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Aligned Rank Tests As Robust Alternatives For Testing Interactions In  
Multiple Group Repeated Measures Designs With Heterogeneous Covariances 

 
                 Xiaosheng Lei                         Janet K. Holt                             T. Mark Beasley 
University of Alabama, Birmingham   Northern Illinois University    University of Alabama, Birmingham 
 
 
Data simulation was used to investigate whether tests performed on aligned ranks (Beasley, 2002) could 
be used as robust alternatives to parametric methods for testing a split-plot interaction with non-normal 
data and heterogeneous covariance matrices. Results indicated the aligned rank method do not have any 
distinct advantage over parametric methods in this situation. 
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Introduction 
 
Repeated measures designs involving two or 
more independent groups are among the most 
common experimental designs (see Keselman & 
Algina, 1996).  The parametric technique used to 
analyze a design in which a repeated measures 
(i.e., within-subjects) factor is crossed with a 
between-subjects (i.e., independent grouping or 
treatment variable) factor is the split-plot 
analysis of variance (ANOVA).  It can be 
expressed with the following linear model: 
 

Yijk = µ** + βj + πi(j) + τk + βτjk + τπik(j) + ζijk ,   
                                     (1) 
 
where j is referenced to the J groups of the 
between-subjects factor, i is referenced to the nj 
subjects nested within the jth group, k is 
referenced to the K levels of the within-subjects  
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factor, ζijk is a random error vector, and N = Σnj 
is the total number of subjects. 

The interaction of the between-subjects 
and the repeated measures factors is often of 
most interest in many applications of the split-
plot design (Boik, 1993). It is tested with an F-
ratio, F(Y), that is distributed approximately as 
F[(J-1)(K-1),(N-J)(K-1)] under the null hypothesis:   
 

H0(JxK): βτjk = 0,  for all j and k.   (2) 
 

 When the ANOVA model in (1) 
involves a within-subjects factor with K > 2, it 
requires the pooled within-group covariance 
matrix to be spherical (Huynh & Feldt, 1970).  
For the univariate F(Y) from model (1), the 
sphericity assumption implies that the random 
error components, ζijk, are NID(0, σζ

2) for each 
of the JK cells.  Several procedures that correct 
F(Y) by an ε factor have been developed to 
adjust the degrees of freedom so that Fε(Y) will 
be a valid test of the interaction when there are 
departures from sphericity (e.g, Huynh, 1978).  

Another suggested approach for dealing 
with non-spherical data is the use of multivariate 
tests because they do not require sphericity of 
the covariance matrix. Multivariate test statistics 
assume multivariate normality for the K repeated 
measures. Because repeated measures designs 
can be analyzed with multivariate tests applied 
to (K-1) transformed variables (Marascuilo & 
Levin, 1983), the multivariate normality 
assumption applied to split-plot designs implies 
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that the random error components are 
independent and multivariate normal with means 
of zero and a common covariance matrix (i.e., 
NID[0(K-1), CKΣCK′], where 0(K-1) is a (K-1) 
vector of zeros, CK is a (K-1)xK normalized 
matrix of contrasts among the K repeated 
measures, and Σ is the KxK pooled within-group 
population covariance matrix.  In order to pool 
these covariance matrices across the J groups, 
however, there is the implicit assumption that 
they are equal:  
 

 Σ1 = Σ2 = . . . = Σj . . . = ΣJ .   (3) 
 

If these covariance matrices are not equal, 
multivariate statistics are known to be invalid in 
terms of inflated Type I error rates, especially 
with unequal sample sizes (Olson, 1974).   
 In practice, it is likely that both the 
sphericity and normality assumptions are 
violated. However, multivariate tests are prone 
to inflate Type I error rates with violations of the 
multivariate normality assumption, especially 
with a small sample size to number of repeated 
measures (N/K) ratio (e.g., Blair, Higgins, 
Karniski, & Kromrey, 1994). By contrast, 
univariate tests are generally conservative with 
data sampled from heavy-tailed distributions 
(Wilcox, 1993). Thus, as compared to their 
multivariate extensions, univariate tests are 
noted to be more robust to non-normality.  For 
example, simulation studies have indicated that 
Fε(Y) adequately corrects for non-sphericity 
(Huynh, 1978) and is reasonably robust to non-
normality (Keselman, Algina, Kowalchuck, & 
Wolfinger, 1999). However, there are many 
skewed, heavy-tailed distributions that can affect 
the performance of both univariate (e.g., Wilcox, 
1993; Zimmerman & Zumbo, 1993) and 
multivariate parametric tests (e.g., Blair et al., 
1994; Keselman, Carriere, & Lix, 1993). 
 Beasley (2002) suggested an aligned 
rank procedure as a robust alternative to testing 
the interaction in split-plot designs when the 
normality assumption is violated. A univariate 
approach was detailed for situations in which the 
sphericity assumption holds and multivariate 
approach was also suggested for the more 
common case of non-spherical covariance 
structures. These procedures demonstrated more 

