'g i  denote )('g i X  evaluated at E(X). Then, the first-order Taylor 

expansion [ ] [ ] ( )[ ]ii
k
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i XEX)(E'g)(Eg)(g −∑+≈
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 Similarly, for two functions )(g1 X  and )(g2 X , [ ] [ ] [ ] ( )ii2
k
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. 

 Proof. This result was established by Stuart and Ord (1987, Ch. 10). 
 
 2. Expected values, variances and covariance of m and se. 
     It is known that ( )[ ] µ=λhWE , ( )[ ] 2

hWvar σ=λ  and ( ) ( )[ ] ρ=λλ 'h W,Wcorr  if ' 1h h= ±  and zero 
otherwise. Then, 
 
 1) ( ) µ=mE , 
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2

1 ' 1

var  W
H H

h
h

m E H W λ µ λ µ−

= =

⎧ ⎫= − −⎡ ⎤ ⎡ ⎤⎨ ⎬⎣ ⎦ ⎣ ⎦
⎩ ⎭

∑∑  

( )[ ] ( )[ ] ( )[ ]{ }⎟
⎠

⎞
⎜
⎝

⎛ µ−λµ−λ+µ−λ= ∑ ∑
=

−

=
+

−
H

1h

1H

1h
1hh

2
h

2 W WE2WEH ( )[ ] H/H/1H212 −ρ+σ= , 

3) ( )[ ] ( )[ ] ( )
⎭
⎬
⎫

⎩
⎨
⎧ µ−−µ−λ=− ∑

=

H

1h

22
h

2 mHWEEse1HE  
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 Under Normal theory, with 0=ρ , the distribution of ( ) 22 /se1H σ−  is Chi-square with H-1 
degrees of freedom. Since ρ cannot be far away from zero, it follows that 22 /se)1H( σ−  must have a 
distribution close to a 2

1H−χ . The variance of such a distribution is derived by assuming approximately 
valid the following relationship that holds for a Chi-square distribution: Variance = 2 Mean, therefore 
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( )[ ]    /se1Hvar 22 σ− ( )( )H/211H2 ρ−−≈ . From the Theorem in Appendix 1 with k = 1, 2seX =  and 
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hence, 
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 Next, the Theorem in Appendix 1 applied with k=2, X ( )m,se2= , ,se)(g11 =X  
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then the normality assumption implies that the third central moments of ah,  Wh(λ)  and m are all zero. It 
follows that 0    )m,secov( 2 =  and 5) 0   )m,secov( ≈ . 


	Journal of Modern Applied Statistical Methods
	11-1-2004

	Variance Stabilizing Power Transformation for Time Series
	Victor M. Guerrero
	Rafael Perera
	Recommended Citation


	Microsoft Word - toc_v3_n2.doc

