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Missing data are a common problem in educational research. A promising technique, that can be 
implemented in SAS PROC MIXED and is therefore widely available, is to use maximum likelihood to 
estimate model parameters and base hypothesis tests on these estimates. However, it is not clear which 
test statistic in PROC MIXED performs better with missing data. The performance of the Hotelling-
Lawley-McKeon and Kenward-Roger omnibus test statistics on the means for a single factor within-
subject ANOVA are compared. The results indicate that the Kenward-Roger statistic performed better in 
terms of keeping the Type I error close to the nominal alpha level. 
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Introduction 
 
A common problem in multivariate analysis is 
the missing data problem. Data values may be 
missing for a variety of reasons. For example, a 
subject may drop out of a longitudinal study 
because of death or illness, or refuse to respond 
to sensitive questions on a survey, or neglect to 
finish the survey because of its length, etc. 
These, of course, are just a few examples of 
processes that might cause the missing data. 

There are several methods available for 
use when data are missing. The statistical 
properties of these procedures depend on the 
mechanism for the missing data. Rubin (1976, 
1987) and Little and Rubin (1987) defined three 
types of missing data mechanisms. Two of these 
are missing completely at random (MCAR) and 
missing at random (MAR).  
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The third type consists of all other 
missing data mechanisms. Verbeke and 
Molenberghs (2000) advocate calling this third 
type missing not at random (MNAR). These 
types of missing data mechanisms will be 
described in the context of the design and 
analysis considered in this study. The design 
includes p repeated measurements made on a 
single group of participants. The purpose of the 
data analysis is to estimate parameters (i.e., the 
means, variances, and covariances of the 
repeated measurements) and to test the omnibus 
hypothesis that the p means are equal. To 
simplify the presentation the case of two 
repeated measurements (the simplest repeated 
measures design) will be used in the description. 

Let X1 and X2 be two distinct variables. 
The missing data mechanism is MCAR when the 
pattern of missing data on X1 and X2 is 
completely independent of X1 and X2. The 
missing data mechanism is MAR if the pattern 
of missing data on X2 is dependent on observed 
values on X1 but not on X2 when X1 is held 
constant and the pattern of missing data on X1 is 
dependent on observed values on X2 but not on 
X1 when X2 is held constant. 

So what is a researcher to do if missing 
data are present in his or her study? A large 
number of methods have been proposed for 
analyzing incomplete data, but the most 
common solutions are probably listwise deletion 
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and maximum likelihood ignoring the missing 
data mechanism. In listwise deletion all subjects 
with any missing data are excluded from the 
analysis. This is the procedure used in popular 
software packages (e.g., SAS and SPSS) for 
repeated measures ANOVA and MANOVA. 
Listwise deletion works reasonably well if the 
researcher has a large sample, a small 
percentage of missing data, and a MCAR 
missing data mechanism. 

For example, if the researcher has a 
sample of 500 and 5% have missing data, the 
researcher will do the analysis with a sample of 
475 and, if the data are MCAR, obtain unbiased 
estimates while still retaining power. However, 
if the researcher has a sample of 100 and 35% 
have missing data, doing the analysis with a 
sample of 65 could severely compromise power. 
Regardless of the sample size and amount of 
missing data, estimates will be biased and 
sampling distribution based inferences, such as 
hypothesis tests and confidence intervals, will be 
invalid if the missing data mechanism is MAR 
or MNAR. 

As noted previously maximum 
likelihood ignoring the missing data mechanism 
is another procedure that can be used when data 
are missing. To understand the concept of 
ignoring the missing data mechanism, we must 
recognize that there are two types of data that 
can be taken into account in the analysis when 
there are missing data.  

First, there are the independent and 
dependent variables that are the focus of the 
study and, second, there is a dichotomous 
indicator variable indicating whether or not a 
particular data point is missing. The missing 
data mechanism is a relationship of the indicator 
variable to the independent variables and the 
dependent variables and models the probability 
that data are missing as a function of the 
independent variables and dependent variables. 
The relationship might be modeled, for example, 
as a logistic regression function relating the 
presence or absence of the data points to the 
independent and dependent variables. Analyzing 
only the observed scores on the dependent 
variables is referred to as ignoring the missing 
data mechanism. 

