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A New Goodness-of-Fit Test for Item Response Theory 

 
 
Chi-square techniques for testing goodness-of-fit in item response theory are shown to give incorrect 
results. A new measure, CB, based on cumulants is proposed which avoids the arbitrary nature of interval 
creation found in chi-square techniques. The distribution of CB is estimated using Monte Carlo 
techniques and critical values for testing goodness-of-fit are given. 
 
Key Words: Goodness-of-fit, item response theory, item fit 
 
 

Introduction
 
Item response theory (IRT) posits a functional 
relationship between the probability of success 
on a test item and an unobserved latent variable. 
Although one may wish for robustness, how 
well the many applications of IRT function is 
determined at least in part, and certainly in some 
cases completely, by how well the model fits 
observed data. Model fit to data on a particular 
test item has been judged by various chi-square 
techniques. Yen (1981) reviewed these 
techniques, found similarity between several, 
and recommended Q1. Modifications of Q1 have 
been implemented in various computer programs 
such as Bilog (Mislevy, R.J. & Bock, R.D., 
1990) and BilogMG-3 (Zimowski et al, 2004). 

In this article, I review the use of chi-
square in examination of item fit and show that 
the chi-square statistic is misleading in that it 
shows items to not fit when one might in fact 
consider the items to fit well and that it shows 
items to fit when one might in fact consider the 
item   to  not  fit  well.  Next, I  explain  why  the  
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various variants of chi-square have these 
difficulties. Then I propose a new measure of 
item fit based on cumulants, show why this new 
technique is not susceptible to the problems of 
the chi-square techniques, and find critical 
points for this technique via Monte Carlo 
investigation of their distribution. Finally, I list 
some remaining research needs on this 
technique.  
 
Use of Chi-square in Item Fit 
 Stone (2000) summarized the typical 
procedures for testing fit of IRT models: “(a) 
Item and ability parameters are estimated; (b) A 
small number of ability subgroups are formed 
(e.g., 10) to approximate the continuous ability 
distribution; (c) An observed score response 
distribution is constructed by cross-classifying 
examinees using their ability estimates and score 
responses. Using the IRT model, the item 
parameter estimates and an ability level 
representing the discrete ability subgroups (e.g., 
midpoint of ability subgroup), an expected score 
response distribution across score categories for 
an item is obtained; (e) These predictions are 
then compared with the observed score response 
distribution. This comparison generally involves 
computing a goodness-of-fit or chi-square 
statistic for each individual item (e.g. Bock 

John H. Neel 
Educational Policy Studies 
Georgia State University 

 

 

 
 



A NEW GOODNESS-OF-FIT TEST FOR ITEM RESPONSE THEORY 582

1972;Yen 1981), and/or an examination of 
residuals (Hambleton & Swaminathan, 1985).” 
Notation 

Following common notation θ is defined 
as ability and Pi(θj) as the probability of passing 
item i for ability θj. The three-parameter logistic 
model and its variant two- and one-parameter 
models are assumed for Pi(θj) throughout this 
article: 

 
( ) ( )i ii i i -1.702a θ-b

1P θ =c +(1-c )
1+e  

. 

  
Further, Uij is defined as 1 if examinee j has a 
correct answer to item i and 0 if not. Some 
additional notation is: 
 
N - number of examinees 
nj - number of examinees with common ability θj 
K - the number of unique ability levels 
 
See Hambleton, Swaminathan and Rogers 
(1991) for further model and notation 
explanation. 
 
Chi-square techniques are misleading 
 Like many statistical techniques the 
goodness-of-fit technique is susceptible to 
increasing sample size. As sample size 
increases, the tests become ever more powerful 
and more and more items are rejected. Figure 1 
is a histogram showing the upper tail p-values 
associated with chi-square tests of goodness-of-
fit for 1000 items. These tests come from 
simulated data on 20 tests of 50 items each. A 
three-parameter model with a lognormal 
distribution for b, the logistic model location 
parameter; an exponential distribution for a, the 
logistic model slope parameter, a beta 
distribution for c, the lower asymptote, and 
ability normally distributed with mean 0 and 
standard deviation 1 was used to create item 
responses for 2000 examinees on each test. 
Discussion and justification for the use of these 
distributions may be found in Baker (1992).  

