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A Modification Of The EM Algorithm To Estimate An Andersen-Gill Gamma 
Frailty Model For Multivariate Failure Time Data 

 
Maria Antònia Barceló                          Marc Saez 

Research Group on Statistics, Applied Economics and Health (GRECS) 
University of Girona, Spain 

 
 
A modification of the Andersen-Gill gamma shared frailty model is presented. The variance of the frailty 
is directly modeled by means of a generalized linear model, the EM algorithm is modified in order to 
simultaneously estimate a semiparametric model for the failure times and a model for the variance of the 
frailty. A simulation study is conducted to evaluate the performance of the proposed algorithm (EMB 
algorithm) and compared with other methods, a marginal model, and a conditional model. Multivariate 
data from a nosocomial infection study is used to illustrate the methods. The EMB fit turned out to be 
better than the fit obtained from a marginal model or from a conditional model. The EMB provided the 
best fit (being the least over-dispersed and having the highest AIC and the highest pseudo-R square) and 
estimated the parameters most efficiently. The proposed method is able to capture and to take into 
account unobservable random effects in semiparametric models. 
 
Key words: Frailty,   marginal  and  conditional models,   generalized linear models,   EM,   nosocomial 
                    infections 
 
 

Introduction 
 
Patients admitted to intensive care units (ICU) 
run a high risk of contracting a nosocomial 
infection due not only to the susceptibility 
associated with the severity of their conditions, 
but also to medical procedures that the ICUs use.  
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Barceló and Saez (2001) analysed the factors 
that determine the occurrence of nosocomial 
infections in the ICU of a tertiary-level hospital 
in Girona, Spain, during the second quarter of 
1999 (March-June, 1999). The authors tried to 
determine which factors, those associated to 
patients (such as their immunodeficiency) or 
those related to ICU (such as invasive medical 
procedures or the inappropriate use of 
antimicrobial agents), were  the most relevant in 
the explanation of the occurrence of nosocomial 
infections in the ICU. They were interested in 
analysing the factors that determine both the 
occurrence of an infection and also the time 
leading up to the onset of the infection.  
 In that context, the standard approach to 
obtain adjusted risk (hazard) factors for the 
infection would be the Cox model (Cox, 1972). 
The problem was that a patient could have 
several episodes of infection during her/his ICU 
stay. As a consequence the data set had multiple 
events per subject, i.e. recurrent events. As is 
well known the main problem of the Cox model 
with multivariate data is that the observations 
are not independent, implying, among other 
things, the violation of the proportionality 
hypothesis. It is also known that standard Cox 
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models ignore such dependence, leading to 
estimates that are inefficient and biased.  

The Andersen-Gill approximation (AG) 
to the Cox model (Andersen & Gill, 1982; 
Andersen et al., 1993) overcomes, in part, this 
problem. The AG model is a counting process 
approach in which each patient is represented as 
a set of rows with time intervals of (entry time, 
first infection], (first infection, second 
infection], … , (nth infection, last follow-up]. 
Each row is treated as a different patient and, 
therefore, risk proportionality is not violated. 
However, the underlying hypothesis in AG, 
called the hypothesis of independent increments, 
is very restrictive and may be untenable. Under 
this hypothesis the multiple observations of an 
individual are independent, although conditioned 
on the explanatory variables. Therefore, a 
suitable alternative is needed. 

In choosing a model for the time to 
recurrent infection one needs to consider the 
biological process of disease. It was very likely 
that after experiencing the first infection, the risk 
(hazard) of subsequent infections would 
increase. This could happen if each infection 
permanently compromised the ability of the 
immune system to combat subsequent infection. 
If this were the case one would use a model 
containing separate strata for each episode of 
infection (Therneau & Hamilton, 1997). In this 
sense, the first choice was the Prentice, Williams 
and Peterson (PWP) model (Prentice, Williams 
& Peterson, 1981). The PWP is a marginal 
model with respect to the estimation of the 
parameters, which treats the dependence 
between event times as a nuisance to control for, 
without explicitly specifying models for this 
dependence. 

Conditional methods, in contrast, 
explicitly model the dependence between 
recurrences. Amongst them, frailty models 
(Clayton & Cuzick, 1985) have become the most 
popular for analysing multivariate survival data. 
In those models the dependence between the 
events is accounted for by the introduction of 
frailties or unobservable random effects into the 
marginal hazards (Klein, 1992). The frailties are 
shared among recurrences from the same 
individual. Maximum likelihood estimation in 
the AG shared frailty model (with gamma-
distributed frailties) is usually performed using 

the EM algorithm as suggested by Gill (1985) 
and further discussed by Nielsen et al. (1992) 
and Klein (1992).  