Rubin (1976) has shown that if the 
missing data mechanism is MCAR or MAR, ML 

estimators of the parameters are consistent when 
the missing data mechanism is ignored. Thus, 
the MCAR or MAR missing data mechanisms 
are ignorable for purposes of ML estimation. If 
the data are MCAR both listwise deletion and 
ML ignoring the missing data mechanism will 
produce consistent estimators, but the ML 
estimators will be more accurate because they 
use all of the available data. Rubin (1976) has 
also shown that the MCAR missing data 
mechanism is ignorable for sampling 
distribution based inference procedures such as 
hypothesis tests and confidence intervals. So if 
the data are MCAR either listwise deletion or 
ML ignoring the missing data mechanism can be 
used for inference, but ML will result in more 
powerful tests and narrower confidence intervals 
because it does not delete the observed data for 
participants that have some missing data. 

When ML estimation is used, whether 
the MAR missing data mechanism is ignorable 
for sampling distribution based inference 
depends on the how sampling variances and 
covariances are calculated. The MAR missing 
data mechanism is ignorable for sampling 
distribution based inferences on the means if the 
sampling covariance matrix is estimated from 
the observed information matrix for the means 
and the covariance parameter estimates but not if 
the matrix is estimated from the portion of the 
observed information matrix that pertains only 
to the means (Kenward & Molenberghs, 1998). 

The MAR mechanism may not be 
ignorable for sampling distribution based 
inferences if the sampling covariance matrix is 
estimated from the expected information matrix. 
That is, for sampling distribution based 
inferences to be valid the expected value of the 
information matrix must be taken under the 
actual sampling process implied by the MAR 
mechanism (Kenward & Molenberghs, 1998). 
Kenward and Molenberghs refer to using this 
type of expected information matrix as the 
unconditional sampling framework whereas 
using the information matrix that ignores this 
sampling process is called the naïve sampling 
framework.  

Additionally, the sampling covariance 
matrix for the means must be computed as the 
inverse of the unconditional information matrix 
for the means and the covariance parameters. 
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For a design with one-within subjects factor, as 
well as for more complicated multivariate 
designs, maximum likelihood ignoring the 
missing data mechanism can be implemented, by 
using PROC MIXED on SAS. However, it 
should be noted that many of the test statistic 
options in SAS use the expected information 
matrix under the naïve sampling framework. 

Another method for analyzing 
incomplete data is multiple imputation (MI) 
(Little & Rubin, 1987; Rubin, 1976, 1987). In 
MI, multiple sets of plausible values are used to 
replace the missing values. This creates m data 
sets with plausible values replacing missing 
values. Each of the m data sets is analyzed to 
produce parameter estimates. The m estimates 
are then combined to create a single estimate 
and a standard error of the estimate.  

One advantage of MI is that a single set 
of imputed data sets can be used for a variety of 
analyses. Second, inferences drawn from 
multiply imputed data are valid, provided that 
the missing data mechanism is MAR or MCAR, 
because MI accounts for missing data 
uncertainty (Schafer, 1997; Schafer & Olsen, 
1998). MI is very efficient in that it only 
requires a small set of imputed data sets to 
conduct a valid analysis (Rubin, 1987; Schafer, 
1997; Schafer & Olsen, 1998). However, MI can 
be cumbersome to use because of the need to 
analyze multiple data sets and combine the 
results to make one overall inference. This 
drawback has been overcome for some designs 
because software is available that combines the 
estimates automatically. 