A three-parameter model was then fit 
using BilogMg. The p-values are the values 
from the chi-square goodness-of-fit for the 
items. It is clear from the figure that the p-values 
have positive skew. There should have been 50 
(1000 x .05 = 50) p-values less than .05, 

however, there were 123, almost 2½ times as 
many as expected. Applying a test for 
proportions to these data to test whether the 
observed proportion, .123, of p-values less than 
.05, differs from the expected value of .05, we 
find a z value of 10.59 (p<.0000000000000001). 
In the sense that the data were created from the 
given model, we can view all items as fitting the 
model. The technique clearly rejects many more 
items as not fitting than should have been 
rejected. Similarly, testing at the .01 level we 
would expect to reject only 10 items but 40 
would have been rejected for data that has 
adequate fit. Other conditions, for example, 
number of parameters in the IRT model, 
distribution of ability, size of calibration sample, 
will affect how many the items chi-square 
technique incorrectly identifies. In some cases 
the proportion of errors can be quite large. An 
exploration of these conditions is not the 
purpose of this study. Here it is only shown that 
the technique can in fact err on the side of 
identifying too many items that do not fit. The 
chi-square test thus does show items not to fit 
when one might in fact consider the items to fit 
well; i.e., 123 rejections when only 50 were 
expected. 

That the chi-square techniques can show 
items to fit when the items do not fit can occur 
when proportions passing the items are different 
within the same interval on the ability scale. 
When this happens in the same interval, 
proportions that are too high are combined with 
proportions that are too low and the items thus 
seem to fit. This is discussed somewhat further 
in the next section. 
 
Why are the chi-square techniques misleading?  
 Moore (1986) lists reasons that the chi-
square techniques have problems. Among these 
are the “arbitrariness introduced by the necessity 
to choose cells” and “the discarding of 
information within the cells”. The arbitrariness 
of the cells is one of the main problems in the 
use of chi-square. As used in such statistics as 
Q1, equal intervals are created along the ability 
scale and a value of Pi(θj) is selected to represent 
the probability of success throughout the 
interval. 
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Figure 1. Upper tail p-values associated with chi-square tests of goodness-of-fit for 1000 items. 
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How these intervals are created is 
arbitrary as is the length of the interval. In a 
particular case, the intervals that give a 
particular value of chi-square might give a 
different value if the intervals were either of a 
different length, began at a different point, or 
were both of a different length and began at 
different points. 

A second problem is that Q1 uses the Pi 
value of the midpoint of the interval on the θ 
scale (other values, such as the maximum, 
minimum, or mean, might and have been used). 
In using this single value to represent all points 
in the interval, the possibly different 
probabilities throughout the interval are ignored. 
Treating all points in the interval as having the 
same Pi(θj) discards the information from the 
unequal Pi(θj) that exist across the interval due to 
the different values of θj. This is only worsened 
when intervals are combined, due to low sample 
size as is often done in chi-square goodness-of-
fit tests, because a single value of Pi(θj)  must 
then represent an even larger interval across the 
Pi(θj)  scale.  

Moreover, differences in observed 
proportions passing can be masked by the 
selection of intervals. This can happen if the first 
of two adjacent regions on the ability scale show 
a low proportion passing while the second shows 
a high proportion passing. If these two 
successive regions are included in the same 
interval, the total proportion passing could be 
very close to the appropriate and correct value. 
 
Proposed Measure 
 In an attempt to bypass the difficulty of 
Q1 and similar grouped statistics,  the modeled 
cumulative proportion passing an item is 
contrasted to the observed cumulative proportion 
passing. Consider that a given test was taken by 
N examinees resulting in ability estimates that 
are arranged in order from the smallest to the 
largest. Some of these ability estimates may be 
equal for different examinees and thus we might 
consider that we have J unique ability estimates 
and that we label these as  1 2 J

ˆ ˆ ˆθ ,θ ,...θ ;J N≤  

with the general element being labeled as jθ̂ . 
We then let nj be the number of equal ability 
estimates at jθ̂ ; nj will often be 1. Using the 

appropriate IRT model fit from the data, ( )i j
ˆP θ  

is the modeled probability of a correct response 
on item i at jθ̂  and ( )j i j

ˆn P θ   is the modeled 

expected number of correct answers at jθ̂ . The 

cumulative modeled expected number of correct 
responses up to and including jθ̂  is 

( )
j

k i k
k=1

ˆn P θ∑ .  

In order to bring this cumulative 
modeled expected number of correct responses 
into a common range regardless of the difficulty 
of the item or the number of examinees taking 
the test,  each of these values is divided by their 
maximum value,  

                       ,, 

 
 thus setting the range of these values from 0 to 
1 and these values represent the modeled 
cumulative proportion passing the item, MCPPj: 

                         
( )

j

k i k
k=1

j

ˆn P θ
MCPP  = .