statistical power than parametric procedures 
when error distributions were highly skewed; 
however, the issue of heterogeneous covariance 
matrices was not addressed.   
  Heterogeneity of variance is known to 
affect the Type I error rate of both univariate 
(Scheffé, 1957) and multivariate tests (Olson, 
1974). Two approaches for testing interaction 
effects in repeated measures designs when the 
homogeneity of covariance assumption does not 
hold are the approximate degrees of freedom (df) 
multivariate Welch-James (WJ) statistic 
(Johansen, 1980; Keselman, Algina, Wilcox, & 
Kowalchuk, 2000) and the Huynh (1978) 
Improved General Approximation (IGA) tests. 
Simulation studies have shown these two 
approaches to be generally robust. However, 
under some conditions of departures form 
normality, sphericity and variance homogeneity, 
the WJ and IGA procedures have been found to 
yield inflated Type I error rates (Algina & 
Keselman, 1998; Keselman, Kowalchuk, & 
Boik, 2000). The purpose of this study was to 
investigate whether Beasley’s (2002) aligned 
rank procedure could be used as a robust 
alternative to parametric procedures, when the 
normality and homogeneity of covariance 
assumptions were violated. Specifically, we 
investigated whether applying the WJ or IGA 
test to aligned ranks controlled Type I error rates 
when covariance matrices and sample sizes were 
unequal.  

Rank-based competitors relax the 
normality assumptions by assuming that the 
random error components are independent 
identically distributed (IID) random variables 
from some continuous distribution, not 
necessarily the normal (i.e., NID). The rank 
transform concept is appealing because from a 
univariate perspective all data points (Yijk) are 
observations of one dependent variable 
measured under K different conditions or time 
points. Because the rank transform is monotonic, 
it is commonly believed that the null hypothesis 
for the parametric test of interaction (i.e., F(Y)) 
from model (1) is similar to the null hypothesis 
for similar tests performed on ranks (e.g., F(R)), 
except statistical inferences concern mean ranks. 
However, when test statistics for interactions 
used in parametric analyses of factorial designs 
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are applied to monotone transformations (e.g., 
rank transformation), the resulting tests lack an 
invariance property (Headrick & Sawilowsky, 
2000). Specifically, the expected value of ranks 
for an observation in one cell will have a non-
linear dependence on the original means of the 
other cells. Thus, interaction and main effect 
relationships are not expected to be maintained 
after rank transformations are performed (e.g., 
Blair, Sawilowsky, & Higgins, 1987). 
 Given these problems encountered by 
interaction tests based on the rank transform 
when other non-null effects are present (e.g., 
Blair et al., 1987; Toothaker & Newman, 1994), 
one solution is to treat other effects as nuisance 
parameters and remove them from the scores 
before ranking and analysis. McSweeney (1967) 
developed a chi-square approximate statistic for 
testing the interaction using aligned ranks in the 
two-way layout. Hettmansperger (1984) 
developed a linear model approach in which the 
nuisance effects are removed by obtaining the 
residuals from a regression model. However, 
both of these alignment procedures were 
developed for the two-way between-subjects 
factorial design and thus are not desirable 
because they do not remove the subjects’ 
individual differences effect that is nested in the 
between-subjects factor, πi(j) from model (1).  
Higgins and Tashtoush (1994) proposed 
subtracting the subject effect and the repeated 
measures main effect and then ranking the 
aligned data from 1 to NK as follows: 
 

Rijk = Rank(Yijk - Y i j * - Y  *k  + Y **) ,  (4) 
 

where Y  *k  is the marginal mean of the kth 
measure averaged over all N subjects, Y i j * is 
the mean for the ith subject averaged across the K 
measures, and Y ** is the grand mean of all NK 
observations. Following Hettmansperger (1984), 
this alignment could also be accomplished by 
obtaining the residuals from a linear model in 
which Yijk is regressed on a set of (N–1) dummy 
codes that represent the subjects effect (πi(j)) 
and a set of (K-1) contrast codes that represent 
the repeated-measures main effect (τk) from 
model (1).  

 

Univariate Approach 
Consistent with Iman, Hora, and 

Conover (1984), Higgins and Tashtoush (1994) 
recommended applying the split-plot ANOVA 
from model (1) to the aligned ranks (F(R)), thus 
replacing Yijk with Rijk. It should be noted, 
however, that many of the properties of the 
original data transmit to ranks, including 
heterogeneity of variance (Zimmerman & 
Zumbo, 1993) and non-sphericity (Harwell & 
Serlin, 1994). Thus, when performing the split-
plot ANOVA F on aligned ranks, df-correction 
methods may be employed if the pooled 
covariance matrix is non-spherical (e.g., Fε(R)) 
or if the between-subjects covariance matrices 
are heterogeneous (e.g., IGA(R)).   