As noted previously, if the missing data 
mechanism is MNAR, the missing data 
mechanism is non-ignorable (NI) for purposes of 
ML estimation. Thus, if the missing data 
mechanism is not MAR or MCAR, the pattern 
of missing data must be taken into account in 
order to obtain consistent ML estimates. This 
can be accomplished by using a selection model 
that incorporates a model for the missing data 
indicator or by using a pattern mixture model, 
which stratifies the data on the basis of the 
pattern of missing data. See Little (1995) for 
additional details about these two approaches. 
For examples of these models the reader is 
referred to Diggle and Keward (1994), Troxel 
(1998), Kenward (1998), Albert and Follmann 

(2000), and Fitzmaurice, Laird, and Shneyer 
(2001).  

Sampling based inferences will also be 
valid under selection modeling that incorporates 
a model for the missing data and under a pattern 
mixture model. However, selection modeling 
incorporating the missing data mechanism and 
pattern mixture modeling are more difficult to 
implement than are analyses that ignore the 
missing data mechanism. For example, for the 
design considered in this study, the analysis 
ignoring the missing data mechanism can be 
implemented using PROC MIXED in SAS, but 
selection modeling incorporating the missing 
data mechanism cannot. Thus, it seems very 
likely that analyses that ignore the missing data 
mechanism will be widely used in the future. For 
this reason we focus on ML methods ignoring 
the missing data mechanism. 

Let p denote the number of levels of the 
within-subjects factor, Σ the p p×  population 
covariance matrix, S the p p× estimated 
covariance matrix, and Σi and Si the i ip p×  
section of the population and sample covariance 
matrices, respectively, that pertain to the 
dependent variables on which subject i has 
observed scores. In addition let Ai denote a 

ip p× indicator matrix obtained by eliminating 
the jth row from the p p×  identity matrix if the 
data for subject i is missing on xj. Ignoring the 
missing data mechanism, the generalized least 
squares estimate of the mean vector is 
 

          1 1ˆ i i i i i i
i i

−
− −⎛ ⎞ ⎛ ⎞′ ′= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑µ A Σ A A Σ x           (1) 

 
In practice Σi must be estimated and the 
estimated sample mean vector is 
 

             1 1
i i i i i i

i i

−
− −⎛ ⎞ ⎛ ⎞′ ′= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑x A S A A S x . 

 
If S is obtained by maximum likelihood or 
restricted maximum likelihood, x  is the 
maximum likelihood estimate. 

Let C be a ( )1p p− ×  matrix of full row 
rank. Each row of C is a contrast vector. The 
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hypothesis that all p population means are equal 
is  
                                  0 :H =Cµ 0  
 
where the bold zero is a vector of length ( )1p −  
with all elements equal to zero. The default test 
statistic in PROC MIXED for testing the null 
hypothesis is  

       
( )

1

11
1 i i i

ip

−−
−

⎡ ⎤⎛ ⎞′ ′ ′ ′⎢ ⎥⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦
∑x C C A S A C Cx    (2) 

 
with critical value Fα, p-1, n-1. An alternative is to 
use the test statistic 
 

( )( )

1

11
1 1 i i i

i

n p
p n

−−
−

⎡ ⎤− + ⎛ ⎞′ ′ ′ ′⎢ ⎥⎜ ⎟− − ⎝ ⎠⎢ ⎥⎣ ⎦
∑x C C A S A C Cx (3) 

 
with critical value Fα, p-1, n-p+1. In SAS this is 
referred to as the Hotelling-Lawley-McKeon 
(HLM) test. If there are no missing data the test 
statistic simplifies to the usual F transformation 
of Hotellings T2 for a repeated measures design 
with no between-subjects factors. According to 
Wolfinger and Chang (1995), when data are 
complete and the unstructured option for the 
covariance matrix is selected, the default test 
statistic tends to be liberal with small samples 
sizes and the HLM performs more satisfactorily.  

