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Two Methods To Estimate Homogenous Markov Processes

Ricardo Ocana-Rilola
Escuela Andaluza de Salud Publica 

Granada (Spain)

Multi-state Markov processes have been introduced recently in Health Sciences in order to study disease history events. 
This sort of model have some advantages respect to traditional survival analysis, therefore they are an important line of 
research into stochastic processes applied to Epidemiology. However these types of models increase the complexity of 
analysis, even for simpler processes, and standard software is limited. In this paper, two methods for fitting homogene­
ous Markov models are proposed and compared.
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Introduction

Statistical models such Kaplan-Meier1, proportional haz­
ards2, or competing risks3 are used in survival analysis to 
study the distribution of the time elapsed between two 
events. An example would be the diagnosis date of a dis­
ease and the date of death of the patient. More recently, 
stochastic processes, and in particular Markov processes,4 
have been introduced to analyze problems such as this.5 
With this sort of model it is possible to analyze jointly the 
evolution of the patients through different states of their 
disease, obtaining a complete and detailed study on dis­
ease history. They are designated multistate models or 
multistate stochastic processes.

Aalen5 and Andersen and Borgan6 7 showed that 
survival analysis can be treated as a particular type of two- 
state Markov process where the transition intensity from 
the transient state live to the absorbent dead is the hazard 
function of the variable survival time. Similarly, compet­
ing risks models can be described as a stochastic process 
with a transient state live and several absorbing states, cor­
responding to the different causes of death. The advantage 
of including traditional survival analysis under the frame­
work of Markov processes resides in the possibility of 
studying the detailed evolution of the patients through dif­
ferent states or stages before death, even when the exact 
transition time occurs is not known.8,9

Markov processes have been used in to study 
AIDS,10,11,12 use of contraceptives13 and cancer.9 These stud­
ies employed different methodologies depending on the
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particular conditions of each case. In practice, it is often 
useful to use a homogeneous Markov process in order to 
model disease history data because generally they are easier 
to interpret. Moreover, the assumption that the process is 
homogeneous simplifies the methods used to fit the model.

In this context, the main objective of this paper is 
to propose and to compare two methods, both of which are 
computationally tractable, to estimate homogeneous 
Markov models in continuous time. To illustrate the meth­
ods described in the following sections, breast cancer data 
from Granada (South of Spain), are considered. These data 
are continuous with one absorbing state.

Breast Cancer Data
Breast cancer in Granada is the most frequent 

cancer in woman.14 It represents 19% of diagnosed cases 
of cancer, and 17% of the cancer deaths in women in the 
Granada province. The data originated from the Granada 
Cancer Registry population base, developed by the 
Andalusian School of Public Health and integrated in the 
European Network of Cancer Registries.

The study was carried out with 241 women with 
breast cancer diagnosed in 1985/86, who received radical 
treatment and had a period free of symptoms. The follow- 
up ended on 31 of December 1990. Approximately 5% of 
the cases were lost in follow-up. The 5-years Kaplan-Meier 
survival rate was 58% for these patients, with the 95% 
confidence interval between 52% and 65%.

The data are represented by a three-state Markov 
model with two transient states and one absorbing. These 
states are state 1 = “With Symptoms”, state 2 = “Without 
Symptoms”, and state 3 = “Death”. The transitions are rep­
resented in Figure 1.

Each patient was observed on the date of the di­
agnosis, the date of the last treatment, the date of the re­
currence, where the date of the recurrence was defined as 
“the first attendance with evidence of relapse”15, and date 
of death. Thus, it is considered that at the start of follow- 
up all the patients are with symptoms (state 1), when the 
last treatment has been completed the patient is without
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Figure 1. A three-state Markov process for analysing breast cancer

symptoms (state 2), on the date of the recurrence the pa­
tient is again considered with symptoms (state 1) and so 
on. Finally the patients who die are considered to be in 
state 3 at that date. Using these definitions, the observa­
tion is continuous (i.e., information on exact transition times 
between transient states is available).