In particular, the estimation of the model 
using the EM algorithm is carried out by fixing 
through the variance of the frailty until its 
convergence. Then, the algorithm iterates 
between the E and the M steps. In the E step the 
frailties are replaced in the complete data log 
likelihood by their conditional expectation. The 
M step consists of computing the Nelson-Aalen 
estimator as if the frailties had been observed. 
This procedure is repeated for other arbitrary 
values of the variance obtaining in each case the 
log incomplete data profile likelihood as a 
function of the variance. Finally, the estimate of 
the variance is computed either numerically or 
graphically. The EM algorithm, however, could 
converge arbitrarily and slowly and, 
furthermore, the final estimate of the variance 
obviously depends on the initial choices for that 
parameter. 

Here, the directly modelling of the 
variance is proposed. In this sense, Clayton 
(1988) and Lindsey (1999) were followed. The 
former proposes the possibility of extending the 
EM algorithm by simultaneously estimating the 
variance of the frailty. Lindsey (1999) pointed 
out that “dispersion varying with the explanatory 
variables is surprisingly common” (Lindsey, 
1999, p. 2230) and suggests estimating a 
separate regression equation for the dispersion 
parameter. Besides the extension of the model, a 
modification of the EM algorithm is also 
proposed, which is called EMB, to 
simultaneously estimate such a two-equation 
model. 

An alternative to the frailty models can 
be found in the penalised likelihood models 
(Behrman et al.,1991; Therneau & Grambsch, 
1998). The idea is to use a penalty function for a 
constrained solution, equal to the log gamma 
density. The penalty function captures the local 
variability underlying the joint density of data. 
The problem is that such variability is in fact 
approaching two different things, frailty (false 
contagion) and serial correlation or dependence 
(true contagion). In addition, the choice of the 
shrinkage parameter used in the penalisation is a 
controversial question in survival analysis. 
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Methodology 
 
Suppose that there is a random sample of I 
individuals from an underlying group population 
and that each individual can have J observations. 
For this framework the most straightforward 
mathematical notation derives from the theory of 
counting processes (Fleming & Harrington, 
1991; Andersen et al., 1993).  

Let i (I = 1,…,I) denote individual and 
(i,j) denote the jth observation in the ith 
individual. For each observation (i,j), where i = 
1,…, I and j = 1,…, J, let Nij(t) be an observed 
multivariate counting process. Nij(t) is the 
cumulative number of events observed for the i-
th subject. A process Yij(t) is further observed, 
indicating whether individual i is observed to be 
at risk for experiencing an jth event at time t-. 
Finally covariates Xij(t) (possibly time-
dependent) are observed (Andersen, 1992). The 
multivariate counting process Nij(t) has an 
intensity process given by, 
 
 

 
where )(0 tλ denotes an unknown baseline 
intensity; and β  is a vector of unknown 
parameters. 
 
The Prentice, Williams and Peterson (PWP) 
model 
 Although the PWP is a marginal model, 
it is conditional in relation to the construction of 
the risk set. In this sense, the model allows the 
baseline risk to vary between recurrences, i.e. 

Jjoj ,...,1, =λ , 
 

 
 
Thus, it is actually an AG model with time 
dependent strata. That is to say, the risk set for 
the recurrence j, for instance, only contains those 
individuals who experienced j-1 recurrences. 
Such a strategy makes it possible to control 

dependence between the recurrences, stratifying 
according to them. 

Although estimates obtained from PWP 
models are consistent (Prentice, Williams & 
Peterson, 1981), the dependence between 
observations remains in fact uncontrolled. As a 
consequence, standard errors are biased (usually 
overstated). For this reason we propose to 
robustly estimate the standard errors of the 
parameters. In particular we chose a grouping 
jackknife estimate (Therneau & Hamilton, 
1997). The idea is to compute the i change in the 
estimates of the parameters with all the 
observations for the i-th subject removed from 
data set. This will result in a matrix D, each row 
i of which will be an estimate of the leverage, 
i.e., average change, of the i-th subject. The 
matrix D’D will approximate the grouped 
jackknife estimate of variance and will be an 
asymptotically unbiased estimate of the variance 
of the robust parameter estimates (Therneau & 
Hamilton, 1997; Lin & Wei, 1989). 
 
The AG Gamma frailty model.  