MAX

∑
 

MCPPj can be compared to the observed 
cumulative proportion passing, OCPPj, by 
counting the number of examinees who got the 
item correct at each ability level, cumulate these 
counts at the ability levels, and divide by the 
MAX. Note that dividing by MAX only brings 
the maximum value of OCPPj to one if the total 
number of observed correct responses to the 
item is exactly equal to the cumulative modeled 
expected number of correct responses. This is 
unlikely in practice. Thus, the maximum value 
of OCPPj will be less than one when fewer than 
the total number of correct responses is obtained 
and it will be greater than one when more than 
the total number of correct responses is 
obtained. 
 The proposed measure is based upon 
comparisons of the differences between MCPPj 
and OCPPj. The basic idea is to examine the area 
between two lines. One line is formed by 
plotting MCPPj at each level of ability and then 

 

( )
j

k i k
k = 1

ˆM A X = n P θ∑
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connecting these points with straight lines. The 
second line is formed by plotting OCPPj at each 
level of ability and this second set of points is 
also connected using straight lines. Thus two 
lines are created each formed from a series of 
straight lines. The area between the lines is then 
taken as a measure of how much the lines 
diverge. If the area between the lines is zero, the 
two lines must coincide everywhere. In that case 
MCPPj equals OCPPj at every value of jθ̂ . As 
the lines diverge from each other, the area will 
grow larger. This is illustrated in Figure 2. The 
points in Figure 2 were selected for illustration 
purposes. In practice, the values of θ would not 
be evenly spaced and would likely not have 
integer values. For a typical test, there would be 
hundreds or thousands of unequally spaced θ 
values. In Figure 2, there are six areas bound by 
the vertical lines at -3, -2, -1, 0, 1, 2, and 3. 
These areas are of 3 types: 
 
Trapezoid – bounded by (-3,-2) & (1,2)  
Triangle  – bounded by (-2,-1), (-1,0), & 
 (2,3) 
Two triangles – as bounded by (0,1) 
 

Formulas for the areas of these figures 
are well known. The only thing perhaps not well 
known is to find the point where the two 
triangles touch in the interval (0,1). This is a 
simple process of the simultaneous solution of 
the two intersecting lines, usually a topic in a 
beginning algebra course. A caution is to be sure 
that any area calculated is given a positive sign. 
Some areas could become negative if in finding 
a length of a side or an altitude, a larger value 
were subtracted from a smaller one. In any case, 
with this caution to  pay attention to the signs of 
numbers, finding the area between the lines is a 
simple application of formulas for the areas of 
two common figures, trapezoids and triangles. 
The individual areas can be found and then 
added to obtain the total area between the two 
lines. I have labeled this area as CB, for Clifford 
Blair or the area Caught Between the lines. 
 I define this measure by two sources. 
First, CB is an area measure similar to the DIF 
measure defined by Raju (1988). Second, CB is 
an area measure that combines information from 
each ability level. There is no discarding of 

information and there is no arbitrariness of 
interval location or length because there are no 
intervals. The discarding of the intervals has 
been managed by the use of the cumulants. 
 
An Example 
 Table 1 lists some created data to be 
used as an example to illustrate the proposed 
techniques. Table 1 contains 7 unique values of 

jθ̂  with 20 examinees distributed across the jθ̂  
values. The number of examinees at each value 
of jθ̂  is listed under nj. The 20 examinees were 
distributed across the 7 ability levels to be 
suggestive of a normal distribution. ( )i j

ˆP θ  is 

tabled for each value of jθ̂  using a one-
parameter model with b=0. The expected 
number of passes at each ability level is the 
number of examinees at that ability level times 
the probability of success at the ability level. 
These are listed under 
 

( )j i j
ˆn P θ

. 
The cumulative expected number of passes at 
each ability level is the sum of the expected 
number of passes up to that ability level. These 
are listed under 

   
( )

j

k i k
k=1

ˆn P θ∑
. 

As discussed earlier these values are divided by 
their maximum value, MAX, which is the last 
value of  
 

  
( )

j

k i k
k=1

ˆn p θ∑
. 