In equations (1) and (2), the expression 

1
i i i

i

−
−⎛ ⎞′⎜ ⎟

⎝ ⎠
∑A S A  is the estimated sampling 

covariance matrix of the mean vector x  and is 
based on the expected information matrix 
calculated under the naïve sampling framework. 
Even when data are MCAR or there are no 

missing data, using 1
i i i

i

−
−⎛ ⎞′⎜ ⎟

⎝ ⎠
∑A S A has two 

drawbacks 
 
 
 

1. 1
i i i

i

−
−⎛ ⎞′⎜ ⎟

⎝ ⎠
∑A S A is an estimate of 

1
i i i

i

−
−⎛ ⎞′⎜ ⎟

⎝ ⎠
∑A Σ A , the sampling covariance matrix 

of µ  in equation (1). Results by Kackar and 
Harville (1984) show that, as a sampling 

covariance matrix for x , 1
i i i

i

−
−⎛ ⎞′⎜ ⎟

⎝ ⎠
∑A S A  tends 

to be too small because it fails to take into 
account the uncertainty in x  introduced by 
substituting Si for Σi. 
  

2. Booth and Hobert (1998) and Prasad and 

Rao (1990) show that 1
i i i

i

−
−⎛ ⎞′⎜ ⎟

⎝ ⎠
∑A S A  is biased 

for 1
i i i

i

−
−⎛ ⎞′⎜ ⎟

⎝ ⎠
∑A Σ A . 

Harville and Jeske (1992) developed a 

better approximation, denoted by l
@

m , that can 
be used to estimate the sampling covariance 
matrix of x . Subsequently, Kenward and Roger 
(1997) developed an alternative estimator, 
denoted by l AΦ , that can also be used to estimate 
the sampling covariance matrix for x . Kenward 
and Roger also proposed a test statistic, which in 
the context of comparing p means is 

 
l( ) 1

1
A

p
λ −

′ ′ ′Φ
−

x C C C Cx  

 
with critical value Fα, p-1, df where λ and df are 
estimated from the data. The Kenward-Roger 
(KR) procedure is implemented in PROC 

MIXED. However, l
@

m  is used in place of l AΦ . 
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The Current Study 
The purpose of this article is to compare 

Type I error rates for two procedures available 
in SAS: the HLM procedure and the Kenward-
Roger (KR) procedure. Simulation methods 
were used to make the comparison. Data were 
generated under the MAR and MCAR missing 
data mechanisms because of the properties 
enjoyed by ML estimation under these 
mechanisms if the missing data mechanism is 
ignored. For comparison purposes data were also 
generated under a MNAR missing data 
mechanism. None of the procedures were 
expected to work well under this missing data 
mechanism.  
Related literature 

Fai and Cornelius (1996) developed and 
compared four alternative test procedures that 
can be used to test linear hypotheses on means in 
multivariate studies. The four test statistics, 
specialized to the context of this paper are 
shown in Table 1. For each of the four statistics 
Fai and Cornelius showed how to use the data to 
estimate the second degrees of freedom. The F2 
and F4 statistics have a scale factor estimated 
from the data. The F1 and F2 statistics use 

1
i i i

i

−
−⎛ ⎞′⎜ ⎟

⎝ ⎠
∑A S A  to estimate the covariance 

matrix of the mean vector whereas F3 and F4 use 
l@
m . The F4 statistic is similar to the statistic 
obtained by using the Kenward-Rogers option in 
PROC MIXED, but the formula for the scale 
factors and the degrees of freedom are not 
identical to those used when the Kenward-
Rogers option is employed in PROC MIXED. 
The test using F1 is available in SAS when the 
Satterthwaite option is used in PROC MIXED. 

Fai and Cornelius (1996) applied their 
tests to split-plot designs with a between-
subjects factor with three levels and a within-
subjects factor with four levels. The covariance 
structure was compound symmetric. The design 
was unbalanced in that the number of subjects 
varied across levels of the between-subjects 
factor and data were not generated for some 
combinations of subjects and the within-subjects 
treatment. Because the missing data were never 
generated, the missing data mechanism was 
effectively MCAR. Estimated Type I error rates 

and power were reported for the main effect of 
the between-subjects factor. All four tests 
provided reasonable control of the Type I error 
rate. The performance of F1 and F3, which do 
not include a scale factor was very similar. Type 
I error rates and power for F4 were always larger 
than for F3. 