Following Nielsen et al. (1992), we 
formulate now an intensity process λ satisfying,  
 

 
where iϖ  denotes subject specific frailties 
independently drawn from a gamma( ην , ) 
distribution. Note that here we also allow the 
baseline hazards to vary between recurrences, 
i.e. ojα . 
 The gamma density of the frailties is  
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Vaupel et al., 1979; Nielsen et al., 1992; Klein, 
1992). 

Let Z be a nxq design matrix that 
describes how the frailties applied to individuals 
subjects, ωϖ iZ

i e= . It is also assumed that the 
frailty consists of independent clusters of 
observations, i.e. Zij = 1 iff recurrence j belongs 
to individual i. Let us define 
 

 
where iδ  is an indicator equal to one in a failure 
time case and zero otherwise; 0Λ  is the 
cumulative baseline hazard.  

Di is the number of events in the i-th 
individual and ieEE ii

ω*=  is the expected 
number of events in the individual based on the 
covariates and the model. 

The full log likelihood, when ω  is 
observed, is then,   

 

            (4) 
 
It can be shown (Therneau & Grambsch, 

1998) that as a function of any single iω , [4] is 
proportional to, 
 

 
                                                                         
therefore, conditional on the data, the iϖ  are 
distributed as gamma variates with shape 

iD+
θ
1

 and scale *1
iE+

θ
. In this sense, we can 

write, 

 
 
where y denotes the observed data and the tilde 
denotes either provisional or definitive 
estimates. 
 The maximisation of the log likelihood 
(4) can be done using the EM algorithm. 
Therneau and Grambsch (1998) suggested how 
to use only the quantities returned by an 
ordinary Cox model program. Starting with the 
case of a fixed variance, the quantities Di and Mi 
= Di-Ei can be obtained by summing over the 
input data and the returned martingale residuals, 
respectively. *

iE  is obtained from Ei and the 
current estimates of iω̂  (E-step). The next 
estimates of iω̂  are obtained from equation (5) 
and, finally, iijZ ω̂  is used as a prior in the next 
invocation of the Cox model (M-step). 

One problem with the EM algorithm is 
that variance estimates for the estimated 
parameters are not immediately provided (Louis, 
1982). It was suggested by Gill (1989) and 
further discussed by Nielsen et al. (1992) and, 
above all, Andersen et al. (1997), that a non 
parametric information calculation was likely to 
provide consistent variance estimators. A 
simpler possibility lies in using the robust 
estimate of the covariance matrix of the 
estimated parameters described above (Therneau 
& Hamilton, 1997). 
 
The Penalised Cox model 
 As mentioned above, Behrman et al. 
(1991) proposed to alternatively use the 
penalised log likelihood, 
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density of the data. The smoothing parameter α, 
which controls the balance between smoothness 
and goodness of fit, must be typically chosen by 
cross-validation. 
 Therneau and Grambsch (1998) 
suggested using the log gamma density as the 
penalty function for the constrained solution,   
 

⎟
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Therefore, in our case,  
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where PLL denotes the penalised log likelihood 
and by Cox PL we mean the numerical value 
returned as the partial likelihood by a standard 
Cox model program for the given values of β 
and ω, ω having been entered as an offset term. 

Therneau and Grambsch (1998) pointed 
out that for any fixed value of the variance of the 
frailty the EM algorithm and the constrained 
minimisation of the penalised likelihood have 
the same solution. 
 
A modification of the EM algorithm for the 
estimation of the AG gamma frailty model: The 
EMB algorithm. 

In both the AG gamma frailty and the 
penalised Cox models, frailty is assumed to be 
constant between individuals and also within 
each individual, i.e. between recurrences. As an 
alternative, and following Wassell and 
Moeschberger (1993), we propose to directly 
model the variance of the frailty, 
 

     
'

(7)
c Xijeij
γ

θ
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where γ  is a vector of parameters, Xij denotes 
the covariates for individual i . 

To model the variance we propose to 
use a generalised linear model, GLM (Nelder & 

Pregibon, 1987; Nelder & Lee, 1991, 1996; 
Nelder, 1998). In particular, 
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The link function is simply a transformation of 
(7). For the variance function we have chosen 
the deviance transformation. This is because it is 
close to the optimal normalising transform for 
the GLM distributions irrespective of the 
distribution chosen for the link (Pierce & 
Schafer, 1986). 

Note that we allow the frailty to differ 
between different individuals. It is also possible 
that the frailty may vary through the recurrences. 
In this sense we have introduced flexibility into 
the gamma frailty model. 

