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Size and Power of the RESET Test as Applied to Systems of Equations: 
A Bootstrap Approach 

 
     Ghazi Shukur                                                    Panagiotis Mantalos 

        Departments of Economics and Statistics                                      Department of Statistics 
      Jönköping and Växjö Universities, Sweden                                    Lund University, Sweden  
  
 
The size and power of various generalization of the RESET test for functional misspecification are 
investigated, using the “Bootsrap critical values”, in systems ranging from one to ten equations. The 
properties of 8 versions of the test are studied using Monte Carlo methods. The results are then compared 
with another study of Shukur and Edgerton (2002), in which they used the asymptotic critical values 
instead and found that in general only one version of the tests works well regarding size properties. In our 
study, when applying the bootstrap critical values, we find that all the tests exhibits correct size even in 
large systems. The power of the test is low, however, when the number of equations grows and the 
correlation between the omitted variables and the RESET proxies is small. 
 
Key words: RESET, Systems of Equations, Bootstrap 
 
 

Introduction 
 
The RESET test proposed by Ramsey (1969) is 
a general misspecification test, which is 
designed to detect both omitted variables and 
inappropriate functional form. The RESET test 
is based on the Lagrange Multiplier principle 
and usually performed using the critical values 
of the F-distribution. While most authors (e.g., 
Ramsey and Gilbert (1972); Thursby and 
Schmidt (1977)) have studied the properties of 
the RESET tests in single equation situations, 
Shukur and Edgerton (2002), in what follows 
referred to as SE, examine the small sample 
properties of various generalization of the 
RESET test in an environment of equation 
systems.  

The latter authors used Monte Carlo 
methods to study the properties of eight different 
versions of the RESET test in systems ranging 
from one to  ten  equations. By  using the critical  
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values of the F-distribution, the authors find that 
the Rao’s F-test exhibits the best performance as 
regards correct size, while, by using the critical 
values of the χ 2 - distribution, they find that the 
commonly used LRT (uncorrected for degrees-
of-freedom), and LM and Wald tests (both 
corrected and uncorrected) behave badly even in 
a single equation situation. SE also find that the 
power of the test decreases when the number of 
equations grows and the correlations between 
the omitted variables and the RESET proxies are 
small.  
  Note that by using the critical values of 
the χ 2 - distribution, the LRT, LM and Wald 
tests are strictly valid only asymptotically. 
Therefore, making inferences on the basis of 
them can be a risky undertaking. Some authors, 
e.g., Kivit (1986), have used Monte Carlo 
methods to compare different LM, Wald and LR 
alternatives for single equation models. When 
testing for autocorrelation they have shown that 
the standard F-test, which is also only valid 
asymptotically, is in general more accurate as 
regards size properties. 

However, an effective misspecification 
test should have correct significance levels 
under the null hypothesis, irrespective of the 
values of the regression parameters and other 
distributional parameters. It should also have 
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reasonable power against the class of alternative 
specifications under investigation, but low 
power against other alternatives. 

The purpose of this article is to improve 
the critical values of the test statistics by 
employing bootstrap technique, so that the size 
of the test approaches its nominal value. 
Horowitz (1994) and Mantalos and Shukur 
(1998) recommended this approach. Given the 
bootstrap critical values, analyzed here is the 
size and power of a different generalization of 
the systemwise RESET test, followed by a 
comparison with results found by SE. 

 
Model Specification 
 The regression model investigated is the 
same model as in SE and consists of n linear 
stochastic equations given by 
 

ttt ε+= BXY  ,                                         (1) 

 
where Yt and tε  are (1 × n) vectors of 
endogenous variables and disturbances 
respectively, Xt is a (1 × m) matrix of exogenous 
variables, Β is a (m × n) matrix of parameters, 
and t = 1,…,T. The data matrices Y and X are 
(T × n) and (T × m) respectively. The null 
hypothesis of correct specification implies that 
the error terms will be independently and 
identically distributed conditional on the 
exogenous variables, and in many cases a 
normal distribution is also assumed,  
 

ε εt t N| ~ ( , )X 0  Σ .                            (2) 

 
The hypothesis of correct functional form is 
equivalent to assuming that the disturbances 
have zero conditional mean, 
H E t t0 : ( | )ε X = 0 .  

The class of alternative hypotheses to 
this null hypothesis is very general; omitted 
variables and incorrect functional form will 
obviously be members of the class, but so to will 
endogeneity of the X variables. 
 The alternative hypothesis is specified 
through the following model: 

Y X Zt t t t= + +B Γ ε  .                     (3) 

Z is in general unknown, and the tests that we 
will investigate use a proxy �Z . The following 
regression is estimated instead of (3), 
 

Y X Zt t t t= + +∗B � Γ δ .            (4) 

 
If the null hypothesis is correct, then 
Γ Γ= =∗ 0  whatever the choice of �Z . If the 
hypothesis is incorrect, then the choice of �Z  will 
obviously affect the power of any test based on 
(4). The greater the correlation between �Z  and 
the non-linear part of the true conditional mean 
of Y, then, in general, the greater the power will 
be. If we suspect certain variables to have been 
omitted, then using these variables as �Z  will 
obviously be most appropriate. 