Schaalje, McBride, and Fellingham 
(2001), reporting on a study conducted by 
McBride (2002), reported Type I error rates for 
F1  and  the  test  obtained  using  the  Kenward- 
Roger option in PROC MIXED. McBride 
investigated performance of these tests in a split-
plot design. 

The following provides a social science 
example of the design investigated by McBride. 
Suppose three methods for structuring 
interactions among students in a mathematics 
classroom are to be compared; n schools are 
randomly assigned to each method, where n was 
three in half of the conditions studied by 
McBride and five in the other half. The methods 
will be implemented for three, six, or nine 
weeks. Each school contributes K classes. Each 
class is assigned a single interaction quality 
score. In half of the conditions studied by 
McBride, K = 3 and the design was balanced. In 
the other half, K = 5 so that within each school 
two classes would be assigned to two of the 
implementation periods and one class would be 
assigned to the remaining implementation 
period. In these conditions the design is 
unbalanced, but no data are missing.  

McBride also investigated the effect of 
the covariance structure, including five 
structures: compound symmetric (equal 
correlations and equal variance for the repeated 
measures), heterogeneous compound symmetric 
(equal correlations, but unequal variances for the 
repeated measures), Toeplitz, heterogeneous 
first-order autoregressive (correlations conform 
to a first-order autoregressive pattern, but the 
variances for the repeated measures are 
unequal), and first-order ante-dependence (see 
Wolfinger, 1995, for examples of these 
covariance structures). The results indicated that 
employing the Kenward-Roger option provided 
better control than did employing the 
Satterthwaite option in PROC MIXED. Type I 
error rates were closer to the nominal level for 
balanced designs than for unbalanced designs. 
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For unbalanced designs, Type I error rates 
improved as n increased. 

Kenward and Roger (1997) investigated 
how well the original Kenward-Roger procedure 
controlled Type I error rates in four situations: 
(a) a four-treatment, two-period cross-over 
design, (b) a row-column-α design, (c) a random 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 

coefficients regression model for repeated 
measures data, and (d) a split-plot design. In (c) 
and (d) there were missing data. In (c) the 
missing data mechanism was MCAR. The 
missing data mechanism in (d) was not 
specified. In all situations, the Kenward-Roger 
test controlled the Type I error rate well. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 1.  Test Statistics from Fai and Cornelius (1996). 

 
 

Test Statistics 
 

Critical values 

( )

1

1
1

1
1 i i i

i
F

p

−−
−

⎡ ⎤⎛ ⎞′ ′ ′ ′= ⎢ ⎥⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦
∑x C C A S A C Cx  

 
( ) 1, 1 ,p dfFα −  

( )

1

12
2 1 i i i

i
F

p
λ

−−
−

⎡ ⎤⎛ ⎞′ ′ ′ ′= ⎢ ⎥⎜ ⎟− ⎝ ⎠⎢ ⎥⎣ ⎦
∑x C C A S A C Cx  

 
( ) 2, 1 ,p dfFα −  

( )
l( )

1
@

3
1

1
F m

p

−−⎡ ⎤′ ′ ′= ⎢ ⎥− ⎣ ⎦
x C C C Cx  

 
( ) 3, 1 ,p dfFα −  

( )
l( )

1
@

4
4 1

F m
p
λ

−−⎡ ⎤′ ′ ′= ⎢ ⎥− ⎣ ⎦
x C C C Cx  

 
( ) 4, 1 ,p dfFα −  

 
 



ONE FACTOR WITHIN-SUBJECTS DESIGN WITH MISSING VALUES 412

Methodology 
 

The design of the simulation had three between-
subject factors and three within-subjects factors. 
The between subjects-factors were number of 
variables (p), ratio of the number of subjects to 
number of variables (n/p), and correlation (ρ) for 
each pair of variables. The number of variables 
factor had three levels, p = 2, 4 and 6. The ratio 
factor had two levels, n/p = 5 and 10. The actual 
sample sizes are presented in Table 2.  
 