In the estimation of the model we 
propose a modification of the EM algorithm, 
which we called EMB. In particular a new step 
(step 1) is introduced in the algorithm, 
 
0.- From the provisional value of 1~

=θ , 
estimate a standard AG model and compute iθ

~
. 

1.- Estimate a model for the variance and obtain 
the fitted values of iθ

~
. 

2.- Use the values of the variance computed in 
step 1 to fit the AG gamma frailty model using 
the standard EM algorithm. 
3.- Compute iθ

~
 and return to step 1. 

 
The EMB algorithm is iterated until 

convergence. The complete EMB algorithm is 
shown in the appendix.  

An obvious starting value for θ~  would 
be 0, i.e. no frailty, the problem is that in this 
case the frailty remains fixed at zero in the 
update formula. For this reason, we have 
preferred here 1~

=θ . 
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Results 
 
A simulation study was conducted to evaluate 
the performance of the proposed EMB algorithm 
and to compare it with other methods, the PWP 
model and the penalized Cox model in 
particular. 

Multivariate failure times were 
generated from an AG gamma frailty model with 
the following hazard function, where i denoted 
individuals and j denoted repeated measures, i.e. 
recurrences, within the same individual. In 
particular, we considered I = 100 individuals and 
J = 2 recurrences. 

 
We simulated two Weibull baseline hazards, 
 

1) 5.0)
23.011.0

(5.0)(0
−+

= tiXiX
etjλ  

 
2)  5.0)

32.023.011.0
(5.0)(0
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= tijXiXiX
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Two fixed variables (X1, X2) and one time-
varying explanatory variable (X3) were first 
simulated, although they were maintained fixed 
throughout the simulation. In particular, 
X1∼binomial (1, p = 0.6), X2∼normal (32.639, 
12.967) and X3∼binomial (4, p = 0.25). 
 Let )exp(ωϖ =  follow a gamma 
distribution with parameters ν  and η . Without 
loss of generality, we will assume that ην = , 
i.e. that the subject-specific iϖ  has mean one 
and variance iθν =)1( , where θ  dictates the 
heterogeneity across individuals. Summing up, 

iϖ ∼ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

ii θθ
1,1

. Furthermore, we will assume 

that the random effect consists of independent 
clusters of observations, i.e. Zij = 1 if recurrence 
j belongs to individual i, and zero otherwise. 

From (8), we simulated two cases:  Case 
A. Var ( iϖ ) fixed over time ( 1=ijθ ); Case B.  

Var ( iϖ ) time-dependent 
( ijij XID 325.01.05.0 ++=θ ), where 

ID=1,2,...,100. Finally, we compute 
iijijt ϖλ= . 

Simulated failure times for units (i,j) 
were independently censored by three uniform 
variables across all datasets to achieve overall 
censoring levels of 95%, 80% and 40%. 
Summing up, 500 datasets were simulated for 
twelve possible designs, 1A, 2A, 1B and 2B 
with 95%, 80% and 40% censoring for each one.  

Three methods were used to fit the 
simulated data sets, PWP, penalised Cox (PC) 
and our proposed modification (EMB). In all 
cases baseline hazards were allow to vary 
between recurrences. Only in the penalised Cox 
case the variances of the parameters   were not 
robustly estimated. Furthermore, in this latter 
case, the design matrix for the frailty was set 
equal to a diagonal matrix, each element of the 
diagonal corresponding to a different individual. 

In Table 1, we show the results of the 
simulation. It was expected that failure to model 
existing frailty would result in biased estimates 
of parameters and reduced efficiency (Wassell & 
Moeschberger, 1993). In fact, it is possible to 
see a different pattern for the estimates of the 
parameters and for the estimates of the standard 
errors. With respect to the parameter estimation, 
PC and EMB fits were more similar to one 
another than to the PWP fit. Lower levels of 
censoring provided the most similar results for 
PC and EMB. 

Note also that these two methods were 
more similar in the case of non-constant 
variance of frailty than in the constant. With 
respect to the estimates of the standard errors 
EMB seemed to provide the most efficient 
estimates. In fact, the PC fits were always more 
inefficient than the rest, even in relation to the 
model that did not explicitly model the frailty, 
i.e. PWP. Again, EMB was more efficient in 
lower censoring and in non-constant variance of 
frailty cases. In addition, although the S-plus 
macro for the estimation of the PC gave an 
estimation of what it called the variance of the 
frailty (Therneau & Grambsch, 1998), we are 
not sure that it was in fact such variance. In this 
sense, note the discrepancies with the EMB 
results of the estimation of such variance. 