 The uij values listed in Table 1 were 
selected for the subjects so that the observed 
number of passes was always within one unit of 
the expected number of passes. In the sense that 
the observed number of passes could not be 
made any closer, we can say that these data fit 
the model. The observed cumulative proportion 
of passes, OCPPj, was found by cumulating the 
number of passes up to and including an ability 
level and then dividing by MAX. 
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Table 1. Data Illustrating Good Fit. 

j
 

jθ̂
 

jn
 

( )i j
ˆP θ

 
 

( )j i j
ˆn P θ

 
 

( )
j

k i k
k = 1

ˆn P θ∑ ( )
j

k i k
k=1

j

ˆn P θ
MCPP = 

MAX

∑
 

iju  j

ki
k=1

u /MAX∑
 

AREA 

1 -3 1 .0000 .0060 .0060 0.0006 0 .0000  

2 -2 3 .0322 .0965 .1025 0.0106 000 .0000 0.006 
 

3 -1 4 .1542 .6168 .7194 0.0745 0010 .1036 0.020 
 

4 0 5 .5000 2.5000 3.2194 0.3335 10101 .4143 0.055 
 

5 1 3 .8458 2.5374 5.7567 0.5963 101 .6215 0.053 
 

6 2 3 .9678 2.9035 8.6602 0.8970 111 .9322 0.030 
 

7 3 1 .9940 0.9940 9.6542 1.0000 1 1.0358 0.036 
 

J=7 
 

 MAX = 

( )
j

k i k
k=1

ˆn P θ =∑
   

9.6542 

   CB= .200 

 

 

            Figure 3
             Good Fit
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              Figure 4
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Figure 3 represents a plot the MCPPj 
and OCPPj on the vertical axis with jθ̂  on the 
horizontal axis. The lines are formed by 
connecting the MCPPj and OCPPj Points.  

Figure 3 represents rather good fit of the 
data in that the observed number of passes was 
selected to be within one unit of the expected 
number of passes for each ability level. This is 
in contrast to Figure 4. Figure 4 was created 
from the data of Table 2 just as Figure 3 was 
created from Table 1.  

Table 2 presents data created to show 
poor model fit by changing the uij values while 
keeping the same abilities and one-parameter 
model as Table 1. The uij values at the first three 
levels were selected to represent more passes 
than the model indicates. Accordingly the areas 
for the two situations differ. The CB area is 
found in both Table 1 and Table 2 by finding the 
area for the various trapezoids and triangles and 
then adding these areas for the CB area. The CB 
area for the good fit of Table 1 and Figure 3 is 
.200 while the CB area for the poor fit of Table 
2 and Figure 4 is 2.40. This is in the direction 
expected. CB should be less when the fit is good 
and greater when the fit is poor. Comparing 
these two areas brings up the question of when is 
the fit good and when is it poor? One answer to 
this question is to test the hypothesis that the fit 
is good. In order to test that hypothesis, the 
probability distribution of CB needs to be 
known. To determine the probability distribution 
of CB, the distribution of the area was simulated 
under known conditions.  
 
Simulations of Null Distributions 
 Because each of the measures proposed 
here is based on cumulative passing rates, there 
is a dependence between the OCPPj values and 
the MCPPj values. This means that finding 
probability distributions of these statistics 
through an analytic solution is difficult because 
of the dependencies introduced by the 
cumulants. Consequently a Monte Carlo 
simulation of the probability distributions is 
often used to estimate percentage points of such 
distributions. See Stephens (1986) for such a  
study. A Monte Carlo study was conducted to 
estimate percentage points of the distributions of 
the statistic proposed here for its null 

distributions; i.e. using data that were generated 
from known models under the null hypothesis 
that the data fit. Since the data were created 
from known models these data thus always fit 
the model so that the null hypothesis that the 
data fit was always true. I simulated data for 
one-, two- and three-parameter logistic IRT 
models over all combinations of the following 
numbers of items and number of subjects: 
 
Numbers of items: 10, 20, 30, 50, 75, 100, 150, 
 300  
Number of examinees: 100, 200, 300, 500, 800, 
 1000, 2000, 3000, 4000 
 
 There are 240 combinations of model, 
number of items, and number of subjects, 3 x 8 x 
10. The programming was done such that each 
of these 240 combinations could be run without 
intervention. Each combination was termed a 
“run”. For each run data was simulated until 
50,000 items were available. For each test, I 
created the 1- 0, pass-fail, item data for the given 
model, estimated item parameters using 
BILOGMG (Mislevy, R.J. & Bock, R.D, 1990), 
calculated CB, and saved these statistics along 
with appropriate identifying information to a 
file. I wrote a program to find the percentage 
points 1, 2, . . . , 99, 99.5, 99.9, and 99.99 from 
these files and tabled the resulting points.  
 In creating the 1- 0, pass-fail, data I used 
a standard normal distribution for abilities; a 
lognormal distribution for b, the logistic model 
location parameter; an exponential distribution 
for a, the logistic model slope parameter; and a 
beta distribution for c, the logistic model lower 
slope asymptote. I checked the accuracy of the 
implementation of these distributions by 
comparing sample values from each with values 
from the SPSS functions for these distributions. 
Agreement to 4 decimal places or beyond was 
found in each case. 
 I adapted a program by Wu (1997) to 
use as a random number generator. I added a 
1000 number shuffling routine (Press et al, 
1988) to the random number generator. Without 
shuffling, Wu’s random number generator has a 
period of approximately 2.3 x 10^18, more than 
sufficient to not repeat for the numbers used 
here.   Addition  of   the  shuffler   increases   the  
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period of the random number generator and, 
more importantly, removes lag correlation from 
the generated data.  
 