Ramsey (1969) proposed approximating 
the unknown conditional expectation of Y by 
using a Taylor expansion around the conditional 
expectation under the null hypothesis, that is Xβ 
(Ramsey considered a single equation, and β 
was thus a vector). Because the parameters are 
unknown, this was in turn approximated using 

�Y X=
∧

B , where B
∧

 was the OLS parameter 
estimate from the single equation version of (1). 
This is the RESET test procedure. 

Define a systemwise version of the 
RESET test. Following common terminology of 
double regression tests, refer to equation (1) as 
the primary regression. The first stage of the 
RESET test is performed by calculating the least 
squares' predictions from the primary regression, 
i.e., � ( ( ) )Y X X X X Y= ′ ′−1 . These predictions 
are then used in the following auxiliary 
regression, 
 

tG
G
ttttt δ+Γ+Γ+Γ+= ∗+∗∗ 1

2
3

1
2 ˆˆˆB YYYXY … , 

                                                                         (5) 
 
where the (t, i):th elements of the power 
matrices are given by [ � ] �Y j

ti ti
jy= . The RESET 

test is now performed by testing the hypothesis  
Γ Γ1

∗ ∗= = =" G 0 . 
The practical implementation of the 

RESET test now depends on two factors. Firstly 
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it must decided how many power matrices to 
include in the auxiliary regression (i.e., 
determine G). Secondly, it must be decided 
which test method to use. We concentrate on the 
second question, and set G = 1 throughout. 

Denote by δ
∧

U  the (T × n) matrix of 
estimated residuals from the unrestricted 

regression (5), and by δ
∧

R  the equivalent matrix 
of residuals from the restricted regression with 

′H0 imposed. The matrix of cross-products of 
these residuals will be defined as 

SU U U=
∧ ∧
δ δ'  and SR R R=

∧ ∧
δ δ'  

respectively. Bewley (1986, Chapter 4) showed 
that the Wald, Likelihood Ratio and Lagrange 
Multiplier test statistics are given by 

 
W T nU R= −−( )tr S S1 ,                (6) 

 
LR T U= ln , and                       (7) 

 
LM T n R U= − −( )tr S S1 ,            (8) 

 
where U R U= det detS S . The above statistics 
are all asymptotically )(2 pχ  distributed under 
the null hypothesis, where 2Gnp =  is the 
number of restrictions imposed by the null 
hypothesis. It is well known, however, that this 
asymptotic result becomes less and less accurate 
in small samples as the number of equations 
grows, see for example Laitinen (1978). A 
simple small sample correction is to replace T by 
∆ = − +T m Gn( ) , the degrees of freedom in 
the equations of the auxiliary regression (4). The 
corrected statistics are thus given by 
WC T W= ( )∆ , LRC T LR= ( )∆  and 
LMC T LM= ( )∆ , which have the same 

asymptotic distribution as given above. 
Another more sophisticated 

approximation is that given by theorem 8.6.2 in 
Anderson (1958, p. 321). This uses an 
Edgeworth expansion, and if we choose the 
simplest form (which is accurate to the order 

2−T ) this corrected LR statistic is given by 
 

              LRE UE= ∆ ln ,                 (9) 

 
where ∆ ∆E n G= + − −½[ ( ) ]1 1 . Note that 
when G = 1, the difference between LRC and 
LRE is merely that the numerator in the 
correction is ∆ in the first case and ∆ − ½  in 
the second. 
 A final approximation is that given by 
Rao (1973, p. 556), namely 
 

RAO q p U s= −( )( )1 1 ,         (10) 

 
where p and ∆ E  are defined above, 
r p= −2 1 , q s r= −∆ Ε , and 
 

s p
n G

=
−
+ −

2

2 2
4
1 5( )

  .            
(11) 

 
RAO is approximately distributed as F(p,q) 
under the null hypothesis, and reduces to the 
standard F statistic when 1=n . 
 
Factors that Affect the Small Sample Properties 
of the RESET Test 
 A number of factors obviously can 
affect the size of the RESET tests, SE have 
investigated these factors systematically, and we 
therefore follow their line of investigation. The 
number of equations (n), the sample size (T), 
degrees of freedom (∆) and the order of the 
restrictions (G) are four such factors. The power 
of the tests will also be affected by the size and 
form of Zt Γ in (3). In this paper we will also 
study the consequences of varying n and ∆, 
while T is chosen so as to give compatible 
values of ∆ for different models 
( T m Gn= + +∆ ). We will also mainly 
concentrate on the case where G = 1.  