ωβλλ ijij ZX
jij ett += )()( 0
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Table 1. Results of the simulation. 500 data-sets of four possible designs (constant frailty and fixed 
covariates 1A; constant frailty and time-varying covariates 1B; non-constant frailties and fixed covariates 
2A; non-constant frailties and time-varying covariates 2B). 100 individuals and two recurrences. Three 
levels of censoring (60%, 80% and 95%). 
 

 n=100, censoring = 60%  
       
 PWP1A PWP1B PC1A PC1B EMB1A EMB1B 

Beta1 0,00984 0.06272 0.09305 0.16261 0.15457 0.17256 
Beta2 0,01491 0.03160 0.01490 0.03278 0.01081 0.02789 

s.e. Beta1 0,18456 0.19418 0.19418 0.19832 0.18281 0.18649 
s.e Beta2 0,00672 0.00691 0.00726 0.00745 0.00652 0.00668 

Var frailty   0.00626 0.04133 0.92705 0.91868 
       
 PWP1A PWP1B PC1A PC1B EMB1A EMB1B 

Beta1 0.00130 0.07330 0.00865 0.17326 0.06499 0.13064 
Beta2 0.01378 0.03408 0.01367 0.03474 0.04596 0.03441 
Beta3 0.01799 0.02471 0.01783 0.02530 0.06693 0.06126 

s.e. Beta1 0.18670 0.19338 0.01946 0.19689 0.19305 0.18157 
s.e. Beta2 0.00671 0.00691 0.00726 0.00739 0.00678 0.00663 
s.e. Beta3 0.01063 0.01050 0.01073 0.01081 0.01060 0.01007 

Var Frailty     0.00455 0.02825 0.95122 0.91837 
 n=100. censoring = 80%  
       
 PWP1A PWP1B PC1A PC1B EMB1A EMB1B 

Beta1 0.08614 0.14580 0.11143 0.20428 0.10390 0.16684 
Beta2 0.00553 0.02439 0.00597 0.03056 0.00400 0.05279 

s.e. Beta1 0.34517 0.35449 0.36676 0.39950 0.30799 0.29621 
s.e Beta2 0.01443 0.01435 0.01327 0.01415 0.01262 0.01217 

Var frailty   0.29096 0.69528 0.90931 0.91146 
       
 PWP1A PWP1B PC1A PC1B EMB1A EMB1B 

Beta1 0.07811 0.15113 0.10246 0.21342 0.09290 0.17243 
Beta2 0.00682 0.02737 0.00597 0.03428 0.00247 0.02815 
Beta3 -0.12416 -0.10825 -0.11837 -0.10280 -0.11970 -0.10655 

s.e. Beta1 0.34398 0.35390 0.36665 0.39631 0.30853 0.31750 
s.e. Beta2 0.01476 0.01479 0.01338 0.01414 0.01293 0.01273 
s.e. Beta3 0.01883 0.01854 0.02037 0.02143 0.01711 0.01691 

Var Frailty     0.29377 0.67242 0.90686 0.87601 
 n=100. censoring = 95%  
       
 PWP1A PWP1B PC1A PC1B EMB1A EMB1B 

Beta1 -0.48964 -0.37113 -0.49018 -0.37202 -0.50812 -0.62366 
Beta2 0.02062 0.04942 0.02063 0.04946 0.01756 0.11219 

s.e. Beta1 0.55103 0.54926 0.58883 0.57913 0.53947 0.53414 
s.e Beta2 0.01934 0.01936 0.02241 0.02228 0.01897 0.02875 

Var frailty   0.00449 0.00495 0.93732 0.93564 
       
 PWP1A PWP1B PC1A PC1B EMB1A EMB1B 

Beta1 -0.51248 -0.34955 -0.53836 -0.36148 -0.52390 -0.35898 
Beta2 0.02647 0.05148 0.02510 0.05211 0.02469 0.06804 
Beta3 0.50120 0.48832 0.52027 0.49929 0.50609 0.10052 

s.e. Beta1 0.57865 0.56923 0.61556 0.59845 0.56670 0.53548 
s.e. Beta2 0.01964 0.01918 0.02277 0.02226 0.01936 0.01810 
s.e. Beta3 0.02754 0.02750 0.03108 0.03038 0.02667 0.02822 