Use of the Tables 
 Tables 3, 4, and 5 give the .05, .01, and 
.001 upper area points of CB for one-, two-, and 
three-parameter models. These values can be 
used for a hypothesis test for the goodness-of-fit 
at significance levels of .05, .01, and .001. To 
conduct the test, calculate CB for a given item 
and then compare the item to tabled value. If CB 
exceeds the tabled value, then fit is rejected at 
the significance level for that value. If CB does 
not exceed the value, then fit is not rejected. As  

 

 
 
an example, if a 50 item test is calibrated on a 
sample of 1000 examinees and CB for an item is 
found to be .015, then fit for that item would be 
rejected at the .05 level (CB.05 = .0142), but 
would not be rejected at the .01 or the .001 
levels (CB.01 = 0.0186, CB.001 = .0255). 
Complete tables for numbers of items equal to 
10, 20, 30, 50, 75, 100, 150, and 300; calibration 
sample sizes of 100, 200, 300, 500, 800, 1000, 
2000, 3000, and 4000; and for one, two, and 
three parameter models may be obtained from 
the author. These tables list the percentage 
points 1-99 (in increments of .01), 99.5, 99.9, 
and 99.99.  Four point interpolation within the 
table should work well so  that the  tables should  

 
Table 2. Data Illustrating Poor Fit. 

 
j  

jθ̂  jn  ( )i j
ˆP θ  

 
( )j i j
ˆn P θ  

 
( )

j

k i k
k = 1

ˆn P θ∑  

( )
j

j

k i k
k=1

MCPP  =

ˆn P θ
 

MAX

∑  

iju  j

ki
k=1

u /MAX∑  AREA  

  1 -3 1 .0000 .0060 .0060 0.0006 1 0.1036  

2 -2 3 .0322 .0965 .1025 0.0106 011 0.3107 0.202 

3 -1 4 .1542 .6168 .7194 0.0745 0110 0.5179 0.372 

4 0 5 .5000 2.5000 3.2194 0.3335 1010 0.8287 0.469 

5 1 3 .8458 2.5374 5.7567 0.5963 101 1.0358 0.467 

6 2 3 .9678 2.9035 8.6602 0.8970 111 1.3466 0.444 

7 3 1 .9940 0.9940 9.6542 1.0000 1 1.4501 0.449 

J=7  MAX = 

( )
j

k i k
k = 1

ˆn P θ =∑  

9.6542

   CB= 2.40 
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Table 3. Monte Carlo Estimated Upper Area Points of CB for One-Parameter Models. 

 
                                                                                         K 
             10     20     30     50     75     100    150    300 
 N    "          
 100 .05   .0502  .0368  .0339  .0348  .0371  .0394  .0447  .4275  
     .01   .0643  .0456  .0416  .0430  .0471  .0508  .0638  .6450  
     .001  .0804  .0555  .0510  .0540  .0640  .0702  .0883  .8136  
 200 .05   .0495  .0333  .0274  .0252  .0260  .0269  .0289  .2141  
     .01   .0634  .0421  .0339  .0307  .0322  .0341  .0384  .5251  
     .001  .0774  .0519  .0414  .0374  .0413  .0467  .0584  .7110  
 300 .05   .0494  .0325  .0250  .0215  .0215  .0221  .0233  .1839  
     .01   .0632  .0410  .0308  .0262  .0266  .0280  .0314  .4283  
     .001  .0782  .0525  .0384  .0316  .0334  .0372  .0461  .5183  
 500 .05   .0494  .0314  .0231  .0182  .0175  .0177  .0184  .0522  
     .01   .0636  .0401  .0285  .0219  .0216  .0223  .0245  .1644  
     .001  .0779  .0501  .0351  .0260  .0273  .0307  .0369  .2668  
 800 .05   .0490  .0312  .0219  .0160  .0149  .0147  .0149  .0356  
     .01   .0629  .0396  .0271  .0194  .0184  .0188  .0205  .3474  
     .001  .0765  .0502  .0327  .0233  .0235  .0272  .0319  .3727  
1000 .05   .0493  .0309  .0217  .0152  .0139  .0136  .0137  .0173  
     .01   .0635  .0393  .0262  .0183  .0172  .0178  .0191  .2408  
     .001  .0783  .0490  .0318  .0219  .0228  .0247  .0312  .3012  
1500 .05   .0490  .0307  .0211  .0140  .0124  .0119  .0118  .0130  
     .01   .0630  .0388  .0258  .0166  .0155  .0159  .0173  .1137  
     .001  .0768  .0482  .0307  .0194  .0212  .0228  .0276  .1954  
2000 .05   .0494  .0307  .0207  .0133  .0115  .0111  .0108  .0116  
     .01   .0633  .0384  .0250  .0159  .0147  .0149  .0162  .0234  
     .001  .0771  .0470  .0297  .0187  .0191  .0221  .0266  .2245  
3000 .05   .0491  .0306  .0204  .0126  .0106  .0101  .0098  .0097  
     .01   .0636  .0385  .0244  .0149  .0135  .0139  .0150  .0164  
     .001  .0762  .0466  .0287  .0171  .0183  .0212  .0244  .0301  
4000 .05   .0490  .0306  .0203  .0122  .0101  .0096  .0092  .0091  
     .01   .0626  .0386  .0240  .0142  .0129  .0137  .0148  .0163 
     .001  .0760  .0466  .0282  .0165  .0181  .0211  .0243  .0285 
 