 
ε-adjusted F-test 

With increasing departures from 
sphericity, the ANOVA F-ratio demonstrates a 
general lack of robustness, resulting in 
increasingly liberal tests. Huynh and Feldt 
(1976) developed an ε-adjusted test for split-plot 
models. Lecoutre (1991) corrected this formula 
so that in split-plot designs   ̂ ε  is replaced with 
 ̃ ε : 

    ε = ( N  - J +1) ( K  - 1) ε -  2
( K - 1) ( N - J - ( K  - 1) ε)

  ,        (5) 

 
where  ̂ ε  is a sphericity parameter estimated 
from the sample pooled within-group covariance 
matrix (S), S = Σ[(nj-1)(N-J)]Sj. Sj is the sample 
covariance matrix for the jth group with 
elements:   
 

skk′  = ΣΣ(Rijk - Rjk )(Rijk - Rjk ′)/(nj-1) , 
 
and 
 

       
2

2

[tr( ]ˆ
( 1)[tr( ]

K K

K KK
ε

′
=

′−
C SC )

C SC )
 .       (6) 

 
The Lecoutre adjusted test for the interaction, 
Fε(Y), is distributed approximately as 
  

F[  ̃ ε (J-1)(K-1),   ̃ ε (N-J)(K-1)]. 
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Keselman et al. (1999) reported that Fε(Y) 
provided effective Type I error control for non-
normal data with non-spherical covariance 
structures; however, it demonstrated low power 
under several conditions. We will examine the 
statistical properties of calculating the ε̂  
estimate and the ε-adjusted F-test from the 
aligned ranks (Fε(R)). 

 
Improved General Approximate 
 Fε(Y) was designed to correct for non-
sphericity only. Jointly, the assumptions of 
sphericity and homoscedasticity in split-plot 
designs are referred to as multi-sample 
sphericity (Huynh, 1978). When covariance 
matrices are unequal across levels of the 
between-subjects factor and the design is 
unbalanced, the ε-adjusted F statistics as well as 
multivariate approaches are not robust for 
testing the interaction (Huynh, 1978; Keselman 
& Keselman, 1990).   
 In cases of arbitrary (i.e., non-spherical 
and/or heteroscedastic) covariance matrices, 
Huynh (1978) proposed the IGA procedure to 
estimate the dfs for the test statistics in the split-
plot design. In order to adjust the tests for 
violations of multi-sample sphericity, the IGA 
procedure uses 

[ , , ]h h
cF

α ′′
 as the critical value 

for the interaction test. The statistics for these 
critical values are defined in terms of the 
separate covariance matrices for each of the J 
groups, Sj.  Let S* denote a block diagonal 
matrix with Sj/nj as the jth diagonal block.  All 
off-diagonal blocks consist of a (K x K) matrix 
of zeros.  Also let  D = {I-(1)(1´)/K] where I is a 
K dimensional identity matrix and 1 is a (Kx1) 
vector of ones. Define G as a matrix constructed 
of J2(KxK) blocks.  The jth diagonal block of G 
is nj(1-nj/N)D and the off-diagonal blocks are (-
nj´ nj D/N).  For testing the split-plot interaction: 
 

  

1

( )tr( )

( 1) ( 1)tr( )
J

j j
j

N Jc
J n

=

−
=

− −∑
GS*

DS
               (7) 

and 
 

 h " = [t r ( GS * ) ]2

t r ( GS * )2
   .    (8) 

 
Algina and Oshima (1994) applied the Lecoutre 
correction to the IGA so that  
 

 h′′   = ( J -  1) [( N  -  J + 1) h "  -  2( J  -  1) ]

( N - J) ( J -  1)  -  h "
   (9) 

 
Let Aj = tr(CK Sj CK ` ), Bj = tr(DSj)2, and 
h = η/ δ, where  
 

          
2

1

( 1)
ˆ ( 2 )

( 1)( 2)

J
j

j j j
j j j

n
n A B

n n
η

=

−
= −

+ −∑
         

      1

( 1)( 1)
J J

j j j j
j j j

n n A A′ ′
′= ≠

+ − −∑∑
      (10) 

and
 

 

 2

1

( 1)ˆ [( 1) ]
( 1)( 2)

J
j

j j j
j j j

n
n B A

n n
δ

=

−
= − −

+ −∑ .  (11) 

 
We will examine the statistical properties of 
performing the Huyhn’s (1978) IGA test on the 
aligned ranks (IGA(R)). 
 
Multivariate Approach 
 Another suggested approach for dealing 
with non-spherical data is the use of multivariate 
tests because they do not require sphericity of 
the covariance matrix. However, multivariate 
tests have strict sample size requirements based 
on the number of repeated measures.  
Furthermore, the degrees-of-freedom (dfs) for 
the error term of the univariate F(Y) can be 
much larger than the error dfs (dfe) for the F 
approximate tests for the multivariate approach. 
Thus, the multivariate approach may have less 
statistical power in small sample situations 
(Keselman & Algina, 1996). 
 Agresti and Pendergast (1986) 
recommended a multivariate F-test based on 
Hotelling’s (1931) T2 for testing repeated 
measures effects in a single sample design. Their 
results showed that this multivariate test held the 
Type I error rate near the nominal alpha with 
departures from normality and sphericity. 
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Harwell and Serlin (1997) confirmed these 
results and also demonstrated that the Akritas 
and Arnold (1994) chi-square approximate test, 
which is functionally related to the Agresti-
Pendergast test, inflated Type I error rates with 
total sample sizes of N = 30 or less. However, 
these findings are limited to the single sample 
repeated measures design.  
 To extend the Agresti and Pendergast 
(1986) approach for testing the interaction in a 
split-plot design, define E as a K x K pooled-
sample cross-product error matrix for the 
aligned ranks (4) with elements: 
 
         ekk′  = ΣΣ(Rijk - Rjk )(Rijk - Rjk ′) .      (12) 
 