 The correlation factor had three levels, ρ 
= .25, .50, and .75 with all pairs of variables 
equally correlated (compound symmetric). The 
within-subjects factors were type of missing data 
mechanism (type), percent of missing data 
(percent), and test statistic (test). The type of 
missing data mechanism factor had three levels: 
MAR, MCAR, and MNAR. The percent of 
missing data factor had two levels: 10% and 
20%. Finally, the test factor has two levels: 
HLM and KR. All factors in the design were 
crossed. 
 
Table 2. Sample Size ( )n According to Number 

of Variables and Sample Size Ratio ( )n p . 
 

                          
                     Variable 

 
      Ratio 

 
2 

 
4 

 
6 

 
        5 
 
      10 

 
10 

 
20 

 
20 

 
40 

 
30 

 
60 

    

 
The model used to generate the data was  
 

,ij ijX eµ= +  
i = 1, 2, …, n and j = 1, 2, …, p. In matrix terms 

                       

11 1

12 2

i

i

ip ip

x e
x e

x e

µ
µ

µ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥= +
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

# ##
 

where x is a 1p×  vector containing the random 
variables for the ith subject on the p variables and 
µ is a 1p×  vector of means, with all elements 
equal. All of the means are equal because the 
study is concerned with Type I error rates. The 
common element was arbitrarily set to zero. The 
vector e is a 1p× vector of random errors with 
the following assumption, ( )~ ,MVNe 0 Σ . In all 
conditions the diagonal elements of Σ were 
equal to one. 

All data simulations were conducted 
using SAS version 9.0. For each combination of 
levels of the between-subjects factors, the 
following steps were used to simulate the data. 

 
1. Simulate Z, a n p× matrix of 
pseudorandom standard normal variables.  
2. Calculate T, the p p×  upper triangular 
Cholesky factor of the covariance matrix Σ . 
3. Calculate =E ZT , an n p×  matrix of 
error scores. 
4. Set =X E  
5. Copy X five times, yielding six copies 
of the data set. The six copies were used to 
create data matrices with missing data for the six 
combinations of type of missing data mechanism 
and percentage of missing data. 
6.  Select data points for elimination. In all 
conditions there were no data missing on x1. 

a. For the MCAR missing data 
mechanism, ijx  was eliminated from the matrix 
if Uij < π where π is the expected proportion of 
missing data on xj. 

b. For an MAR missing data 
mechanism, xij was missing if  

1( ), 2, ,ij iU kx c j p< Φ + = …  
where Φ is the cumulative standard normal 
distribution function and k and c are parameters 
that control the dependence of the missing data 
on the x variables and the expected proportion of 
missing data. 

c. For the MNAR missing data 
mechanism, xij was deleted if 

( )ij ijU kx c< Φ + . 
That is, the probability that xij was missing 
depended on xi. All conditions were replicated 
5,000 times. 
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Setting k and c 
The parameter k controls how dependent 

the missing data are on x in the MAR and 
MNAR conditions and was set equal to one. Let 
Rij = 1 if Xij is missing and zero otherwise. With 
k = 1, in the MAR conditions the biserial 
correlation between Rj and x1 was .5 for j = 2, 
…, p; in an MNAR condition the biserial 
correlation between xj and Rj was .5. Thus the 
missing data indicators depend fairly heavily on 
the x variables. With k = 1, the expected 
proportion of missing data on Xij is dependent on 
c. In the procedure described in the preceding 
paragraphs the probability that Rij = 1 is related 
to xj or x1 by a normal ogive (or probit model). 
Using well-known facts about the normal ogive 
model (see, for example, Lord & Novick, 1968, 
equations 16.9.3 and 16.9.4), it can be shown 
that  

2 11 { ( )}c k π−= + Φ . 
Thus, when k = 1, 

12{ ( )}c π−= Φ . 
For 10% and 20% missing data the expression 
becomes 1.28 2c = − and .84 2c = − , 
respectively. 
 