N - Number of examinees in the calibration sample 
" - Upper tail area 
K - number of items on the test 

The tabled value is the Monte Carlo estimated point that cuts off an area of α  in the upper tail of the 
distribution of CB when the item and ability parameters were estimated for a one-parameter logistic 
IRT model with a calibration sample of size N on a K item test. 
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Table 4. Monte Carlo Estimated Upper Area Points of CB for Two-Parameter Models. 
 

             10     20     30     50     75     100    150    300 
 N          "   
 100 .05   .0464  .0344  .0362  .0416  .0458  .0493  .0536  .0594 
     .01   .0600  .0446  .0487  .0585  .0666  .0720  .0798  .0923  
     .001  .0768  .0639  .0689  .0872  .1009  .1094  .1293  .1480  
 200 .05   .0478  .0286  .0253  .0272  .0303  .0318  .0351  .0390  
     .01   .0635  .0363  .0324  .0365  .0423  .0445  .0507  .0585  
     .001  .0802  .0480  .0436  .0520  .0589  .0651  .0714  .0909  
 300 .05   .0489  .0277  .0221  .0220  .0242  .0258  .0277  .0310  
     .01   .0652  .0356  .0278  .0289  .0328  .0364  .0394  .0458  
     .001  .0846  .0486  .0358  .0380  .0448  .0504  .0561  .0686  
 500 .05   .0497  .0281  .0201  .0176  .0188  .0200  .0217  .0244  
     .01   .0656  .0371  .0251  .0230  .0254  .0276  .0305  .0355  
     001   .0831  .0490  .0332  .0305  .0335  .0381  .0435  .0516  
 800 .05   .0503  .0284  .0191  .0151  .0158  .0165  .0176  .0198  
     .01   .0662  .0377  .0245  .0195  .0213  .0228  .0253  .0297  
     .001  .0848  .0492  .0323  .0265  .0294  .0319  .0365  .0443  
1000 .05   .0505  .0288  .0191  .0142  .0145  .0152  .0163  .0182  
     .01   .0659  .0378  .0247  .0186  .0199  .0214  .0237  .0272  
     .001  .0837  .0485  .0332  .0255  .0280  .0322  .0361  .0408  
1500 .05   .0504  .0296  .0190  .0131  .0129  .0136  .0141  .0160  
     .01   .0657  .0384  .0245  .0173  .0178  .0196  .0211  .0244  
     .001  .0812  .0509  .0322  .0253  .0258  .0298  .0336  .0392  
2000 .05   .0508  .0292  .0190  .0126  .0121  .0124  .0133  .0149  
     .01   .0665  .0387  .0245  .0170  .0167  .0180  .0205  .0232  
     .001  .0824  .0490  .0339  .0251  .0253  .0278  .0328  .0386  
3000 .05   .0510  .0295  .0187  .0120  .0115  .0116  .0121  .0134  
     .01   .0667  .0384  .0243  .0167  .0168  .0174  .0190  .0215  
     .001  .0838  .0483  .0328  .0258  .0258  .0287  .0316  .0368  
4000 .05   .0512  .0296  .0190  .0118  .0109  .0112  .0121  .0131  
     .01   .0661  .0385  .0244  .0167  .0161  .0176  .0194  .0212  
     .001  .0832  .0498  .0318  .0252  .0255  .0277  .0326  .0369 
 
