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On Comparison of Hypothesis Tests in the Bayesian Framework  
without Loss Function  

 
      Vladimir Gercsik                                                   Mark Kelbert 

                International Institute of Earthquake           Department of Mathematics 
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The problem is how to compare the quality of different hypothesis tests in a Bayesian framework without 
introducing a loss function. Three different linear orders on the set of all possible hypothesis tests are 
studied. The most natural order estimates the Fisher information between indicators of event and decision. 
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Introduction 
 
It is well-known that no universal measure of a 
hypothesis test quality exists in statistics. In the 
Bayesian framework a linear ordering of tests is 
possible for a given loss function. It is said that a 
test is optimal if it minimizes the Bayesian risk. 

However, the selection of a loss function 
is often somewhat arbitrary, and it is not always 
natural to measure the losses under different 
types of errors in the same units. For example, 
the cost of prevention measures in earthquake 
prediction is naturally expressed in money units. 
However, the losses from an earthquake 
including the psychological traumas, maiming 
and even the loss of human lives could be hardly 
expressed in money terms. Even if this 
expression is imposed, any estimation of these 
losses in money terms would depend a great deal 
on the variable economical and political 
situation. This loss function hardly looks as 
neutral and scientifically unbiased. 

The subject of interest is in a situation 
when the loss function is unknown but the 
quality of any two hypothesis tests should be 
quantitatively  compared.  It turned  out  that   all 
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hypothesis tests could be linearly ordered at least 
in three different ways: 

Let p and 1 − p be the Bayesian 
probabilities of random experiments ω∈Ω with 
cumulative distribution functions F1  and F2, 
respectively. A test is defined by a function 
Φ(ω) = 1 on the critical set B and 0 on Bc. If 
Φ(ω) = 1 then the alternative F2  is accepted, and 
the hypothesis F1  is accepted in the case 
Φ(ω) = 0. Clearly, the problem is symmetric 
with respect to interchange of hypothesis F1 and 
F2  and a simultaneous interchange of  Φ(ω) and 
1 − Φ(ω).  

The type I error is denoted (i.e., the 
probability to accept F2 when F1 is true) by α1, 
and the type II error (i.e., the probability to 
accept F1 when F2 is true) by α2. Considered are 
only unbiased tests (Barra, 1981), i.e., assume 
that α1 + α2 ≤  1. (If this condition is violated 
one could get an unbiased test by selecting Bc 
instead of B as a critical set.) Consider a random 
variable X1 = 0 if F1 is true, X1 = 1 if F2 is true, 
and call it an indicator of events. In a similar 
manner we define a random variable X2 = 0 if a 
test accepts F1, and X2  = 1 if the test accepts F2, 
called an indicator of decision. The joint 
distribution P(x1, x2) is defined by the relations 
α1 = P(X2  = 1 ⎜ X1 = 0), α2 = P (X2 = 0 ⎜ X1 = 1), 
in particular, 
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P (X2 = 0, X1 = 0) = p(1 - α1), 
              P(X2 = 1, X1 = 0) = pα1,                    (1) 

P (X2 = 0, X1 = 1) = (1 - p) α2, 
               P(X2 = 1, X1 = 1) = (1 - p)(1 - α2).    (2) 

 

The marginal one-dimensional probabilities take 
the form: 

 

P (X1 = 0) = p, P(X1 = 1) = (1 - p),  
P (X2 = 0) = p(1 - α1) + α2 (1 - p),      (3) 

P (X2 = 1) = pα1 + (1 - p)(1 - α2).        (4) 
 

 Clearly, the worst possible unbiased test 
is determined by the condition that indicator of 
event X1 and indicator of decision X2 are 
independent. On the other extreme, an ideal test 
(normally, it does not exist) is one that provides 
the correct solution without any errors. 
Generically, the quality of a test is measured by 
some non-negative function of X1 and X2 = Φ(ω) 
which takes the value 0 iff X1, X2 are 
independent, and the value 1 iff X1= X2. 

