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INVITED ARTICLE 
Within By Within ANOVA Based On Medians  

 

 
 
This article considers a J by K ANOVA design where all JK groups are dependent and where groups are to be 
compared based on medians. Two general approaches are considered. The first is based on an omnibus test for 
no main effects and no interactions and the other tests each member of a collection of relevant linear 
contrasts. Based on an earlier paper dealing with multiple comparisons, an obvious speculation is that a 
particular bootstrap method should be used. One of the main points here is that, in general, this is not the case 
for the problem at hand. The second main result is that, in terms of Type I errors, the second approach, where 
multiple hypotheses are tested based on relevant linear contrasts, performs about as well or better than the 
omnibus method, and in some cases it  offers a distinct advantage. 
 
Keywords: Repeated measures designs, robust methods, kernel density estimators, bootstrap methods,              

linear contrasts, multiple comparisons, familywise error rate 
 
 

Introduction 
 
Consider a J by K ANOVA design where all JK 
groups are dependent. Let jkθ (j =1,...J; k 

=1,...K) represent the (population) medians 
corresponding to these JK groups. This article is 
concerned with two strategies for dealing with 
main effects and interactions. The first is to 
perform an omnibus test for no main effects and 
no interactions by testing  
 
                   : 0,Ho Cθ =                           (1) 
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where θ  is a column vector containing the JK 
elements jkθ ,and C is an �  by JK matrix 

(having rank � ) that reflects the null hypothesis 
of interest. (The first K elements of θ are 

11 1, , Kθ θ… , the next K elements are 

21 2, , Kθ θ… , and so forth.) The second 

approach uses a collection of linear contrasts, 
rather than a single omnibus test, and now the 
goal is to control the probability of at least one 
Type I error. 

A search of the literature indicates that 
there are very few results on comparing the 
medians of dependent groups using a direct 
estimate of the medians of the marginal dis-
tributions, and there are no results for the 
situation at hand. In an earlier article (Wilcox, 
2004), two methods were considered for 
performing all pairwise comparisons among a 
collection of dependent groups. The first uses an 
estimate of the appropriate standard error 
stemming from the influence function of a single 
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order statistic. The second method uses the usual 
sample median in conjunction with a bootstrap 
estimate of the standard error. The bootstrap 
method performed quite well in simulations in 
terms of controlling the probability of at least 
one Type I error. 

Recently, Dawson, Schell, Rissling and 
Wilcox (2004) dealt with an applied study where 
a two-way ANOVA design was used with all JK 
groups dependent. An issue is whether the 
results in Wilcox (2004) extend to this two-way 
design. One of the main results here is that the 
answer is no. The other main result deals with 
the choice between an omnibus test versus 
performing multiple comparisons where each 
hypothesis corresponding to a collection of 
relevant linear contrasts is to be tested. It is 
found that simply ignoring the omnibus test, and 
performing the relevant multiple comparisons, 
has practical value. 
 
Some Preliminaries 

For convenience, momentarily consider 
a single random sample X1,...,Xn  and for any 

q, 0<q<1, suppose the qth quantile, xq, is 

estimated with ( )mX , where m=[qn+.5] and [.] is 

the greatest integer function. Then, ignoring an 
error term, which goes to zero as n → ∞ ,  

 

             ( )

1
( ),m q q iX x IF X

n
= + ∑               (2) 

where  

 

            

1
, if  

( )

( ) 0, if  
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⎪⎩

 

 

(Bahadur, 1966; also see Staudte & Sheather, 
1990). 

Now consider the situation where 
sampling is from a bivariate distribution. Let Xik 

(i=1,...,n; k=1, 2) be a random sample of n 

vectors. Let (1) ( )k n kX X≤ ⋅⋅⋅ ≤  be the 

observations associated with kth variable written 
in ascending order. Two estimates of the 
population median are relevant here. The first is  

 

                             ( )
ˆ ,k m kXθ =  

 

where again m=[.5n+.5], and the other is θ� j=Mk, 

the usual sample median based on X1k,...,Xnk . 