 N - Number of examinees in the calibration sample 
 " - Upper tail area 
 K - number of items on the test 
The tabled value is the Monte Carlo estimated point that cuts off an area of " in the upper tail of the 
distribution of CB when the item and ability parameters were estimated for a two-parameter logistic IRT 
model with a calibration sample of size N on a K item test. 
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Table 5. Monte Carlo Estimated Upper Area Points of CB for Three-Parameter Models 
 
                                                                                          K 
             10     20     30     50     75     100    150    300 
 N    "          
 100 .05   .0954  .0797  .0761  .0766  .0801  .0832  .0893  .1009  
     .01   .1112  .0911  .0886  .0919  .0990  .1044  .1168  .1374  
     .001  .1274  .1039  .1034  .1161  .1325  .1414  .1610  .1894  
 200 .05   .0903  .0687  .0589  .0519  .0510  .0525  .0559  .0620  
     .01   .1068  .0821  .0703  .0617  .0624  .0660  .0743  .0836  
     .001  .1240  .0950  .0832  .0746  .0834  .0938  .1007  .1150  
 300 .05   .0884  .0668  .0553  .0442  .0413  .0412  .0434  .0457  
     .01   .1054  .0815  .0682  .0537  .0507  .0534  .0570  .0606  
     .001  .1253  .0953  .0820  .0655  .0654  .3142  .0764  .0806  
 500 .05   .0873  .0655  .0537  .0397  .0337  .0325  .0321  .0311  
     .01   .1048  .0805  .0680  .0499  .0419  .0419  .0411  .0392  
     001   .1253  .0955  .0826  .0639  .0566  .0550  .0573  .0573  
 800 .05   .0863  .0655  .0533  .0378  .0307  .0288  .0266  .0239  
     .01   .1037  .0815  .0687  .0487  .0391  .0371  .0337  .0299  
     .001  .1217  .0969  .0837  .0648  .0512  .0482  .0444  .0422  
1000 .05   .0858  .0655  .0531  .0370  .0299  .0283  .0243  .0214  
     .01   .1030  .0821  .0691  .0478  .0387  .0368  .0307  .0268  
     .001  .1245  .0972  .0843  .0628  .0530  .2714  .0413  .0395  
1500 .05   .0858  .0654  .0532  .0369  .0289  .0260  .0224  .0173  
     .01   .1034  .0820  .0694  .0476  .0374  .0342  .0281  .0216  
     .001  .1242  .0963  .0851  .0621  .0497  .2714  .0426  .0366  
2000 .05   .0859  .0652  .0530  .0365  .0293  .0259  .0207  .0158  
     .01   .1031  .0818  .0686  .0477  .0385  .0331  .0263  .0200  
     .001  .1241  .0959  .0857  .0613  .0535  .0456  .0386  .0309  
3000 .05   .0848  .0653  .0532  .0360  .0290  .0258  .0189  .0145  
     .01   .1020  .0823  .0701  .0472  .0376  .0324  .0241  .0184  
     .001  .1242  .0964  .0910  .0630  .0481  .0448  .0388  .0352  
4000 .05   .0851  .0653  .0531  .0362  .0294  .0253  .0189  .0138  
     .01   .1038  .0819  .0694  .0479  .0382  .0324  .0239  .0179 
     .001  .1269  .0961  .0868  .0629  .0498  .3112  .0371  .0360 
 
 N - Number of examinees in the calibration sample 
 "  - Upper tail area 
 K - number of items on the test 
 The tabled value is the Monte Carlo estimated point that cuts off an area of " in the upper tail of the 
distribution of CB when the item and ability parameters were estimated for a three-parameter logistic 
IRT model with a calibration sample of size N on a K item test.  
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provide adequate support for testing items on 
common sized tests and with common 
calibration sample sizes. 
 
Future Research 
 How well these procedures work will 
depend on many factors. One such factor is how 
well the assumed distributions for ability and for 
the parameters of the one-, two-, and three-
parameter logistic item response theory model 
match sample data. Accordingly, some studies 
of fit that examine CB for real data together with 
the distributional assumptions made here will be 
important. Although each set of three points, for 
" = .05, .01, and .001, is based on 50,000 items, 
a simulation with more items might be necessary 
to obtain better estimated upper area points. 
 This could be time consuming for it took 
about 180 days of 400 megahertz computer time 
to complete the Monte Carlo portion of this 
study. Another factor will be how well CB 
compares in terms of power to other procedures 
such as the Q1 procedure. Studies comparing the 
power of such procedures will help.   
 Yet another factor is how well the 
interpolation will work. That would require 
comparison of interpolated points from this 
study with values that are found by simulation 
just as these values were found. Finally, given 
the ever increasing speed of modern computing, 
it is probably possible to simulate any given 
observed situation and estimate the required 
percentage points required for each test of 
goodness-of-fit.  
 For example, one might assume that the 
estimated ability levels in a given calibration 
sample were correct and then find the analogous 
points to those in this study for use in testing 
goodness-of-fit. The advantage of using the 
estimated abilities is that they should represent 
the distribution of ability and thus instead of 
assuming a distribution of abilities, such as was 
done in this study, the distribution of abilities is 
estimated from the observed data. 
 This should give a procedure that is 
stronger in the sense that it is not necessary to 
make one of the assumptions that was made 
here. It is also possible to make a similar use of 
the estimated logistic model parameters and 
obtain a similar benefit. 
 