A number of other factors can also 
affect the properties of the RESET tests, for 
example the distributions of Xt, and εt, and the 
values of Β. In the rest of this section we will 
consider these factors in some more detail. In 
this paper, we consider only stochastic 
exogenous variables Xt  and although SE find 
that serial dependence in x has no practicable 
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effect on either the size or power of the RESET 
tests, we will allow autocorrelation in the 
exogenous variables in our study. The following 
generating processes are used, 

 
             x xtj t j tj= −α ν1, +  ,     j = 1, . . ., m-1   
             and  t = 1, . . ., T                     (12) 
 
where and νt is a multivariate normal white 
noise process with covariance matrix Σν. In our 
Monte Carlo study we have included a constant 
term among the exogenous variables, so that 
(12) has only been applied to the remaining 
m − 1 variables.  

The power (but not the size) of the tests 
will also be affected by Z t  Γ in (3). Intuitively, 
the power of the test ought to increase with an 
increase in the omitted portion of the regression. 
That is to say, an increase in the absolute value 
of Γ should imply an increase in the seriousness 
of the misspecification caused by using (1) 
instead of (3). Accordingly, we would expect the 
power of the RESET test to increase with Γ. The 
problem is to decide how large a value of Γ is 
needed to constitute "serious" misspecification. 

SE found that a good measure of 
misspecification is given by the relative increase 
of goodness-of-fit, achieved by going from the 
incorrect model under the null (1) to the correct 
model under the alternative (3), i.e., 

 

R R R
RD

2 1
2

0
2

0
21

=
−

−
                           

                                                   
(13) 

where R0
2  and R1

2  are the theoretical R2  
measures from the null and alternative models 
respectively. The reasoning behind this choice of 
misspecification measure, and the relationships 
that exist between goodness-of-fit and the other 
parameters of the model, are explained in the 
Appendix of their paper. An advantage of using 
RD

2  as a measure of misspecification is that it is 
bounded between zero (no misspecification) and 
one (a perfect alternative). 

The power of the test will also depend 
on the joint distribution of the included and 
omitted variables. If this distribution is joint 

normal, then the regression of the omitted 
variables on the included variables is exactly 
linear, and no loss of fit will occur through the 
exclusion of the omitted variables. 

The RESET test will have zero power in 
such circumstances, even though the parameter 
estimates will be biased, unless the omitted 
variable is also uncorrelated with the included 
variables. If the omitted variables are non-
normal, then their conditional means can be non-
linear in the included variables, and the RESET 
test can have power. The strength of the power, 
however, might depend on the correlation 
between the omitted variable (Z) and the proxy 

variables (Y
j∧

) used in the auxiliary regression 
(4). In this paper, and as in SE, we concentrate 
on an omitted variable which is the square of 
one of the (normally distributed) included 
variables. 
 
Bootstrap-hypothesis testing, critical values. 
 Two aspects are of primary importance 
when the properties of a test procedure are 
investigated. Firstly, determine if the actual size 
of the test (i.e., the probability of rejecting the 
null when true) is close to the nominal size (used 
to calculate the critical values). Given that actual 
size is a reasonable approximation to the 
nominal size, then investigate the actual power 
of the test (i.e., the probability of rejecting the 
null when false) for a number of different 
alternative hypotheses. When comparing 
different tests, therefore, those in which (a) 
actual size lies close to the nominal size and, 
given that (a) holds, (b) have greatest power are 
preferred. In most cases, however, the 
distributions of the test statistics used are known 
only asymptotically.  

As a result, the tests do not have the 
correct size and inferential comparisons and 
judgments based on them might be misleading. 
However, by using bootstrap technique it is 
possible to improve the critical values so that the 
true size of the test approaches its nominal 
value. 

In the regression model (1), the null 
hypothesis of correct specification implies that 
the error term εt will be independently and 
identically distributed, conditional on the 
exogenous variables. The most convenient way 
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to apply bootstrap, here, is to resample the εt. 
Since the errors are not observable and the usual 
solution is then to use the calculated Least 
Squares (OLS) residuals instead. A direct 
residual resampling gives: 

 
** ˆ * tolstt

B ε+= XY ,        (1a) 
 

where εt
*   are i.i.d  observations  ε ε1

* *,... , T  , 
drawn from the empirical distribution ( �Fε ) of 
the  LS residuals. This method is called the 
bootstrap based on residuals, abbreviated as 
RB, proposed by Efron (1979). Note that, in 
what follows, all bootstrap statistics will marked 
by an asterisk (*). An important assumption for 
the RB is that εt are i.i.d, but even if this 

assumption holds, the empirical distribution �Fε  
is not based on exactly i.i.d data, namely 

observed residuals ε
∧

t . Therefore the following 
adjustments are necessary. 
 First, subtract the sample mean of the 

OLS residuals from the residuals: ( ε ε
∧ −

−i ) 

where ε
−

= T ii

T−
∧

=∑1
1
ε        i =  1,  ...  ,  T . 