Although the focus is on estimating the 
median with q=.5, the results given here apply to 
any q, 0<q<1. Let fk be the marginal density of 

the kth variable and let  
 

2
1 1 1 2 2( 1) ( , ),q qV q P X x X x= − ≤ ≤  

          2 1 1 2 2( 1) ( , ),q qV q q P X x X x= − ≤ >  

          3 1 1 2 2( 1) ( , ),q qV q q P X x X x= − > ≤  

and  

          2
4 1 1 2 2( , ),q qV q P X x X x= > >  

 
where xq1 and xq2 are the qth quantiles 

corresponding to the first and second marginal 
distributions, respectively. Then for the general 
case where m=[qn+.5], a straightforward 
derivation based on equation (2) yields an 
expression for the covariance between ( )1mX  

and ( )2mX :  

 

                    2 1 2 3 4
12

1 1 2 2

.
( ) ( )q q

V V V V

nf x f x
τ + + +=                (3) 

 

Also, (2) yields a well-known expression for the 
squared standard error of ( )1mX , namely,  

 

                         2
11 2

1 1

1 (1 )
.

( )q

q q

n f x
τ −=  

 

Using (3) to estimate 2
12τ  requires an 

estimate of the marginal densities. Here, a 
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variation of an adaptive kernel density estimator 
is used (e.g., Silverman, 1986), which is based in 
part on an initial estimate obtained via a so-
called expected frequency curve (e.g., Wilcox, 
2005; cf. Davies & Kovac, 2004). To elaborate, 
let MADk be the median absolute deviation 

associated with the kth marginal distribution, 
which is the median of the values 

1| | ...,| |k k nk kX M X M− − . For some 

constant κ to be determined, the point x is said to 
be close to ikX  if  

 

                    | | .
.6745

k
ik

MAD
X x κ− ≤ ×  

 

Under normality, MADNk=MADk/.6745 

estimates the standard deviation, in which case x 
is close to Xik if x is within κ standard 

deviations of Xik. Let  

 
         ( ) { :| | }.k ik kN x i X x MADNκ= − ≤ ×  

 

That is, ( )kN x  indexes the set of all Xik values 

that are close to x. Then an initial estimate of 
( )kf x  is taken to be  

 

          ( )

1
( ) ,

2 kk i N x
k

f x I
MADNκ ∈= ∑�  

 

where I is the indicator function. Here, κ=.8 is 
used.  

The adaptive kernel density estimate is 
computed as follows. Let  

 

              
1

log log ig f X
n κ= ( )∑ �  

 

and  

 

                 ( ( ) / ) ,a
i k ikf X gλ −= �  

 

where a is a sensitivity parameter satisfying 
0≤a≤1. Based on comments by Silverman 
(1986), a=.5 is used. Then the adaptive kernel 
estimate of fk is taken to be  

 

       ( ){ }1 11
,i i

i

f x K h x X
n hκ λ

λ
− −1( ) = −∑�  

where  

23 1
( ) (1 ) / 5, | | 5

4 5
0, otherwise,

K t t t= − <

=  

is the Epanechnikov kernel, and following 
Silverman (1986, p. 47 – 48), the span is  

 

                    
1/5

1.06 ,
A

h
n

=  

 
                       A=min(s, IQR/1.34),  
 
and where s is the standard deviation and IQR is 
the interquartile range based on 1 ,...,k nkX X . 

Here, IQR is estimated via the ideal 
fourths. Let �=[(n/4)+(5/12)]. That is, � is 

(n/4)+(5/12) rounded down to the nearest 
integer. Let  

                           
5

4 12

n
h l= + − .  

 

Then the estimate of the .25 quantile is given by  

 
                     1 (1 )q h X hX( ) ( +1)= − + .