 
Measuring the quality of a test 
 Any of the following well-known 
Rachev (1991) functions used in tests of 
independency is acceptable as a measure of the 
quality of a test. 
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(
1xE stands for the expectation with respect of 

distribution of X1). It is easy to check that 
 
 β1(Φ) =β2(Φ) = p(1 - p)(1 - α1 - α2).         (7)  
 
 The quality of a test is measured by 
β = (1 − α1 − α2). This is quite popular in 
practice as the Bayesian risk R = E[w] = α1 + α2 
appears for the simplest loss function w(x1, x2): 
w(0,0) = w(1,1) = 0, w(0,1) = w(1,0) = 1. 

 Another possibility to test the 
independence is to consider the maximal 
correlation coefficient 
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where sup is taken over the set of functions φ1, 
φ2 such that E [φ i (Xi)] = 0, σ2[φ i(Xi)] = E[φi 
(Xi)2]=1, i=1,2. Clearly, ρ(Φ) = 0 iff X1 and X2 
are independent. As function φi(x), i =1,2 could 
take only two values φi(0) and φi(1), and these 
values are defined in a unique way by the 
conditions imposed, the following relation holds 
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 A straightforward computation yields: 
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where 
  
P = P (X2 = 0) = α2(1 − p) + (1 − α1)p = α2 + βp. 
 
The correlation coefficient ρ (Φ) is non-negative 
for any unbiased test; it equals to 1 when X1 = 
X2. 
 Perhaps, the most interesting way to 
measure the quality of a test is to consider an 
information I(Φ) in the indicator of solution 
X2 = Φ about the indicator of event X1. To 
formalize this idea consider 
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which equals to  I(Φ) = S(X1)  − E[S(X1 | X2)]. 
 S(X1) stands for the Fisher information 
of the prior distribution P(x1), S(X1) = p 
log2 p + (1 − p) log2 (1 − p). Intuitively, it means 
that in a random trial with n outcomes where 
hypothesis F1 and F2 appear with probabilities p 
and 1 − p, respectively, there are ≈2nS quite 
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probable outcomes, and the rest could be 
neglected as n → ∞. Next, S(X1 ⎜ X2) is the 
conditional entropy of the conditional 
distribution P (x1 ⎜ x2) under condition that the 
decision x2 is taken.  

Therefore, the information I(Φ) equals 
to the mean reduction of uncertainty obtained by 
the using of the test Φ. Clearly, for an ideal test 
without any errors I(Φ) takes its maximal value 
S(X1), and I(Φ) = 0 iff X1 and X2   are 
independent. 

It is interesting to note that a sequence 
of random events X1

(n) and decisions   X2
(n) 

=1,2,… can be treated as a message transmission 
over a channel without noise. In this 
interpretation the observation x1

(n)(ω) could be 
treated as the coding of the random outcome Fi, 
i = 1,2, and the decision  x2

(n) (ω)  as its 
decoding. The maximization of I(Φ) means that 
the optimal decoding is applied. 
 
Now following is proved: 
 Lemma 1.  Fix the Type I error 
probability α1. Then, the Neyman-Pearson test 
Φ* minimizing the Type II error probability α2, 
maximizes also the information I(Φ*)among all 
unbiased tests. 
 
 Proof.  A straightforward computation 
yields 
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This derivative is non-positive for an unbiased 
test with α1 + α2 ≤ 1. Hence, the information 
I(Φ) is maximal for a minimal possible value of 
α2, i.e. for the test Φ*. A symmetric statement 
with interchanging of α1 and α2 is also true.• 
 The same property holds also for β (Φ) 
and ρ (Φ); this is immediate for β (Φ), and 
follows from the equality 
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                                                           (14) 
in the case of ρ (Φ). 
 Next, observe that the Fisher 
information I(Φ) is a convex function of α1 and 
α2 for all 0 < α1 < 1, 0 < α2 < 1, 0 < p < 1. The 
prove this, it suffices to compute 
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This convexity property implies that a 
randomized test ∫ ∈