Thus, ( )E t*
*ε  =  0  for all t. And 

( ) ( ) ( ) OLS
*

*
1

OLS
*

*
ˆ = '' = ˆ BXXXB YEE − , where 

( )� ' *B X X X YOLS
*  =  −1 , and 

( ) 12*
OLS* 'ˆ = ˆVar −XXB σ , 

 
where   
 

2 *
*

-1 2
1

ˆ  = Var ( ) = 

T  ( )  ,   i = 1, 2, ..., T

t

T

i t

σ ε

ε ε
∧ −

=
−∑

. 

 
  This bootstrap procedure produces 
consistent variance but is downward biased 
(Efron, 1982). To remove this negative bias, 
Efron (1982) suggested the bootstrap data to be 
drawn from the empirical distribution �Fε  
putting mass 1/T to the adjusted OLS residuals 

( ) / [ / ]ε ε
∧ −

− −i m T1 ,  i = 1,...,T. This is called 
the adjusted residual resampling ARR. 

The basic principle is to draw a number 
of bootstrap samples from the model under the 
null hypothesis. The bootstrap test statistic ( Ts

* ) 
can then be calculated by repeating this step Νb 
number of times. Then, take the (1-α):th quintile 
of the bootstrap distribution of Ts

*  and get the α 
- level ”bootstrap critical values” ( ctα

* ). 
Generally, the bootstrap procedure is 
summarized by the following steps: 

 
(1) Estimate the test statistic as previously 
described, which is called ( Ts ). 
 
 (2) Use the adjusted residual resampling ARR, 

( ) / [ / ]ε ε
∧ −

− −i m T1      i = 1,...,T   to draw  

i.i.d.  data  ε ε1
* *,... , T  and define: 

Y X
t t ols tB*
* *�= + ε . 

 Then, calculate the test statistic ( Ts
* ) as 

described, i.e., by applying the RESET test 
procedure to the (1a) model. Repeating this step 
Νb number of times and taking the (1-α):th 
quintile of the bootstrap distribution of  Ts

* , we 
obtain the α - level “bootstrap critical values” 
( ctα

* ), and finally, we then reject Ho if Ts ≥ ctα
* . 

This is our bootstrap test approach to investigate 
the size and power of the various generalization 
of the systemwise RESET test. 
 
Monte Carlo Experiment 

In a Monte Carlo study, the estimated 
size is estimated by simply observing how many 
times the null is rejected in repeated samples 
under conditions where the null is true. By 
varying factors such as described in the previous 
section, a succession of estimated sizes under 
different conditions is obtained. In general, the 
closer an estimated size is to the nominal size 
the better the test. Most of the factors discussed 
earlier either have very small effect, or have no 
effect at all on the estimated size of the tests. To 
show the effect of the remaining factors on the 
performances of the tests, the estimated sizes of 
the tests are displayed in the tables. 
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As regards the estimated power 
functions of the tests, these have mainly been 
compared graphically. This has proved to be 
quite adequate, since those tests that give 
reasonable results as regard size usually differed 
very little regarding power. 
  The Monte Carlo experiment was 
performed by generating data according to (1), 
(2) and (12), estimating the auxiliary regression 
(5) and then calculating the test statistics, Ts , 
defined above. 

Because the number of regressors in the 
auxiliary  regression (5) is (m + n), we draw  
i.i.d.  data  ε ε1

* *,... , T  from the empirical 
distribution �Fε  putting mass  1/t to the adjusted 

(LS) residuals ( ) / [( ) / ]ε ε
∧ −

− − +i m n T1  ,     
i = 1,...,T. 

The bootstrap procedure described in the 
previous section is followed to obtain the α - 
level “bootstrap critical values” ( ctα

* ). The α = 

0.05 level, for example, is the TsNb 96
*  of the 

order test statistic: T T TsN sN sNb b b   1 2 100
* * *...≤ ≤ ≤ .  

A final consideration is the significance 
levels to be used when judging the properties of 
the tests. Theoretically, it is possible to construct 
the empirical distributions of the test statistics, 
and to compare these with the theoretical 
asymptotic results. In this study, the tests of the 
null hypothesis were carried out using nominal 
significance levels (π0 ) of 1%, 5%, 10% and 
20%. Hence, for the 1%, 5%, 10%, and 20% 
levels, the “bootstrap critical values” 
ctα

* = *
99 bsNT , ctα

* = *
95 bsNT  , ctα

* = *
90 bsNT  and 

ctα
* = *

80 bsNT  were chosen, respectively. Then, 

reject Ho if   Ts ≥ ctα
* . 

  An approximate 95% confidence 

interval for the actual size (π) can be given as 

 

 �
�( �)

π
π π

±
−

2
1

 
 

N

,         (13) 

where �π  is the estimated size and N is the 
number of replications.  