Let Ep be a JK x JK block diagonal matrix 
where the jth block of the main “diagonal” for Ep 
is defined as E/nj, and all other off-diagonal 
blocks are zero. That is, Ep is the Kronecker 
product of a diagonal matrix n* = diag{1/n1, 
1/n2, . . . , 1/nJ} and E, Ep= n*⊗E.  Also, define 
RJK = [R1 1 , R1 2 , . . . R1 K , R2 1 , . . . R2 K , . . . 
RJ1 , . . . RJK]′  as a JK-dimensional vector of 
mean ranks and CJK as a (J-1)(K-1) x JK 
contrast matrix that represents the interaction.  
In general, CJK can be defined as CJK = 
CJ⊗CK, where CJ is a (J-1)xJ contrast matrix 
for the between-subjects effect and CK is a (K-
1)xK contrast matrix for the repeated measures 
effect. 
 Based on Agresti and Pendergast 
(1986), the distribution of the statistic,  
 
 H(R)=(CJKRJK)′(CJK EpC′JK)-1(CJKRJK) (13) 
 
multiplied by (N-1), should approximate a χ2 
distribution with df = (J-1)(K-1) asymptotically.  
It should be noted that H(R) is the Hotelling-
Lawley trace for the interaction effect from a 
multivariate profile analysis performed on the 
Rank Transformed scores. Consistent with 
Agresti and Pendergast (1986), transforming H 
to an F-test may better control Type I error rates 
as opposed to comparing (N-1)H(R) to a chi-
square distribution with df = (J-1)(K-1), 
especially with smaller sample sizes (Harwell & 

Serlin, 1997).  Based on Hotelling (1951), H(R) 
(13) is transformed to an F approximation 
statistic by:  
 

  FH(R) = [2(sn+1)/(s2(2m+s+1))]H(R) ,    (14) 
 

where s = min[(J-1),(K-1)], m = [(|K-J|-1)/2], 
and n = [(N-J-K)/2].  This F approximation has 
numerator dfs of dfh = [s(2m+s+1)] = [(J-1)(K-
1)] and denominator dfs of dfe = [2(sn+1)].  
Alternatively, a researcher could obtain a critical 
value for H(R) (13) from the sampling 
distribution of the Hotelling-Lawley trace using 
the s, m, and n parameters.   
 Keselman et al. (1993) suggested the use 
of the Welch-James test (Johansen, 1980) test 
for unbalanced within-subjects designs when 
covariance matrices were heterogeneous. The 
test statistic uses the same quadratic form as 
(13); however, separate covariance matrices are 
used:  
 
WJ(R)=(CJKRJK)′(CJKS*C′JK)-1(CJKRJK) (15) 
 
where, S* is a JK x JK block diagonal matrix 
where the jth block of the main “diagonal” is 
defined as Sj/nj, and all other off-diagonal 
blocks are zero, S*= n*⊗ S.  The WJ(R)/c is 
distributed approximately as F[f1, f2] with f1 = 
(J-1)(K-1), f2 = f1 (f1+2)/3A, c = f1 + 2A – 6A/( 
f1+2) and  
 

A = 2

1

1 [tr{ ( }2
J

K K K j
j=

′ ′∑ SC C SC )C Q               

2{tr( ( ) }]/( 1)K K K j jn′ ′+ −SC C SC )C Q . 
 
The Qj matrix is a JK x JK block diagonal 
matrix corresponding to the jth group. The (s,t)th 
block of Qj is IK if s=t=j and 0 otherwise. 
 Olson (1974) showed that the Pillai-
Bartlett trace (V) was more robust to violations 
to the normality and homogeneity of covariance 
assumptions. Applied to the aligned ranks it is 
computed as: 
 
V(R) = (CJKRJK)′(CJKTC′JK)-1(CJKRJK)   (16) 
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where, T is the Total sum of Squares matrix 
with elements defined as: 
  
             tkk′  = ΣΣ(Rijk - *kR )(Rijk - *kR ′) , 
  
and *kR  is the aligned rank mean for the kth 
measure for all J groups combined.  V(R) (16) is 
transformed to an F approximation statistic by: 
  

 FV(R) = [(2n+s+1)/(2m+s+1)][V/(s-V)] .    (17) 
 

This F approximation has numerator dfs of dfh = 
[s(2m+s+1)] = [(J-1)(K-1)] and denominator dfs 
of dfe= [s(2n+s+1)]. Again, a researcher could 
obtain a critical value for V (16) from the 
sampling distribution of the Pillai-Bartlett trace 
using the s, m, and n parameters. 

For aligned ranks, the major purpose of 
the alignment process (4) is to remove the 
nuisance effects (i.e., main effects) so that test 
statistics will be sensitive to the effect of interest 
(i.e., interaction). The alignment process simply 
removes the mean values for the nuisance main 
effects, thus involving linear transformations of 
the data; however, the aligned ranks are a 
monotone transformation of the aligned data.  
Therefore, the aligned ranks (Rijk) are 
placeholders for the percentiles of the original 
data (Yijk) with the nuisance location parameters 
removed.  In either case, there is no guarantee 
that test statistics performed on Rijk will reflect 
differences in location parameters without 
additional assumptions.  
 For the univariate test to be valid, under 
the null hypothesis in (2), not only are all J 
groups expected to have identical error 
distributions, but the error distributions for the K 
repeated measures are also expected to be 
identically distributed: NID(0, σζ

2) for all j and k.  
Similar to this sphericity assumption for 
univariate parametric tests, a rank-based version 
simply does not require normal error 
distributions. Thus, for rank-based tests, if the 
univariate assumption that all JK cells have 
identically shaped error distributions with a 
common variance (i.e., IID[0,σζ

2] for all j and k) 
is tenable, then statistically significant values for 
test statistics performed on the aligned ranks (4) 

implies that the interaction is due to shifts in the 
location parameters (Lehmann, 1998). To 
illustrate the shift model for the univariate 
approach to the split-plot design, define the null 
hypothesis as: 
 
H0(JxK): G1(Y1 - 1∆1) = G2(Y2 - 1∆2) = . . .  