� �
      (4) 

Letting �
'=n-�+1, the estimate of the upper 

quartile, is  

 
              2 '(1 )q h X hX( ) ( −1)= − +

� �
          (5) 

and the estimate of the interquartile range is  

 
                          2 1.IQR q q= −  
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All that remains is estimating V1, V2, V3 

and V4. An estimate of V1 is obtained once an 

estimate of 1 1 2 2( , )q qP X x X x≤ ≤  is 

available. The obvious estimate of this last 
quantity, and the one used here, is the proportion 
of times these inequalities are true among the 
sample of observations. That is, let Ai12=1 if 

simultaneously 1 ( )1i mX X≤  and 2 ( )2i mX X≤ , 

otherwise Ai12=0. Then an estimate of V1 is 

simply  

 

                           12
ˆ

i
q

V
n

2

1
( −1)= Α .∑  

 
Estimates of V2, V3 and V4 are obtained 

in a similar manner. The resulting estimate of 
the covariance between ( )1mX  and ( )2mX  is 

labeled τ�
2
12. Of course, the squared standard 

error of ( )1mX  can be estimated in a similar 

fashion and is labeled τ�
2
11. 

An alternative approach is to use a 
bootstrap method, a possible appeal of which is 
that the usual sample median can be used when 
n is even. Generate a bootstrap sample by 
resampling with replacement n pairs of values 

from Xik yielding X
*
ik (i=1,...,n; k=1, 2). For 

fixed k, let M
*
k be the usual sample median 

based on the bootstrap sample and 
corresponding to the kth marginal distribution. 

Repeat this B times yielding M
*
bk, b=1,...,B. 

Then an estimate of the covariance between M1 

and M2 is  

 

    * *
12 1 1 2 2

1ˆ ( )( ),
1 i iM M M M

B
ξ = − −

− ∑
 

 

where            * ./k bkM M B=∑  

 

Methodology 
 
Now consider the more general case of a J by K 
design and suppose (1) is to be tested. Based on 
the results in the previous section, two test 
statistics are considered. The first estimates the 
population medians with a single order 
statistic, ( )mX , and the second uses the usual 

sample median, M. 
Let Xijk be a random sample of nj 

vectors of observations from the jth group 
( 1,..., ji n= ; j=1,...,J; k=1,...,K).  

Let ( )
ˆ

jk m jkXθ =  be the estimate of the 

median for the jth level of first factor and the kth 
level of the second. Then a test statistic for (1) 
can be developed along the lines used to derive 
the test statistic based on trimmed means, which 
is described in Wilcox (2003, section 11.9). 

For convenience, let '
11
ˆ ˆˆ ( ,..., )JKθ θΘ = . 

For fixed j, k and �, k≠�, let vjk� be the estimated 

covariance between θjk and θj�. That is, vjk� is 

computed in the same manner as τ�
2
12, only now 

use the data Xijk and jlXι , 1,..., ji n= . When 

k=�, vjk� is the estimated squared standard error 

of θ� jk. Let V be the K by K matrix where the 

element in the Kth row and �th column is given 

by jkv
�

. The test statistic is  

 

                  ' ' ' 1( ) .Q −= Θ ΘC CVC C                (6) 

 

As is well known, the usual choices for C for 
main effects for Factor A, main effects for 

Factor B, and for interactions are C=CJ⊗j
'
K, 

'
J K= ⊗C j C  and C=CJ⊗CK, respectively, 

where CJ is a J-1 by J matrix having the form  
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0 ... 0 1 1

1 −1 0 0 ... 0⎛ ⎞
⎜ ⎟0 1 −1 0 ... 0⎜ ⎟ ,
⎜ ⎟
⎜ ⎟0 −⎝ ⎠

�
 

 
 

j
'
J is a 1×J matrix of ones and ⊗ is the (right) 

Kronecker product. 

There remains the problem of 
approximating the null distribution of Q. Based 
on results in Wilcox (2003, chapter 11) when 
comparing groups using a 20% trimmed mean, 
an obvious speculation is that Q has, 
approximately, an F distribution with ν1 and ν2 

degrees of freedom. For main effects for Factor 
A, main effects for Factor B, and for 
interactions, ν1 is equal to J-1, K-1 and (J-1)(K-

1), respectively. As for ν2, it is estimated based 

on the data, but an analog of this method for 
medians was not quite satisfactory in 
simulations; the actual probability of a Type I 
error was too far below the nominal level. A 
better approach was simply to take 2ν = ∞ , 

which will be assumed henceforth. This will be 
called method A. 