Results 
 
For each combination of the between-subjects 
factors (number of variables, correlation, and 
sample size) and the within-subjects factors 
(missing data mechanism, percent of missing 
data, and type of test) the Type I error rates for 
the HLM and KR tests were estimated as the 
proportion of the 5000 replications that resulted 
in a significant test statistic. This proportion 
variable was then analyzed by a 3 (number of 
variables) ×  3 (correlation) ×  2 (sample size 
ratio) ×  3 (missing data mechanism) ×  2 
(percent of missing data) ×  2 (test) ANOVA 
with missing data mechanism, percent of 
missing data, and test type as within-subjects 
factors. The main effect of test was significant 
with F(1, 4) = 1066.70, p = .000. The mean 
Type I error rates for the two tests were MHLM = 
.083 and MKR = .065. Inspection of the estimated 
Type I error rates indicated that, with the 
exception of four conditions, the estimated Type 
I error rate for the KR test was closer to the true 

Type I error rate than was the Type I error rate 
for the HLM test. Consequently, results for the 
HLM test statistic were dropped from the model 
and Type I error rates for the KR test statistic 
were reanalyzed. 

The new analysis showed no significant 
effects for correlation. The highest-order 
significant interaction was the interaction of 
missing data mechanism, percent missing data, 
and sample size ratio, F(2, 8) = 15.58, p = .002.  

In addition the main effect of number of 
variables was significant, F(2, 4) = 23.10, p = 
.006. Because of this pattern of effects we 
present, in Table 3, the Type I error rates 
averaged over levels of the correlation factor. 
Bradley (1978) presented a conservative and 
liberal criterion for identifying conditions in 
which hypothesis testing procedures work 
adequately. His conservative criterion is .9α ≤ τ 
≤ 1.1α (.045 ≤ τ ≤ .055) and his liberal criterion 
is .5α ≤ τ ≤ 1.5α (.025 ≤ τ ≤ .075). For this 
study, the liberal criterion was used to identify 
conditions in which the average Type I error rate 
was unacceptable. These are indicated in bold in 
Table 3. 

Inspection of the results indicates that, 
as expected, Type I error rates for the KR test 
may be unacceptable when the missing data 
mechanism is MNAR. It appears that the error 
rate for the KR test is more likely to be 
unacceptable as the percent of missing data, 
sample size ratio, and number of variables 
increases. In regard to the effect of the number 
of variables, in our simulation the number of 
variables on which data were MNAR increased 
as the number of variables increased. Different 
results might have emerged if there had been 
missing data on only one of the variables, 
regardless of the number of variables. 
 When the data were MCAR or MAR, 
average Type I error rates were acceptable in all 
conditions. Inspection of the Type I error rates 
for individual cells in the design (i.e., not 
collapsing over correlation) indicated that when 
the data were MCAR or MAR, the Type I error 
rate was acceptable in all conditions. Reanalysis 
of the data, after dropping the results for MNAR 
conditions indicated that number of variables did 
not have a significant main effect and did not 
enter into any significant interactions. 
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The only significant effects were a two-

way interaction of type of missing data and 
sample size ratio, F(1,4) = 8.25, p =.045, and a 
main effect of percent of missing data, F(1,4) 
=15.45, p =.017.  Average Type I error rates by 
type of missing data and sample size are 
presented in Table 4. 

The results suggest that increasing the 
sample size ratio improves control of the Type I 
error rate when the data are MCAR, but not 
when the data are MAR. The means when 10% 
and 20% of the data were missing and the 
mechanism was MCAR or MAR were .051 and 
.056, respectively, suggesting that Type I error 
rate control declines as the percentage of 
missing data increases. 

 
 
 
Table 4 Mean Type I Error Rates for KR by 
Sample Size Ratio and Missing Data 
Mechanism. 
 