Conclusion 
 
Weaknesses of traditional chi-square tests (e.g. 
Q1) of goodness-of-fit in item response theory 
are well known and have been shown here. An 
attempt to avoid these weaknesses was made by 
basing a statistic, CB, based on cumulants. 
Using cumulants avoided the arbitrary creation 
of intervals that causes difficulties in Q1 and 
thus might avoid the weaknesses of such chi-
square statistics. Examples of CB were given 
under conditions of good and poor fit. 
Percentage points in the probability distribution 
of CB were estimated from a Monte Carlo study 
and an example given to show the use of these 
points. Suggestions were made regarding 
additional work with CB. 
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Appendix 
 
I met R. Clifford Blair during my first years as a 
professor in the College of Education at the 
University of South Florida. There are two 
incidents I would like to relate about Cliff that 
may give the reader some insight into his 
character. The first time he was a student in my 
class at the University of South Florida, he 
explained that he was legally blind and asked if 
he could record the classes. I, of course, 
consented and he routinely recorded every class. 
I was concerned as to how a student with limited 
vision would handle some of the basic statistical 
formulas and other mathematics in the class. I 
thought of it with my own limitations and how 
difficult it would be for me not to be able to see 
things. I was not very sophisticated as to how 
other people used alternative methods to learn. 
 One of the courses Cliff took from me 
was a course in test construction for teachers. 
Students in such a course soon consider 
themselves great experts at test construction and 
are often very critical of the tests they have in 
that course. When I returned the first test and 
went over it with the class, one student became 
very upset at a particular multiple choice item he 
had missed. He said that I had said a particular 
thing in class and that made the item choice he 
had selected correct. I replied that I would never 
have said that because it was clearly wrong and 
he must have misunderstood me. Another 
student jumped in and said that no, I had stated it 
just as the first student said and he had it in his 
class notes. The conversation went on a bit and I 
was beginning to think that I really had made an 

error. At the time, I was too new to want to 
admit such a thing. I did not want to admit to 
myself that I had told the class anything wrong 
and certainly did not want to admit it to the 
class. Things were going worse for me as two 
other students began to support the first two 
when Cliff raised his hand and said, “Just a 
minute, I have it on tape here.” Now I was really 
in difficulty. He had the evidence and I would 
have to hear it in front of everyone. He pressed 
the play button and there it was in my own 
voice: exactly what I told the students I had said. 
They had both written it down incorrectly. I 
have respected and appreciated Cliff Blair ever 
since.  

I left the University of South Florida and 
came to Georgia State University. After a few 
years I took a trip back and went to see some old 
friends. There was a faculty lounge that was 
about the size of a large classroom. The door 
was near one corner of the room and Cliff was 
seated at a table in the far corner when I walked 
in. He had not known that I was coming but after 
two or three steps into the room, he stood up, 
greeted me, and invited me to sit down with him. 
After a bit of discussion, I reminded him that he 
had not seen me for several years and that he did 
not know I was coming. “How could you 
recognize me”, I asked. He explained first that I 
was far enough away that his small area of 
useful vision could take in most of my body and 
that to him I have a characteristic walk and 
profile. From that, he recognized me.  
 Cliff is a surprising man who doesn’t 
seem to have limits. He was always an excellent 
student and just as good a friend. In the test 
question incident, he identified the class (it was 
three classes back as I remember) that contained 
the discussion, found the tape, rewound it to the 
right point, and had it ready to play in a very 
short time. He was extremely well organized in 
both his recall of the situation and in his 
collection of tapes. In the lounge incident, he 
showed me how well he could use the abilities 
he had. He has used them well and has had a 
productive and profitable career. He is a 
respected and sought instructor. I am proud to 
have been around as he started that career. So I 
am naming this technique for him as others have 
done (Snedecor, 1956, p. 244) to thank him for 
the privilege of knowing him all these years. 
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