  = Gj(Yj - 1∆j) = . . . = GJ(YJ - 1∆J)     (18) 
 

where Gj(Yj) is the K-dimensional distribution 
function of the original scores for the jth group, 
Yj is the NxK data matrix for the jth group, ∆j = 
[δj1 δj2 . . . δjk  . . . δjK] is a 1xK vector of 
location parameters for the jth group, and 1 is an 
Nx1 vector of ones (Agresti & Pendergast, 1986, 
p. 1418). By requiring the univariate IID[0,σζ

2] 
assumption, if (18) is true then a statistically 
significant test statistic (i.e., F(R)) implies that 
the interaction is due to shifts in location 
parameters, a result conceptually similar to a 
rejection of the parametric null hypothesis in (2). 
 To illustrate the shift model for the 
multivariate approach to the split-plot design, 
define the null hypothesis as: 
 
H0(JxK): G1(Y1k - δ1k) = G2(Y2k - δ2k) = . . .  
= Gj(Yjk - δjk) = . . . = GJ(YJk - δJk) ,      (19) 

        
  for k = 1, . . . K . 
 
Gj(Yjk) is the one-dimensional distribution 
function of the kth repeated measure for the jth 
group, Yjk is the Nx1 data matrix for the jth 
group on the kth measure and δjk is a scalar 
location parameter for the jkth cell. This is 
similar to the NID[0(K-1),CKΣCK′] assumption for 
multivariate parametric tests except normal error 
distributions are not required.  Under the 
multivariate model assumption that the random 
error vectors are IID[0(K-1),CKΣCK′] across the J 
groups, if (19) is true then a statistically 
significant multivariate test statistic performed 
on Rijk implies that the interaction is due to 
shifts in location parameters. Again, this is a 
result conceptually similar to a rejection of the 
parametric null hypothesis in (2) and thus tests 
of shift parameter models (18 or 19) could be 
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used as robust alternatives to parametric 
procedures for testing interactions.  
 Note that the null hypotheses (18) and 
(19) are equivalent in terms of location 
parameters. If (18) is true so is (19); however, if 
(19) is true, it does not imply that (18) is true. 
Likewise, a false (18) does not imply a false 
(19). These distinctions are important because in 
order to test a null hypothesis of shifts in 
location parameters analogous to the null 
hypothesis in (2), the univariate null model for 
ranks (18) requires an assumption that the data 
for all JK cells are sampled from identically 
shaped distributions with a common variance.  
By contrast, the multivariate null model for 
ranks (19) only requires an assumption that the 
error distributions for each of the K repeated 
measures are identical for each of the J groups; 
however, there is no assumption that the error 
distributions for all K repeated measures are 
identically distributed. Thus, the relationship 
between the multivariate approach to analyzing 
aligned ranks and the F-ratio performed on 
aligned ranks is analogous to the relationship of 
the multivariate approach to repeated measures 
designs and the univariate approach that requires 
the sphericity assumption (Agresti & 
Pendergast, 1986). 
 Strictly speaking, if the assumption in 
(3) does not hold (i.e., the covariance matrices 
are heterogeneous), then neither the univariate 
(i.e., IID[0, σζ

2] for all j and k) nor multivariate  
IID[0(K-1),CKΣCK′] assumptions hold. The IGA 
test, Welch-James statistic, and the Pillai trace 
criterion have been shown to be generally robust 
to departures from homogeneous covariance 
asumption (3) for testing interaction among 
location parameters when normality holds. Thus, 
we investigated the use of the IGA, Welch-
James, and Pillai tests applied to aligned ranks 
(4) as a robust alternative to testing interactions 
among location parameters (i.e., shift models 18 
and 19) when assumptions of normality, 
sphericity, and homogeneous covariance 
matrices (3) do not hold.  
 