However, because the main interest is in 
the behavior of the distributions in the tails, only 
results using the conventional 5% significance 
level have been analyzed. A summary of the 
design can be found in Table 1 and 2, and in 
Table 3 approximate 95% confidence intervals 
for the actual size, based on (13) are presented. 
Letting the number of replications per model is 
10,000, which by (13) seems to be sufficient 
when estimating size. Note again that SE’s 
Monte Carlo design is followed, and a summary 
of the relationships between the various factors 
can be found in their article (in their Appendix). 

Regarding the Nb number of the 
bootstrap samples used to estimate bootstrap 
critical value, Horowitz (1994) used the value of 
Nb = 100. However, it follows from Hall (1986) 
that the error in the size of a test using the 
“bootstrap critical values” is independent on the 
number of the bootstrap sample used to estimate 
ctα

* . Nb = 500 in the current study. Increasing 
the number of the bootstrap samples beyond 500 
has little effect on the results of the experiment 
and takes longer time. 

The primary interest lies in the analysis 
of systemwise tests, and thus the number of 
equations to be estimated is of central 
importance. As the number of equations grows, 
the computation time becomes longer. A system 
with ten equations was selected as the largest 
model when studying the size of the tests. This 
represents a fairly large consumption model of 
the type that is used in, for example, agricultural 
economics. Medium size models are represented 
by five- and seven-equation systems, and two- 
and three-equation systems are typical of the 
small models used when separability is imposed. 

Another important factor that affects the 
performance of tests is the number of 
observations. The number of degrees of 
freedom, ∆, was held constant between models 
of different sizes, because this allows a fair 
comparison. If the number of observations, T, 
were held constant then tests in models with a 
large number of equations would automatically 
perform more poorly, simply due to the reduced 
degrees of freedom (a new predictor is included 
for each equation in the system). 
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Table 1. Values of Factors Held Constant for Different Models 
 

Factor Symbol Design 

 Constant term  1 (size) or 0 (power) 

 Number of X variables  

(excl constant) 

n + 1 number of equations + 1 

 Mean of X variables µx 0 

 Parameters of X variables Β E 

 Distribution of X variables  Normal 

 Covariance of X variables Σx (1-ρx)I + ρxE 

 Properties of X in repeated samples  Stochastic 

 Distribution of error terms  Normal 

 Covariance of error terms Σε σ2I 
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Table 2a. Values of Factors that Vary for Different Models - Size Calculations 
 

Factor Symbol Design 

Number of equations n 1 2 3, 5, 7 10 

Degrees of freedom ∆ 15, 25, 45, 75 

Nominal size π0 1%, 5%, 10%, 20% 

Goodness-of-fit in null R0
2

 .1, .3, .5, .7, .9 .3, .5, .7 .3, .7 .3 .7 

AR parameter for X α 0, .5, .9 0, .5 

Correlation (Xi,Xj) ρx 0, .5, .9 0, .5 

 
Table 2b. Values of Factors that Vary for Different Models - Power Calculations 

 
Factor Symbol Design 

Number of equations n 1, 2, 3, 5, 7, 10 

Degrees of freedom ∆ 15, 25, 45, 75 

Nominal size π0 1%, 5%, 10%, 20% 

Goodness-of-fit in null R0
2

 .3, .5, .7 

Relative difference in R2 RD
2
 0, .1, .2, .3, .4, .5, .6, .7, .8, .9 

AR parameter for X α 0, .5 

Correlation (η,z) ρηz .1, .3, .5, .7, .9 

 
z is the omitted variable (the square of x1) and η is the square of the conditional expected value of y. 

 
Table 3. Approximate 95% Confidence Intervals for Actual Size 

 
π 0%N  2000 10000 

1% ±0.44 ±0.20 

5% ±0.97 ±0.44 

10% ±1.34 ±0.60 

20% ±1.79 ±0.80 
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We have investigated samples typical for annual 
and quarterly consumption models, using 
degrees of freedom 15, 25, 45 and 75. This is 
equivalent to sample sizes of between 20 and 
110 observations. 
 Various values of R0

2  were chosen to 
represent different explanatory powers under the 
null with a greater variation in small models. 
The distribution of the exogenous variables was 
varied to account for a typical property of 
economic time series, i.e., that they are trended 
and/or autocorrelated. SE find that trending had 
no effect at all on the RESET tests, and it is 
therefore not considered here. The calculations 
were performed using GAUSS 3.2, and the 
results from different models were analysed 
using MSExcel 4.0. 

When calculating the power functions of 
the tests we used different values of RD

2  to 
indicate different degrees of misspecification in 
the model. Different values of ρηz were used to 
illustrate different strengths in the relationship 
between the omitted variable and the proxy 
variable used in the auxiliary regression.  
 
Analysis of the Size of the RESET Tests. 