Probabilities and Transition Intensities in a Markov Proc­
ess

Let E = {1,...,m} be a state space consisting of 
m disease states in which patients make independent tran­
sitions. Let X(t) be the state occupied by an individual at 
time t for 0 ≤ t and {X(t): t ≥ 0} a collection of random 
variables that define a stochastic process. In this context, 
if the process is Markov, we denote pij(s,t) the additional 

probability that the process shall be in state j  at time t given 
that it was at time s in state i, for 0 ≤ s ≤ t.

Homogeneous processes are the simplest form of 
Markov models. In this case, assuming a stationary proc­
ess, the transition probabilities satisfy 
pij(s,s + u)= pij(0,u) = pij(u) f0 r u,s ≥  0 , with 

p(u) = (pij(u)) the mxm transition probability matrix.
The transition intensities for the process, qij, are

defined by

pij(h) = qijh + o(h) i  ≠ j i,j ϵE (1)

1-pij(h) = qih + o(h) i ϵE (2)

where o(h) is an infinitesimal that satisfies o(h)/h 

→  0when h → 0 and Q = (qij) is the m × m  transition 

intensity matrix satisfying qi = - q ii = Σj≠1qij for i,j ϵ E .

The relationship between P(u) and Q is

Let T; be the random variable “time elapsed in 

the state / e  E 99. It is known that this variable is distrib­
uted according to an exponential law with parameter q,

and average ^ 1 =  ~ .
q/

Likelihood Function
Suppose that for each subject c in a cohort (c=l,
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..., N), mc transitions between states has been observed at 
times

Wc0 < Wc1 < ... < Wcmc

If mc transitions has been observed for each subject (c=1, 

N), then there is a set of N(mc + 1) times in which there 
was a jump from a state to another. These times can be 
ordered to form a partition of the time given by N(mc + 1) 
cut points in which at least a transition between states has 
been observed. Let p be such a partition with
p = {S1,...,SN(mc + 1)}. To simplify the notation we denote r

=  N(mc +  1)-1 , so p = {S1,...,Sr + 1} .

There are r + 1 cut points that form r intervals 
with length Uk = Sk+1-Sk, k = 1,...,r. If nijk denotes the 
number of patients who were in the state i in the time Sk 
and are in the state j  at the instant Sk+1, the likelihood func­
tion is

tion
pij(uk)  =  q ijuk i,j ϵ E (5)

pii(uk) = 1 - qiuk k ϵ E  (6)

can be used for all k=l,...,r. Usually, qij = exp(βij) can be 
taken in order to avoid problems in the range of the esti­
mates upon implementing the algorithm in a computer. The 
likelihood function given in (4) simplifies to

Two Methods to Estimate Intensity Matrix
This section shows how matrix Q can be estimated 

when homogeneous Markov processes in continuous time 
are used. Assume that transition intensities depend on a 
beta vector of unknown parameters with components 
β1,...,βb. That is, qij = qij(β), i, j  e E, but to simplify the
notation write p,y(u) and q/y instead of p/y(u,p) and q,y(p).

Kalbfleisch and Lawless Method
By using p partition, the likelihood function in 

(4) can be seen as an extension of the methodology of 
Kalbfleisch and Lawless8 when observations are continu­
ous and transitions between states are observed at differ­
ent times. In order to obtain the Maximum Likelihood Es­
timate (MLE) for (3 , the first and second partial deriva­
tives of ln(L) are required. The Kalfleisch and Lawless 
method uses a quasi-Newton algorithm for this purpose in 
which it is necessary to compute complex calculations for 
every interval of the partition. ( See Appendix.)