Methodology 
 

A 3 (sample size: N = 30, 90, and 150) x 3 
(balanced, conservative unbalanced, and liberal 
unbalanced samples) x 2 (covariance structure: 

spherical and non-spherical) x 3 (shape of error 
distribution: normal, double exponential, and 
exponential) factorial design was employed for 
this simulation study. For each of these 
conditions, 10,000 replications were generated 
using SAS/IML 8.2 (SAS Institute, 2001).  
Comparisons were made among procedures for 
testing the interaction effect in a J=3 x K=4 
split-plot design at the α=0.05 significance level.  
For the aligned ranks (Rijk), the following nine 
statistics were calculated:  (a) the conventional 
F-test; (b) the Lecoutre (1991) ε-adjusted F; (c) 
the IGA(R); (d) H(R) (13) using a critical value 
from the Hotelling-Lawley trace distribution, (e) 
the F approximate test for H(R) (14); (f) the 
WJ(R) test (15), (g) V(R) (16) using a critical 
value from the Pillai-Bartlett trace distribution, 
and (h) the F approximate test for V(R) (17). 
   For a J=3 x K=4 split-plot design, the 
parameters for both the Hotelling-Lawley trace 
and Pillai-Bartlett trace distribution are s = 2, m 
= 0, n = 11.5 for N = 30, n = 41.5 for N = 90, 
and n = 71.5 for N = 150.  The α=.05 critical 
values for H are 0.587, 0.156, and 0.089 for N = 
30, 90 and 150, respectively. The α=.05 critical 
values for V are 0.407, 0.139, 0.086 for N = 30, 
90, and 150, respectively. 
 The N = 30 condition was chosen 
because it has been used in other simulation 
studies (e.g., Agresti & Pendergast, 1986; Blair 
et al., 1987). Also, Harwell and Serlin (1997) 
reported that for a single sample, repeated 
measures design the multivariate F approximate 
test of rank transformed scores inflated Type I 
error rates with a total sample size of N = 30. 
For an unbalanced sample size, we used n = {5, 
10, 15} for the “conservative” or positive 
pairing and the reverse for the “liberal” or 
negative pairing. For an unbalanced sample size 
with N=90 and N=150, we used n = {15, 30, 45} 
and n = {25, 50, 75}, respectively, for the 
“conservative” or positive pairings and the 
reverse for the “liberal” or negative pairings. 
 The double exponential distribution was 
chosen as a condition where the errors were 
symmetric but heavy-tailed with skewness and 
kurtosis values of γ1=0 and γ2=3, respectively.  
The exponential distribution was selected as a 
condition where the errors were skewed (γ1=2) 
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and extremely heavy-tailed (γ2=6). Wilcox 
(1993) has noted that heavy-tailed distributions 
are common in practice and tend to inflate 
variances which in turn reduces power. In the 
case of empirical alpha rates, heavy-tailed 
distributions are likely to lead to Type I error 
rates that are below the nominal alpha. Micceri 
(1989) reported that 30.9% of the data from 
educational and psychological research had 
asymmetry as extreme as that of the exponential 
distribution. Furthermore, the exponential 
distribution condition is similar to the lognormal 
distribution (γ1=1.75; γ2=5.90) used in other 
simulation studies (e.g., Algina & Keselman, 
1998; Algina & Oshima, 1994; Keselman et al., 
1993). Moreover, it is representative of skewed, 
heavy-tailed distributions found in experimental 
psychology, most notably reaction time data 
(Zumbo & Coulombe, 1997). 

Using the SAS/IML RANNOR function, 
a (nj) by (K=4) matrix of normally distributed 
random variates with zero means and unit 
variances (Xj) was generated for each of the J=3 
groups. A covariance matrix Σj was 
subsequently imposed on the Xj scores by 
deriving a KxK matrix of principal component 
coefficients, F, from the pre-specified 
covariance matrix (Σj) and pre-multiplying it by 
the transpose of Xj to create a data matrix Yj that 
simulates Σj :  

  
  Yj´ = F Xj´        (20) 

 
(Beasley, 1994; Kaiser & Dickman, 1962).   
 In the first condition, all population 
correlations between measures (i.e., off-diagonal 
elements of Σj) were ρ = 0.60. This condition 
yielded results for a spherical covariance 
structure (ε = 1) in which case the univariate F-
tests should not inflate Type I error rates with 
homogeneous covariance matrices.  In the 
second condition, covariance structures with ε = 
0.64 were imposed. The pairwise 
intercorrelations were ρ12 and ρ34 = 0.70 with 
all other population correlations equal to 0.30.  
These values were taken from Headrick and 
Sawilowsky (1999) and represent a realistic 
situation in which the sphericity assumption is 

violated because a measure taken at time point 
k=1 is more correlated with a measure taken at 
time k=2 than it is with measures taken later in 
the experiment (i.e., time points k=3 and 4).  
Likewise, measures taken at time points k=3 and 
4 were more correlated with each other than 
with previous measurements. 
 Two conditions of error non-normality 
were simulated: exponential and double 
exponential. To simulate the error distributions 
for both non-normal conditions, intermediate 
population correlation values were derived (see 
Headrick & Sawilowsky, 1999) for each of the 
three covariance structure conditions described 
above. First, the random normal variates (Xj) 
were generated.  Then, a matrix of principal 
component coefficients, F, was derived from the 
intermediate values for the pre-specified 
correlation matrix. Subsequently, covariance 
structures with the intermediate values were 
imposed using (20). Then, data transformations 
using an extended Fleishman (1978) power 
method were performed (Headrick & 
Sawilowsky, 1999).   
 This process yielded data with zero 
means, unit variances, and the expected 
covariance structure (Σj) after the non-linear 
transformations were performed to make these 
values non-normal. Thus, these values were 
transformed so that the variances and shapes of 
each of the K error components were the same.  
This transformation process was also completed 
for each of the J=3 groups so that there were no 
between-group differences in variance or shape. 
Thus, under conditions in which the covariance 
matrices were homogeneous and spherical, the 
random error components (ζijk) were IID(0, σζ

2) 
for each of the JK cells, which permitted an 
investigation of the test statistics as robust 
alternative tests of interaction in terms of a 
univariate shift model for location parameters 
(18). Under conditions in which the covariance 
structures were homogeneous but not spherical, 
however, only the less restrictive multivariate 
assumption (IID[0(K-1),CKΣCK′]) was valid, thus 
creating a violation of the assumptions for the 
univariate parametric F-tests.   