Var Frailty     0.16467 0.10965 0.92469 0.94274 
 
PWP denotes Prentice, Williams and Peterson model; PC denotes penalised Cox model and EMB the AG gamma 
frailty model fitted using the EMB algorithm. The variances of the parameters in the PWP and the EMB were 
robustly estimated. 
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Application to nosocomial infection in an 
intensive care unit study 

As mentioned above, in Barceló and 
Saez (2001) we tried to determine which factors, 
those associated to patients (intrinsic risk factors 
for the nosocomial infection, NI) or those related 
to the intensive care unit, ICU (extrinsic risk 
factors), were more relevant in the explanation 
of the occurrence of nosocomial infections in a 
tertiary-level hospital in Girona, Spain, during 
the second quarter of 1999. 

The dependent variable (episode of 
infection hereinafter) consisted of either the time 
from the admission to the ICU to the onset of the 
infection (originated by a micro-organism, 
bacteria or fungi) or the time between the onset 
and the end of the infection. It was possible for 
patients to be infected more than once during 
their ICU stay. In the definition of our dependent 
variable, only ICU nosocomial infections were 
considered. Community-acquired infections, 
infections from other hospitals and infections 
from other hospital areas were not included 
under this definition. The beginning of the study 
did not always coincide with the patients’ 
admission to the ICU, but with their admission 
in the hospital. Therefore, delayed entry was 
allowed. We also considered the possibility of 
(right) censoring because some patients would 
not get infected during their ICU stay.  

Following the medical literature 
possible risk factors considered were classified 
as either intrinsic or extrinsic risk factors for NI. 
The former contained those directly related to 
the patient, such as gender and age, as well as 
those originating outside the ICU, such as 
previous infections (either community-acquired, 
or from another hospital or from another hospital 
area), severity of disease at admission and 
urgent surgery. Extrinsic risk factors for NI 
considered were location, mechanical 
ventilation, catheterism (central venous 
intravascular and arterial), tracheotomy, probes 
(urinary and nasogastric) and antibiotic 
treatment (antimicrobial used, duration and 
dosage). The effect of extrinsic risk factors was 
evaluated using the days of exposure to such a 
risk factor in a particular patient. The exposure 
was limited to the days prior to the onset of 
infections. Further details on data, variables and 

additional results can be found in Barceló and 
Saez (2001). 

Results of the fit of the model by PWP, 
PC and EMB are shown in Table 2. PWP was 
used here for comparative purposes. In this 
regard, note in Figure 1 that deviance residuals 
were not symmetrically distributed around zero 
and, above all, did not present a constant 
dispersion. Furthermore, in Figure 2, we show 
the estimates of the variance of the frailty 
(computed as shown in [A1]). The variance was 
not fixed between or within individuals. Some 
explanatory variables could explain such 
variability. See for instance in Figure 3 the 
relationship between the variance and one 
intrinsic factor (community-acquired previous 
infection) and between the variance and an 
extrinsic factor (mechanical ventilation). 

In the implementation of the S-plus 
macro for fitting the PC, we used a design 
matrix consisting of independent clusters of 
observations, i.e., Zij = 1 if recurrence j belongs 
to individual i, and zero otherwise. With respect 
to EMB we needed to specify a model for the 
variance of the frailty (see equation (8)). We 
tried a forward stepwise strategy. We started 
with a single explanatory variable and included 
another one only if the AIC diminished. When 
we had a preliminary specification, and in order 
to check its robustness, a backward strategy with 
all the variables included was also tried. The 
final model for the variance is shown in Table 2. 

From Table 2 we can see that the best fit 
was obtained from the EMB. In this sense, 
compare the EMB and the PC fits. The 
overdispersion (47.9% in EMB and 71.6% in 
PC); the AIC (162.41 and 180.42, respectively) 
and the pseudo R-square (Nagelkirke, 1991) 
(0.529 and 0.442, respectively) were lower in 
the case of EMB. Furthermore, the estimates 
obtained using our proposed modification were 
the most efficient. Note, in addition, that the 
estimate of the variance of the frailty provided 
by the PC S-plus macro was close to zero, 
meaning that there was no frailty in the model. 
This result contradicted the variability shown in 
Figures 1 to 3. Note also the varying behaviour 
of the variance of the frailties in Figure 4 
(derived from the EMB fit). 
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Figure 1. Plot of the deviance residuals of the PWP model. 
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Figure 2. Plot of the estimate of the variance of the frailty. PWP model. 
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Figure 3. Plot of the estimate of the variance of the frailty vs. an intrinsic risk factor (community-acquired 
previous infection) and an extrinsic risk factor (mechanical ventilation). PWP model. 
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Table 2: Results of the estimation of the Prentice, Williams and Peterson, PWP; Penalised Cox and EMB models. 
PWP and EMB with robust estimation of the variance. 
 