Approximate Method
To estimate matrix Q, an algorithm is proposed 

that consists of modeling transition probabilities with a sim­
ple function that depends on the transition intensities. From 
expressions (1) and (2), in a homogeneous Markov proc­
ess the transition probabilities can be approximated by
piJ (h)=qijhand P jj(h )=  1 — qjh when h - > 0 -  If there is a 
sufficiently fine p partition composed of very small inter­
vals, uk, whose lengths tend to be zero, the approxima­

t in g  this approximation.
The MLE for p can be obtained using traditional 

partial derivatives of ln(L). In this case, these partial de­
rivatives are calculated easily. The algorithm for fitting the 
model is iterative and it will asymptotically approach the 
best fitting values of the parameters. The convergence cri­
terion, g , is the maximum relative change in all the pa­
rameters. The estimated transition probability matrix is

p(u) = exp(Qu) where Q = (q,y)= (exp(pj.

Selection of an Initial Estimate
As mentioned above, the algorithms for fitting the 

model are iterative, and will asymptotically approach the 
best solution. However, a serious problem in any algorithm
is the selection of an appropriate initial value p(°). The 
calculations used to obtain an estimate of p are complex, 
particularly in the Kalbfleisch and Lawless method, and 
the time invested in each iteration is high. A poor choice of 
the initial value will increase enormously the time neces­
sary to obtain a final estimate and even could cause the 
algorithm does not to converge.

An initial estimate of the transition intensities 
based on the observed data can be obtained as follows:
From expression (1), in each interval u k it is obtained an 
approximation of the form

If the value p,y(ok) is estimated , an initial estimate

will be obtained for the transition intensity in each one of 
the intervals given by

where k = . Because the transition intensities are
independent of the time, consider the means
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and the initial vector β(0) = (log(qij(0))i,j', i ≠ j.

Figure 2 shows this method based on the breast cancer 
data mentioned above, where the dashed line represents

the initial values, q12(0), q13(0),q21(0), q23(0), given respectively
by 0.37, 0.24, 0.10, 0.02. The circles represent the values
given by (6), where Uk units are years.

which can not be controlled. Thus, the entry q23 is in­
cluded in the intensity matrix.

After building the P  partition, 35 different inter­
vals were found between 0.002 and 0.260 years. The mean 
was 0.071 years. The 25th, 50th, and 75th, percentiles were 
0.026, 0.049 and 0.075, respectively. These results show a 
sufficiently fine partition where most intervals (75%) ex­
tended less than 0.075 years.

Table 1 shows a comparative analysis of the 
Kalbfleisch-Lawless vs the approximate method. The esti­
mates obtained are very similar. The criterion of conver­
gence was ϵ  = 0.00001 and the implementation in a com­
puter was accomplished through functions written for S- 
PLUS.'6

Figure 3 shows the difference between estimated 
transition probability matrices from each method for each 
interval of length u. These differences have been calcu­

lated using Frror = |p/(u)-P//(u|2? where P,(u) and P„(u) are

the estimated transition probability matrices from 
Kalbfleisch-Lawless and Approximate method respectively.

Figure 2. Initial estimation for transition intensities. Dashed lines is the mean of all transition inten­
sities, used as initial value in iterative methods

Two Methods for Breast Cancer Analysis
To analyze the breast cancer data, consider the 

transition intensity matrix

The transition 2-3 corresponds to death from other causes
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Table 1. Homogeneous Markov Models for Breast Cancer Data.

Kalbfleisch-Lawless 

Transition intensities Estimate Standard error Estimate

Approximate

Standard error

q_{12} 1.1653 0.0049 1.0738 0.0044

q_{13} 0.2929 0.0024 0.2729 0.0023

q_{2i} 0.1235 0.0008 0.1175 0.0008

q_{23> 0.0150 0.0003 0.0153 0.0003

If in the breast cancer study, the approximate algorithm is 
used instead of the method of Kalbfleisch and Lawless, 
the maximum error is 0.036. The estimated intensity ma­
trix is similar by using either algorithm. However the ap­
proximate method is less costly computationally.