In this section, results are presented of 
the Monte Carlo experiment concerning the size 
of the RESET tests. When using the “bootstrap 
critical values”, our primary results reveal that 
the LM and Wald tests get results identical to 
their corrected correspondents (i.e., LMC, and 
WC).  

All the LR tests (including the RAO) 
lead to identical results. Moreover, for a single 
equation, we find that all the eight test methods 
yield the same results. Noticeable effects on the 
estimated size were not found, however, by 
varying the number of equations, degrees of 
freedom, autocorrelation in the exogenous 
variables, the collinearity between the 
exogenous variables, or the goodness-of-fit 
under the null hypothesis. These results agree 
with the results obtained by SE regarding the 
Rao test only. 

The results from the two articles are 
now compared to show the differences between 
our findings. Our results are shown in Table 4, 
were the same goodness-of-fit ( R0

2  = 0.7) was 

used, multicollinearity (ρx = 0.5), and 
autocorrelation (α = 0.0) in X as in Table SE 4. 
Note that changing the factors we have held 
constant in these tables (i.e., goodness-of-fit, 
multicollinearity and autocorrelation in X) would 
not change the conclusions in any way. Some 
important results regarding the different variants 
of the RESET test are presented in Table SE 4. 
They found that the number of equations in the 
system (n) and the degrees of freedom (∆) have 
noticeable effect on the performances of the 
tests.  

They also found that the RAO test was 
superior to all the other alternatives, with only 
one result (out of 30) lying slightly outside the 
95% confidence interval, whereas the WALD 
and LRT tests performed extremely poorly.  

When we use the “bootstrap critical 
values”, the results show that all tests perform 
well, i.e. the superiority of the Rao test to the 
other tests disappears. The WALD/Wald-C tests 
perform slightly badly in small samples and 
large systems. The Rao/LR and LM tests are 
shown to perform satisfactorily in all situations. 
Note that in our study, i.e. when we use the 
“bootstrap critical values”, all the tests have 
identical results for single equation models. 
 
Analysis of the Power of the RESET tests 

In this section, the most interesting 
results of our Monte Carlo experiment regarding 
the power of the various versions of the RESET 
test are discussed. The power of different 
versions of the RESET test was analyzed, using 
the “bootstrap critical values”, in systems 
ranging from one to ten equations. The power 
function was estimated by calculating the 
rejection frequencies in 2,000 replications using 
different values of the relative differences in 
goodness-of-fit, RD

2 . 
Even if a correctly given size is not 

sufficient to ensure the good performance of a 
test, it is a prerequisite. SE only present power 
results for the Rao test, since this test is shown 
to be superior in all situations. In our study, 
regarding the size, all tests perform well even in 
large systems of equations. To compare how the 
different test methods perform, consider the 
following power results:  
 



SHUKUR & MANTALOS 379

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 4. Estimated Size for the Alternative RESET Tests at 5% Nominal Size.  

 
 No. of Equations (n) 

 RAO = LRE = LRT = LRT-C 

∆ 1 2 3 5 7 10 
15 0.049 0.050 0.051 0.054 0.051 0.046 
25 0.050 0.051 0.050 0.054 0.046 0.049 
45 0.050 0.050 0.053 0.054 0.051 0.048 
75 0.054 0.049 0.053 0.050 0.052 0.046 

  

Wald = Wald-C 

∆ 1 2 3 5 7 10 
15 0.049 0.049 0.049 0.054 0.048 0.044 
25 0.050 0.054 0.050 0.053 0.046 0.048 
45 0.050 0.050 0.053 0.052 0.050 0.048 
75 0.054 0.049 0.053 0.050 0.052 0.047 

  

LM = LM-C 

∆ 1 2 3 5 7 10 
15 0.049 0.049 0.051 0.054 0.051 0.051 
25 0.050 0.053 0.051 0.054 0.048 0.050 
45 0.050 0.051 0.052 0.053 0.052 0.049 
75 0.054 0.049 0.053 0.050 0.053 0.048 

 
In this table R0

2  = 0.7, ρx = 0.5 and α = 0.0. The shading indicates bad performance as defined earlier 
in Table 3, i.e., when the results lie outside the approximate  95% confidence interval for actual size.  
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Table SE 4. Estimated Size for the Alternative RESET Tests at 5% Nominal Size. 
 