 PWP Penalised Cox EMB 
 Hazard 

Rate lower .95 upper .95 Hazard 
Rate lower .95 upper .95 Hazard 

Rate lower .95 upper .95 

Intrinsic risk factors 
 

         

Gender (male) 0.631 0.222 1.788 0.631 0.133 2.999 0.578 0.221 1.512 
Age 1.009* 0.985 1.033 1.009* 0.981 1.037 1.009* 0.990 1.028 
Previous infections (non) 
  Community-acquired 
  Other infections 

 
4.56** 

0.56 

 
1.435 
0.201 

 
14.477 
1.557 

 
4.558* 

0.560 

 
0.954 
0.118 

 
21.772 
2.648 

 
6.923** 
0.418* 

 
2.578 
0.162 

 
18.594 
1.077 

CDC (stable) 
  Unstable intens. Care 
  Unstable shock 

 
54.468* 

219.967** 

 
0.786 
3.187 

 
3776.406 

15182.609 

 
8025.27** 

NA 

 
1740 
NA 

 
36968.77 

NA 

 
49.012** 

257.040** 

 
1.111 
5.997 

 
2162.135 
11017.03 

Urg.  surg.  (non) 0.668 0.258 1.731 0.668 0.221 2.021 0.579 0.268 1.251 
Extrinsic risk factors 
 

         

Location (rest of beds) 
  Bed 4 
  Bed 5, 10, 11 

 
2.255 
0.946 

 
0.545 
0.381 

 
9.340 
2.348 

 
2.255 
0.946 

 
0.346 
0.257 

 
14.707 
3.478 

 
2.247 
0.784 

 
0.621 
0.369 

 
8.135 
1.667 

Mechanical Vent. (non) 
    ≤ 3   days 
   4-10 days 
   >10  days 

 
0.011* 

61.929** 
129.534** 

 
0.000 
1.325 
4.005 

 
1.175 

2894.463 
4189.427 

 
NA 

64.406** 
134.714** 

 
NA 
1.35 
3.06 

 
NA 

3065.471 
5934.619 

 
0.006** 
59.981** 
98.713** 

 
0.000 
2.105 
4.260 

 
0.314 

1709.126 
2287.525 

Venous catheter (≤ 3d) 1.065 1.007 1.775 NA NA NA 1.082 1.011 1.822 
Arterial catheter (non) 
   > 0 days 

 
1.833 

 
0.579 

 
5.805 

 
1.833 

 
0.495 

 
6.782 

 
1.629 

 
0.638 

 
4.162 

Tracheotomy (non) 
   ≤ 6   days 
   > 6   days 

 
0.231 
0.351 

 
0.028 
0.072 

 
1.924 
1.705 

 
0.231 
0.351 

 
0.030 
0.057 

 
1.768 
2.171 

 
0.243* 
0.303* 

 
0.044 
0.075 

 
1.355 
1.224 

Urinary probe (non) 
   ≤ 4   days 
   5-12 days 
   > 12 days 

 
2.453 
6.355 
1.566 

 
0.018 
0.306 
0.079 

 
334.750 
132.032 
31.014 

 
2.453 
6.355 
1.566 

 
0.024 
0.137 
0.035 

 
251.814 
294.936 
70.518 

 
3.922 

7.942* 
1.998 

 
0.066 
0.630 
0.159 

 
231.811 
100.190 
25.104 

Nasogastric probe (non) 
   ≤ 9 days 
   > 9 days 

 
1.066 

0.133** 

 
0.310 
0.023 

 
3.660 
0.748 

 
1.066 

0.133** 

 
0.285 
0.027 

 
3.990 
0.649 

 
1.063 

0.129** 

 
0.377 
0.030 

 
3.000 
0.550 

Antibiotic treat. (non) 
   ≤ 7 days 
   > 7 days 

 
0.415 

0.038** 

 
0.112 
0.004 

 
1.539 
0.385 

 
0.415 

0.038** 

 
0.093 
0.005 

 
1.858 
0.327 

 
0.329** 
0.028** 

 
0.122 
0.004 

 
0.883 
0.216 

Antibiotic dose-DDD 1.035 0.948 1.129 1.035 0.972 1.101 1.037 0.982 1.096 
          
Deviance (degrees freedom) 130.427 (76) 130.422 (76) 112.4127 (76) 
Overdispersion 1.716144737 1.716078947 1.479114474 
AIC 180.427 180.422 162.4127 
Pseudo-R2 0.441886 0.441889 0.529338327 
Var frailty    5e-007 1.124881 
    