To impose heterogeneous variances, the 
second group (j=2) was multiplied by 3 and 
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the third group (j=3) was multiplied by 5 , 
thus yielding a Σ1 = 3Σ2 = 5Σ3 ratio. This 
variance ratio has been used in several other 
simulation studies (e.g., Keselman, et al., 2000). 
A repeated measures main effect pattern 
resulting in no interaction was imposed (Blair et 
al., 1987, p. 1143) after multiplication to 
increase variance was completed.  Specifically 
for group 1, a vector of constants, c1 = [0 0 1 0], 
was added to each observation for the K=4 
repeated measures. For group 2, c2 = [-.5 -.5 .5 -
.5]. For group 3, c3 = [-1 -1 0 -1].     

When covariance matrices were not 
homogeneous then both univariate and 
multivariate IID assumptions were violated, and 
thus, we investigated whether tests performed on 
aligned ranks (4) can be used as robust 
alternatives to testing interactions among 
location parameters under this extreme violation 
of the shift model assumptions.  

 
Results 

 
For all tables, F(R) refers to the univariate 
ANOVA F-test, Fε(R) refers to the Lecoutre 
(1991) ε-adjusted F, IGA(R) refers to the 
Improved General Approximate, H(R) refers to 
testing the Hotelling-Lawley trace (13) with a 
critical value from its referent distribution, 
FH(R) refers to the F approximation (14), WJ(R) 
refers to the Welch-James test (15), V(R) refers 
to testing the Pillai-Bartlett trace (13) with a 
critical value from its referent distribution, 
FH(R) refers to the F approximation (14), WJ(R) 
refers to the Welch-James test (15), V(R) refers 
to testing the Pillai-Bartlett trace (13) with a 
critical value from its referent distribution, and 
FV(R) refers to the F approximation (18). The 
subscript R indicates that the tests were 
performed on the aligned ranks (Rijk). The 
results for the condition in which the K=4 
repeated measures were equicorrelated and thus 
spherical are labeled as ε = 1.00 and ε = 0.64 
refers to the non-spherical condition. 
 
  

For this study, tests that demonstrated a 
Type I error rate lower than 0.05 were 
considered conservative but acceptable, while 
those with rates that were significantly above the 
nominal alpha were considered unacceptably 
liberal. Given α=0.05 and 10,000 replications, a 
simulated estimate has a standard error of 
0.0022. Thus, for empirical estimates of Type I 
error rates, any rejection rate two standard errors 
above 0.05 (i.e., 0.0544) was considered 
significantly liberal. This is consistent with 
Bradley’s (1978) criterion of non-robustness in 
which the empirical Type I error rate should 
never exceed 1.1α. Likewise, any rejection rate 
below 0.0456 was considered significantly 
below the nominal alpha (i.e., conservative). 
 Tables 1, 2, and 3 show the rejection 
rates for the eight tests under conditions of 
heterogeneous covariance matrices. It is 
apparent that, for the conditions simulated in this 
study, none of the tests adequately controlled the 
Type I error rate when assumption (3) did not 
hold. As expected, most tests, with the exception 
of IGA(R) and WJ(R), produced rejections rates 
well above the nominal alpha with a liberal 
sample size-covariance pairing. 
 Also as expected, rejection rates for 
most tests were significantly below the nominal 
alpha with a conservative sample size-
covariance pairing. The IGA(R) and WJ(R) were 
the best at controlling the Type I error rate. That 
is, these two procedures had rejection rates that 
were closest to the nominal alpha but were 
nevertheless unacceptably liberal under many 
conditions. Rejection rates for IGA(R) were 
similar for both sample sizes of N=30 and 90. 
By contrast, rejection rates for WJ(R) became 
less liberal with an increase in sample size from 
N=30 to 90. Therefore, WJ(R) was more 
sensitive to smaller sample sizes. A larger 
sample size of N=150 was used to investigate 
whether the IGA(R) and WJ(R) tests would 
eventually yield Type I error rates near the 
nominal alpha. Although these rejection rates 
reported in Table 3 are closer to α=0.05, these 
values were consistently around 6 to 7.5% 
rejection. 
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Conclusion 
 

One reason to use tests based on aligned ranks is 
that they have demonstrated superior power for 
detecting interactions in split-plot designs when 
error distributions are identically skewed with a 
common variance (Beasley, 2002). However, 
heterogeneous covariance matrices violate both 
the univariate (i.e., IID[0, σζ