 No. of Equations (n) No. of Equations (n) 

 

 RAO LRE 

∆ 1 2 3 5 7 10 1 2 3 5 7 10 
15 .047 .048 .047 .050 .049 .058 .047 .048 .048 .062 .078 .182 
25 .049 .047 .053 .048 .051 .048 .049 .047 .054 .051 .060 .078 
45 .051 .051 .052 .049 .049 .048 .051 .051 .053 .050 .053 .055 
75 .049 .050 .050 .054 .053 .054 .049 .050 .050 .054 .054 .056 

  

LRT-C 

 

Wald-C 

∆ 1 2 3 5 7 10 1 2 3 5 7 10 
15 .051 .056 .058 .082 .110 .249 .069 .120 .193 .504 .841 .998 
25 .052 .051 .060 .061 .075 .103 .062 .085 .132 .279 .559 .921 
45 .052 .053 .057 .054 .059 .065 .057 .074 .096 .162 .291 .602 
75 .050 .051 .052 .058 .058 .062 .054 .062 .074 .109 .167 .339 

  

LRT 

 

Wald 

∆ 1 2 3 5 7 10 1 2 3 5 7 10 
15 .086 .164 .298 .756 .985 1.00 .101 .238 .457 .925 .999 1.00 
25 .072 .107 .186 .468 .842 .999 .081 .150 .293 .708 .972 1.00 
45 .062 .083 .116 .254 .500 .906 .067 .102 .165 .410 .760 .993 
75 .058 .069 .086 .150 .284 .627 .060 .079 .113 .234 .469 .872 

  

LM 

 

LM-C 

∆ 1 2 3 5 7 10 1 2 3 5 7 10 
15 .071 .087 .112 .285 .608 .970 .037 .012 .003 0.00 0.00 0.00 
25 .063 .069 .090 .162 .353 .763 .042 .025 .011 .001 0.00 0.00 
45 .058 .062 .073 .105 .187 .419 .047 .036 .026 .008 .001 0.00 
75 .054 .058 .062 .083 .118 .241 .048 .042 .035 .021 .009 .002 

 

Source : Shukur & Edgerton (2002, Table 4). In this table,R0
2  = 0.7, ρx = 0.5 and α = 0.0. The shading 

indicates bad performance, i.e., when the results lie outside the approximate 95% confidence 
interval for actual size. 
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The primary results reveal that, for 
single equation, the power functions for all the 
tests methods are identical. Moreover, in 
systems with more than one equation, we find 
that all the LR tests (uncorrected and corrected 
including the Rao’s F-test) have identical 
results, and that the corrected and uncorrected 
Wald have identical results, and the same for the 
LM and corrected LM tests. This means that in 
single equation, the eight tests reduces to one 
and that we can present results from any one of 
them. In systems with more than one equation, 
the results differ between the three test groups 
(Wald, LR & LM).  

The factors that affect the power of the 
RESET tests differ from those that affect the 
size. Although the number of equations (n), and 
degrees of freedom (∆) had only a slight effect 
on the estimated size, they have a considerable 
effect on the power. As in the case of the size, 
changes in the autocorrelation between the 
exogenous variables (α), and the goodness-of-fit 
in the null (R0

2) did not produce any noticeable 
effects on the power function of the tests, and 
will not be shown in the diagrams.  

The power of the RESET test did, as 
expected, depend on the degree of 
misspecification (RD

2 ) and the correlation 
between the proxy in the auxiliary regression 
and the omitted variable ( ρηz ). The greater the 
misspecification, and the better the RESET 
proxy mirrors the omitted variable, the greater 
the power of the tests. 

In Figure 1, the power functions of the 
three test methods are shown at a nominal size 
of 5% for different degrees of freedom (∆) and 
for systems with different numbers of equations 
(n). The autocorrelation in the exogenous 
variables (α = 0 ) is fixed, the goodness-of-fit in 
the null ( R0

2 0 7= . ) and the correlation between 
the included and omitted variables ( ρηz = 05. ). 
The power functions have also been calculated 
at other values, but because the patterns obtained 
are essentially the same they are excluded to 
save space. 

It can be seen from the diagrams in 
Figure 1 that the power functions satisfy the 
expected properties of increasing with ∆ and RD

2  

(which is denoted Rdif in the figure). The rate at 
which the power approaches one is heavily 
dependent on the values of ∆ and n, however. It 
is quite clear that the Wald tests exhibits the best 
power among the others, especially in large 
samples (when n = 10). The LR tests (or the Rao 
test) is next best, while the LM test comes in 
third place. Note that in SE only results for the 
Rao test have been presented, which are very 
similar to our results for the LR tests groups, 
which we refer to as “Rao” in what follows.  

A closer examination of the diagrams 
shows that in small samples the power functions 
decrease as n increases, while in large samples, 
i.e., when ∆ = 75, it can be seen that the power 
functions increase as n increases. The reason for 
this is that when n increases, the number of 
proxy variables that are included in the auxiliary 
regression also increases. Because each of these 
proxies is correlated with the omitted variable, 
their combined effect will tend to be greater 
when n increases (to hold this effect under 
control, the multiple correlation between the 
omitted variable and all of the proxy variables 
would have to be held constant) will obviously 
influence the power functions. Note also how, in 
small samples, the power functions become 
flatter as the number of equations increases, i.e., 
the tests become worse and worse, in particular 
the LM test. For large values of n and low 
degrees of freedom there is, little difference 
between the estimated size and estimated power. 