Mean sojourn times in each state i = 1,2 were
obtained from J/q,, that is, 0.69 years (8.2 months) and 
7.22 years, respectively, for the mean sojourn time with 
and without symptoms.

Figures 4 shows the estimated transition prob­
abilities between states, obtained from P(u)= exp(qu). The 
5-years probability of death from with symptoms and 
without symptoms state was 0.30 and 0.15 respectively.

The 5-years survival probability was 0.55. Note that the 5- 
years Kaplan-Meier survival rate was 58% for these pa­
tients.

Conclusion

Multistate Markov models offer some advantages on tra­
ditional survival models for studying disease history events. 
Using this sort of model, it is possible to estimate the pro­
portions of patients who shall be in each disease state in 
the future. Therefore, highly relevant information for health 
planning services can be obtained.

In this article, the partition of time used was for

o
LU

m ax(Error)=0.0363
CO

CM

o
o

T T TT T

20 40 60 80 1 0 0

u

Figure 3. Differences among the transiton probability matrices obtained from Kalbfleisch-Lawless algorithm 

and Approximation method. These differences have been calculated using Error = ||p,(u)- P«(u)|| , 0<u<100
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Figure 4. Estimated transition probabilities from with symptoms state to without symptoms state 
and death states

continuous observations. In this situation, the methodol­
ogy proposed by Kalbfleisch and Lawless has been ex­
tended, and an approximate method was proposed in or­
der to estimate intensity matrix. If the intervals in which 
patients are observed are sufficiently small, the Kalbfleisch- 
Lawless algorithm can be simplified using the approximate 
method, obtaining similar MLEs.

In survival studies, the use of models that incor­
porate covariates permits further analysis of patients’ sur­
vival. When multistate models are used, it is also possible 
to study the effect of covariates on different transitions 
between states in patients disease history. Some authors 
have worked on the introduction of covariates in multi­
state processes and particularly in homogeneous Markov 
processes.817 However they mention the increased com­
plexity of analysis in this sort of model, where an addi­
tional problem is the shortage of standard software.

In spite of these problems, the introduction of 
covariates in stochastic processes are required to explain 
the effect of these factors on disease history events. In this 
case, a homogeneous Markov model with covariates would 
be an interesting option. An advantage of the approximate 
method proposed in this paper is the ease with which 
covariates can be incorporated in the likelihood function, 
therefore the study of prognostic factors is not difficult. 
Interesting results for breast cancer survival and breast

cancer recurrence using the approximate method with TNM 
variables have been found.18

Computing approximate MLEs replaces the 
intensity transition matrix with a first order Taylor series. 
In this article, an empirical comparison showed that, in 
some cases, it can be a good approximation. Similar con­
clusions in other applications, so the question of when the 
Taylor expansion is liable to produce accurate approxima­
tions and on developing a diagnosis for examining the ac­
curacy of the approximation is of interest. The results ob­
tained, therefore, could be an interesting finding in apply­
ing Markov processes to Health Sciences and Epidemiol­
ogy.
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Appendix

We obtain then a vector S(f3) = (Sh(/3))bxJ of dimension b and a b x b squared matrix j(/3) = (Jhr(/3))jbxjb. However 

this method can be simplified using a quasi-Newton method that employs, instead of Jhr(ft), the information matrix 

M(|3) = E[- j(f3)] with elements

Summary of the Kalbfleisch and Lawless Method
The Newton-Raphson method is usually applied in order to obtain MLE for P . In this case, first and second

partial derivatives of ln(L) with respect to each unknown parameter Pb(h = l,...,b) are required, that is
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where ni.k = ΣjϵEnijk .

If β(0) is an initial estimate of β we can built the sequence

β(n+1) = β(n)  + M(β(n))-1S(β(n)) 

which converges to the MLE for (3 , assuming that M(β(n)) is nonsingular in each iteration.
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