          
Model for the variance       β s.e.(β)  
Mechanical Vent. (non) 
    ≤ 3   days 
   4-10 days 
   >10  days 

       
0.051 
0.056 
0.086 

 
0.03602 
0.03617 
0.03210 

 

Tracheotomy (non) 
   ≤ 6   days 
   > 6   days 

       
0.008 
-0.006 

 
0.026 
0.023 

 

Urinary probe (non) 
   ≤ 4   days 
   5-12 days 
   > 12 days 

       
0.038 
-0.011 
-0.019 

 
0.045 
0.042 
0.046 

 

Nasogastric probe (non) 
   ≤ 9 days 
   > 9 days 

       
-0.0002 
-0.0059 

 
0.021 
0.021 
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Summarizing the results, both, intrinsic 

and extrinsic factors were predictors of NI. In 
this sense an intrinsic factor such as CDC 
classification (unstable patients) and an extrinsic 
one like mechanical ventilation (more than 3 
days) presented the highest hazard rates. For any 
type of infection all the (statistically significant) 
intrinsic variables were risk factors for NI. In 
decreasing order of importance we could 
mention CDC classification (unstable) and 
previous community-acquired infections. Most 
of the extrinsic factors were also risk factors. In 
this sense, and again in decreasing order of 
importance, we can list mechanical ventilation 
(more than 3 days), urinary probe (5-12 days), 
location (bed 4), the presence of an arterial 
catheter, and central venous catheter. Only three 
of the extrinsic factors were protective, presence 
of tracheotomy, nasogastric probe (more than 9 

 

 
 
 

days), and, in particular, antibiotic treatment 
(days of treatment). 

The interpretation of the model for the 
variance of the frailty is also worth while. Note 
that only extrinsic factors (mechanical 
ventilation, tracheotomy and probes, urinary and 
nasogastric) explained the variance of the frailty. 
In this sense, the sources of heterogeneity, both 
between and within individuals, could be 
attributed to the medical procedures that the 
ICUs use, whereas the effect of those factors 
related to the susceptibility of the patients could 
only be marginal. 
 

Conclusion 
 
Our purpose was to present a modification of the 
AG gamma frailty model. In particular we 
proposed to directly model the variance of the 

 
Figure 4. Plot of the estimate of the variance of the frailty. EMB model. 
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frailty by means of a GLM and also to modify 
the EM algorithm, using the EMB algorithm, in 
order to simultaneously estimate a 
semiparametric model for the failure times and a 
model for the variance of the frailty. 

In both the simulation and in the 
application to multivariate data from a 
nosocomial infection study, the EMB fit turned 
out to be better than the fit obtained from a 
marginal model (PWP) and from a conditional 
one (penalized Cox model). In this sense, the 
EMB provided the best fit (being the least 
overdispersed and having the highest AIC and 
the highest pseudo-R square) and estimated the 
parameters most efficiently. We think, therefore, 
that our proposed method is able to take into 
account and to estimate unobservable random 
effects in semiparametric models. 

Two shortcomings, however, should be 
mentioned. First, as in the rest of frailty models, 
we introduce frailties into the marginal hazards 
in order to explicitly model the dependence 
between recurrences. The problem is that 
frailties are in fact capturing two different, 
although related, sources of variation, that is 
heterogeneity (or false contagion) and serial 
dependence (or true contagion) (Aalen, 1994). 
The former, the original use of frailty, is a 
consequence of unobserved individual 
covariates that are not included in the study 
either because of practical circumstances or 
because they are not known to be risk factors. 
The latter is in fact a consequence of unobserved 
common covariates that are integrated out 
(Petersen, 1998).  

It seems, at any rate, that frailty models 
successfully capture heterogeneity but permit a 
considerable amount of non-controlled serial 
dependence. A possible but partial solution tried 
here is to stratify according to the recurrences, as 
in the PWP model, thus allowing the hazard to 
vary between them. The second shortcoming, 
also shared with the rest of frailty models, is the 
lack of methods with which to assess the 
goodness-of-fit of our method. At any rate, we 
are sure that these shortcomings deserve further 
research. 
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