Because SE only focus on the Rao test, 
and to facilitate comparison between the two 
papers, we will also present results for the Rao 
test. In Figure 2, the effect is shown of different 
values of ρηz  (rho in the figures) on the power 
function of the RAO test with 45 degrees of 
freedom, for systems with one, three, seven and 
ten equations. The power functions are shown at 
a nominal size of 5%, the autocorrelation in the 
exogenous variables (α = 0 ) are fixed, and the 
goodness-of-fit in the null ( R0

2 0 7= . ). The 
effect of the correlations between the proxies 
and the omitted variables is noticeable, and 
plays an important role on how quickly the 
power reaches the value of one. The effect of 
this factor is more dramatic in large systems, but 
again this is in part due to the usage of simple 
instead of multiple correlations. 
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Figure 1 : The Power Function of the Wald, Rao and LM Tests for Three and Ten equations, Using the 
Bootstrap Critical Values. 
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Rao test, 3 eq’s :                                     Rao test, 10 eq’s : 
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LM test, 3 eq’s :                                LM test, 10 eq’s :  

d f = 1 5 d f = 2 5 d f = 4 5 d f = 7 5
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Figure 2 : The Power Function of Various Alternatives of the Rao Test with 45 df, Using the Bootstrap 
Critical Values. 
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                 7-eq’s :                       10-eq’s : 
 
 0,2 0,4 0,6 0,

r h o = .1 r h o = .3 r h o = .5 r h o = .7 r h o = .9
 

Note also how the power functions become flatter for small ρηz  as the number of equations increases. 
For high values of n and low ρηz  there is very little difference between the estimated size and the 
estimated power. Note that, regarding the Rao test, our results are almost identical to those obtained by 
SE. 
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Conclusion 
 

The size and power of systemwise 
generalisations of Ramsey's RESET test was 
examined for misspecification errors by using 
“bootstrap critical values” ( ctα

* ). Shukur and 
Edgerton (2002) (SE) studied the same 
properties of the test, but they used the 
asymptotic critical values instead. The purpose 
of this paper is to show the ability of the 
bootstrap technique to produce critical values 
that might be much more accurate than the 
asymptotic ones. 
 We followed the same principle as in SE 
to construct Wald, Lagrange Multiplier and 
Likelihood Ratio tests that are applicable to 
auxiliary regression systems. Various degrees-
of-freedom corrections have been investigated, 
in particular the commonly used simple 
replacement of the number of observations (T) 
by the degrees-of-freedom (∆) and, for the LR 
test, the Edgeworth correction developed by 
Anderson (1958). We also studied the properties 
of the systemwise F-test approximation 
proposed by Rao (1973). 

The investigation has been carried out 
using Monte Carlo simulations. A large number 
of models were investigated, where the number 
of equations, degrees of freedom, error variance 
and stochastic properties of the exogenous 
variables have been varied. For each model, we 
performed 10,000 replications and studied four 
different nominal sizes. The power properties 
have been investigated using 2,000 replications 
per model, where in addition to the properties 
mentioned above the degree of misspecification 
(measured as the relative difference in the 
explanatory power between the null and true 
models) and the correlation between the omitted 
and included variables have also varied. 

The analysis reveals that, in single 
equations, all test method are identical regarding 
the estimated size and power, while in systems 
with many equations the eight tests reduce to 
three groups, namely Wald, LR (or Rao), and 
LM. Although SE found that the Rao’s F-test is 
the best and that the uncorrected LR test and 
both the corrected and uncorrected Wald and LM 
tests are shown to perform extremely badly in all 
situations, our analysis reveals that, in almost all 

cases, the performance of all the tests are 
satisfactorily.  

The factors that affect the power of the 
RESET tests differ from those that affect the 
size. While the number of equations (n), and 
degrees of freedom (∆) had only a slight effect 
on the estimated size, they have a considerable 
effect on the power. As in the case of the size, 
changes in the autocorrelation between the 
exogenous variables (α), and the goodness-of-fit 
in the null (R0

2) did not produce any noticeable 
effects on the power function of the tests. The 
power of the RESET test did, as expected, 
depend on the degree of misspecification (RD

2 ) 
and the correlation between the proxy in the 
auxiliary regression and the omitted variable 
( ρηz ). The greater the misspecification, and the 
better the RESET proxy mirrors the omitted 
variable, the greater the power of the tests. 

As regards the power, the Wald test has 
been shown to perform somewhat better than the 
others especially in small samples and large 
systems, but the differences between the 
alternative RESET tests are minimal. The Rao 
test performs well in our study as well as in that 
of SE, i.e., when using the asymptotic critical 
values and the “bootstrap critical values”, which 
reinforces our picture of good performance in 
both cases. Generally, the power functions 
become flatter for small ρηz  as the number of 
equations increases. For high values of n and 
low ρηz  there is indeed very little difference 
between the estimated size and the estimated 
power. 
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