=
A

d
Φ

ΦΦPΦ )(  where P 

(dΦ) is a probability measure on  a suitable set 
A, P (A)=1, can not be optimal in the sense of 
Fisher information. Indeed, Jensen's inequality 
yields 
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Hence, there always exists a non-randomized 
test Φ' such that )()( ΦΦ ′≤ II . Clearly, a 
similar statement holds for β (Φ) as well. 
However, it is not true generically for ρ (Φ).  
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 Fig.1 demonstrates this presenting the 
surface ρ(α1,α2) for p = 1/3. Fig.2 presents the 
surface I(α1, α2) for p = 1/3. Each of the 
characteristics β (Φ),ρ (Φ) and I(Φ) divides the 
set of all tests into equivalence classes with the 
same value of this characteristic inside the class, 
and defines a linear order between different 
equivalence classes. 

 
Numerical Examples 
 Figure 3 presents the results of 
computation of optimal tests with respect of 
three criteria as above. As hypothesis F1 and F2, 
select the normal distributions with pdf’s 
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respectively. The prior probability of appearing 
F1 is p = 1/3. Fig.3 presents the type II error 
α2 = g(α1) for Neyman-Pearson’s problem in the 
cases σ2 = 0.2, σ2 = 0.6 and σ2 = 1. Each of these 
curves represents all the tests of the form 
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with different λ which are optimal for Neyman-
Pearson problem, i.e., minimizes α2 for a given 
value of α1. These curves of errors serve as a 
boundary of a convex domain of errors for all 
possible tests. The points are indicated (α1, α2) 
on the boundary where each of three 
characteristics of quality as above achieves its 
maximum. Clearly, the position of maximum is 
distinct in all three cases. 
 
Checking Hypothesis of Uselessness of a Test 
 It is desirable to use empirical data for 
checking the uselessness of a test Φ. In the case 
of independence of the indicator of event and the  
indicator of decision any of three characteristics 
of quality as above equals 0. To reject the 
hypothesis of useless of test Φ with some level 
of confidence it is sufficient to demonstrate that 
α1 + α2 < 1 with this level of confidence. 
 Consider a series of n independent trials 
where the number M of appearance of 

distribution F2 equals m, the number L of 
selection of distribution F2 by the test Φ equals l, 
and the number of correct choices K of F2 by the 
test Φ equals k. The hypothesis of uselessness is 
formalized in the following form of H0: 
α1+α2=1. If H0 is true, then (with unknown 
probability p)  
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and X1 and X2 are independent. 
Probabilities P(X2=0, X1=0), P (X2=1, 

X1=0), P (X2=0, X1=1) and P (X2=1, X1=1) are 
estimated by the empirical frequencies 
(n − m − 1 + k) / n, (l − k) / n, (m − k) / n and 
k / n, respectively. Hence, the estimates of 
conditional probabilities α1 = P(X2 = 1 ⎜ X1 = 0) 
and α2 = P(X2 = 0 ⎜ X1 = 1) looks like 
(l − k) / (n − m) and  (m − k) / m, respectively. 

Clearly, the inequality k > ml / n 
corresponds to the alternative H1: α1 + α2 < 1. It 
means that the critical sets have the form 
{K > K*} for given values M = m and L = l. 

If hypothesis H0 is true then the 
independence of X1 and X2 and independence of 
different trials imply an explicit expression for 
test size 
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Figure 1. Dependence of correlation coefficient on errors. 

 
Figure 2. Dependence of Fisher information coefficient on errors. 
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Figure 3. Location of maximum points for different characteristics of test efficiency. 

 

 
Figure 4. Dependence of maxima locations for different characteristics of test efficiency on variance. 

 

 
Fig. 4 presents the dependence of locations of maximum points αi(β), αi(ρ) and αi(I), i = 1,2, for three characteristics 
of quality as above as functions of  σ2. Observe that the Type II error tends to 0 as  σ2 → 0, as the PDF  f2  tends to a 
delta-function located at the point x = 0.5. 
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Here q = α2. Using the equalities 
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This conditional probability represents the level 
of confidence for the critical region {K > K*} for 
given values M = m and L = l. 
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