Ratio MCAR MAR 

10 0.055 0.053 

20 0.050 0.056 

 
 
 
 

 
Table 3. Mean Type I Error Rates for KR by Number of Variables, Sample  Size Ratio, Percent of 
Missing Data, and Missing Data Mechanism 
 

Number Ratio Percent MCAR MAR MNAR 

2 10 10 0.051 0.050 0.053 

  20 0.061 0.052 0.068 

 20 10 0.048 0.050 0.066 

  20 0.049 0.057 0.098 

4 10 10 0.053 0.049 0.063 

  20 0.055 0.060 0.072 

 20 10 0.052 0.054 0.072 

  20 0.050 0.061 0.146 

6 10 10 0.051 0.048 0.060 

  20 0.058 0.059 0.096 

 20 10 0.050 0.054 0.082 

  20 0.052 0.062 0.184 

 
Note. Each mean Type I error rate is an average of Type I error rates for three conditions. 
Unacceptable mean Type I error rates are in boldface. 
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Conclusion 
 

The aim of this study was to determine whether, 
when there are missing data and the sample size 
is small, using ML estimates of the means for a 
single factor repeated measures design in testing 
the omnibus hypothesis results in control of the 
Type I error rate. The specific methods used to 
test the hypothesis were the KR test and the 
HLM test as implemented in SAS. The results 
clearly showed that KR test provided better 
control of the Type I error rate than did the 
HLM test. 

The results of this study support the 
conclusion that, in a single-factor repeated 
measures design, sampling distribution based 
inferences on the means using the KR test may 
not control the Type I error rate for the MNAR 
missing data mechanisms but do control the 
Type I error rate for the MCAR and MAR 
missing data mechanisms. However, sample size 
and percent of missing data may be key factors 
that affect ML based inferences for MCAR and 
MAR missing data conditions using the KR test. 
 For both MCAR and MAR data, the 
results suggest that increasing the percent of 
missing data tends to inflate the Type I error 
rates. The effect of increasing the sample size 
depended on the missing data mechanism, with a 
stabilizing effect when the data were MCAR, 
but not when the data were MAR.  

Although the design investigated in this 
study was a simple one factor repeated measures 
design, the findings suggest further simulation 
work on using ML to directly estimate models 
with missing data with more complicated 
designs and with additional variation in the 
factors investigated in this study. One condition 
that can be introduced is a between-subjects 
factor. Designs with between-subjects factors 
and within-subjects factors, also known as split-
plot designs, are even more common than the 
one investigated in this study. Split-plot designs 
are used in longitudinal studies with two or more 
treatment groups. In such designs, the number of 
time point at which observations are made may 
be larger than six, which is the largest number of 
measurements investigated in this study. 
Consequently, a repeated measures factor, with 
more levels than six, should be investigated in 
future work. 

 Although several correlation matrices 
were used in this study and the correlation 
matrix had little or no impact on the Type I error 
rate, in each correlation matrix the off-diagonal 
elements were the same (i.e., the matrices were 
compound symmetric). This type of matrix may 
occur in studies in which the levels of the 
within-subjects factor are treatments and the 
order of the treatment has been randomized. 
Nevertheless, the exclusive use of compound 
symmetric correlation matrices may have limited 
the generality of the results. And, in other 
repeated measures studies (e.g., longitudinal 
studies) the correlation matrix is not likely to be 
compound symmetric. Thus, another condition 
that can be fruitfully investigated in future work 
is correlation matrices that have varying off-
diagonal elements. 
 The Type I error rates of the KR test 
were acceptable in both the MCAR and MAR 
conditions. However, the percent of missing data 
at which the KR test will begin to breakdown is 
still not clear, nor is it clear whether sample 
sizes larger than those studied in this research 
will improve the Type I error rate for the KR test 
applied to MAR data. Consequently, future work 
should increase both the sample size ratio and 
percent of missing data beyond what was used in 
this study. 
 Last, recall that in the MAR missing 
data mechanism the missing data pattern on one 
variable is related to or dependent on another 
variable in the model but not to the variable 
itself. Therefore, one question that can be asked 
is how does the KR test statistic perform with 
different degrees of dependence? So another 
condition that can be investigated in future work 
is different degrees of dependence for the MAR 
condition. 
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