2] for all j and k) and 
multivariate IID[0(K-1),CKΣCK′] assumptions. 
Results indicated that although the WJ(R) and 
IGA(R) produced relatively stable rejection rates 
across sample size – covariance pairing 
conditions, both tests yielded rejection rates 
significantly above the nominal alpha. However,  
WJ(R) required a much larger sample size 
(N=150) to produce rejection rates consistently 
around 6 to 7.5%. Perhaps, additional df 
correction could be applied, but it must be 
considered that the conditions imposed in this 
simulation study are rather extreme violations of 
the IID assumptions. Furthermore, for sample 
sizes this large the Type I error rates for the 
Welch-James test performed on the original non- 
normal (WJ(Y)) are as close to the nominal alpha 
(Keselman et al., 2000) as the error rates for the 
Welch-James test performed on the aligned 
ranks (WJ(R); see Table 3). Moreover, for larger 
sample sizes the expected power advantage of 
WJ(R) over WJ(Y) is likely to be negligible, 
except for extremely small interaction effects. 
Thus, when covariance matrices are drastically 
unequal, it appears that aligned rank procedures 
cannot be used as robust alternatives to testing 
interaction among location parameters (i.e., shift 
models 18 and 19).  Therefore, issues 
concerning the interpretation of rank-based tests 
are of concern.   

Multivariate procedures performed on 
aligned ranks test a null hypothesis of 
distributional equivalence across the J groups 
for each of the K measures (Beasley, 2002). 

 
 
 
 
 
 
 

However, situations where distributional 
equivalence does not hold but location 
parameters are identical only occur in symmetric 
distributions (Vargha & Delaney, 1998). Hence 
the null hypothesis being tested with asymmetric 
distributions and heterogeneous variances with 
rank data becomes one of location and variance 
differences. In other words, imposing the 
situation of unequal variances violates the 
restrictive assumption of the shift model 
(Lehmann, 1998) and explains the inflated Type 
I error rates that occur in the F(R) results. The 
effects of distributional nonequivalence are 
manifested in the Type I error rates of the other 
rank statistics tested in this study, including the 
Welch-James, the IGA, and the Pillai trace. 
 Therefore, WJ and IGA, as well as other 
tests, performed on the aligned ranks cannot be 
used as robust alternatives to testing the 
interaction in a split-plot design when 
assumption (3) does not hold. That is, when 
covariance matrices are heterogeneous, tests 
performed on the aligned ranks will detect 
between-group distributional differences to 
some extent, and thus, a statistically significant 
result cannot be attributed solely to differences 
among location parameters. 
 This is important because there are 
situations where the interaction null hypothesis 
in (19) would be rejected and the researcher 
might assume it was due to differences in 
location parameters when in actuality the 
rejection resulted from other between-group 
distributional (i.e., variance, shape) differences 
(Agresti & Pendergast, 1986; Beasley, 2002; 
Serlin & Harwell, 2001; Vargha & Delaney, 
1998). For this reason, we do not recommend 
the Welch-James, the IGA, or the Pillai trace as 
tests of interaction among location parameters if 
covariance heterogeneity is suspected. 
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Table 2.  Empirical Type I Error Rates (α=.05) for the Interaction Tests in the Presence of a 
Repeated Measures Main Effect (c = .50) with a Σ1 = 3Σ2 = 5Σ3 ratio and N=90. 
 

n1   n2   n3 Normal Double Exponential Exponential 
30 30 30B ε = 1.00 ε = 0.64 ε = 1.00 ε = 0.64 ε = 1.00 ε = 0.64 
F(R) .0748  .0981  .0734  .1015  .0797  .0982  
Fε(R) .0743  .0744  .0732  .0746  .0786  .0737  

IGA(R) 
.0692  .0694  .0676  .0688  .0730  .0690  

H(R) .0766  .0736  .0724  .0731  .0761  .0751  
FH(R) .0803  .0788  .0766  .0761  .0806  .0797  
WJ(R) .0776  .0725  .0776  .0755  .0826  .0823  
V(R) .0787  .0770  .0746  .0741  .0785  .0776  
FV(R) .0766  .0744  .0724  .0710  .0767  .0751  
15 30 45C ε = 1.00 ε = 0.64 ε = 1.00 ε = 0.64 ε = 1.00 ε = 0.64 
F(R) .0263  .0473  .0300  .0521  .0335  .0541  
Fε(R) .0260  .0323  .0299  .0366  .0333  .0375  

IGA(R) 
.0601  .0602  .0644  .0649  .0647  .0623  

H(R) .0266  .0255  .0290  .0287  .0332  .0331  
FH(R) .0298  .0273  .0314  .0310  .0345  .0355  
WJ(R) .0713  .0727  .0783  .0823  .0875  .0842  
V(R) .0275  .0253  .0291  .0295  .0335  .0338  
FV(R) .0263  .0245  .0286  .0285  .0320  .0327  
45 30 15L ε = 1.00 ε = 0.64 ε = 1.00 ε = 0.64 ε = 1.00 ε = 0.64 
F(R) .1441  .1518  .1374  .1460  .1259  .1483  
Fε(R) .1433  .1204  .1373  .1138  .1245  .1154  

IGA(R) 
.0731  .0712  .0691  .0667  .0667  .0711  

H(R) .1382  .1370  .1366  .1307  .1197  .1270  
FH(R) .1444  .1434  .1428  .1368  .1261  .1346  
WJ(R) .0805  .0754  .0782  .0710  .0740  .0763  
V(R) .1414  .1397  .1402  .1346  .1244  .1307  
FV(R) .1389  .1359  .1360  .1314  .1221  .1284   
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