An alternative approach is to proceed 
exactly as in method A, only estimate the .5 
quantiles with the usual sample median and 
replace Vj with the bootstrap estimate described 

in section 2. (Here, B=100 is used.) This will be 
called method B. 
 
An Approached Based on Linear Contrasts 

Another approach to analyzing the two-
way ANOVA design under consideration is to 
test hypotheses about a collection of linear 
contrasts appropriate for studying main effects 
and interactions. Consider, for example,  
 

                          ˆˆ .j jkθΨ =∑  

 
 
 

1, , .j J= …  Then when dealing with main 
effects for Factor A, one could perform all 
pairwise comparisons among the .jΨ  This is for 

every ,j j′<  
 
                                0 : .j jH ′Ψ = Ψ  

 
There is the problem of controlling the 
probability of at least one Type I error among 

the 2( ) / 2J J−  hypotheses to be tested, and 
here this is done with a method derived by Rom 
(1990). Interactions can be studied by testing 
hypotheses about all of the relevant 

2 2( )( ) / 4J J K K− −  tetrad differences, and of 
course, main effects for Factor B can be handled 
in a similar manner. 

For convenience, attention is focused on 
Factor A (the first factor). Here, jΨ  is simply 

estimated with 
 

ˆˆ .j jkθΨ =∑  

Writing 
 

' '
ˆˆ ˆ

j jk jkj
c θΨ − Ψ =∑ ∑  

 
for appropriately chosen contrast coefficents 

,jkc then of course an estimate of the squared 

standard error of  ˆ ˆ
j j′Ψ − Ψ  is  

 
2

,ˆ ˆjk jkn c τ= ∑∑  

 
Based on results in Wilcox (2004), the null 
distribution of T is approximated with a 
Student’s T distribution with n−1 degrees of 
freedom. 

To elaborate on controlling the 
probability of at least one Type I error with 
Rom’s method, and still focusing on Factor A, 

let 2( ) / 2D J J= − be the number of 

hypotheses to be tested and let 1, DP P…  be the 

corresponding p-values. Put the p-values in 
descending order yielding [ ] [ ] [ ]1 2 ... DP P P≥ ≥ .  
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Proceed as follows:  
 
1. Set � =1.  
 
2. If ,P d

⎡ ⎤⎣ ⎦
≤

��
 where d

�
 is read from 

Table 1, stop and reject all D 
hypotheses; otherwise, go to step 3 (If 

10,>�  use /d α=
�

� ). 

 
3. Increment � by 1. If ,P d

⎡ ⎤
⎣ ⎦

≤
��

, stop 

and reject all hypotheses having a 
significance level less than or equal d

�
.  

 
4. If ,P d

⎡ ⎤⎣ ⎦
>

��
repeat step 3.  

 
5. Continue until a significant result is 

obtained or all D hypotheses have been 
tested. 

 
A Simulation Study 

Simulations were used to study the 
small-sample properties of the methods just 
described. Vectors of observations were 
generated from multivariate normal distributions 
having a common correlation, ρ. To study the   
effect of non-normality, observations were 
transformed to various g-and-h distributions 
(Hoaglin, 1985), which contains the standard 
normal distribution as a special case. If Z has a 
standard normal distribution, then  
  

 

( ) ( )2

2

exp 1
 exp / 2 , if g > 0

exp( / 2)                        if g > 0

gZ
hZ

W g

Z hZ

⎧ −
⎪= ⎨
⎪
⎩

 

 
has a g-and-h distribution where g and h are 
parameters that determine the first four mo-
ments. The four distributions used here were the 
standard normal (g = h =0.0), a symmetric 
heavy-tailed distribution (h = 0.5, g = 0.0), an 
asymmetric distribution with relatively light tails 
(h = 0.0, g = 0.5), and an asymmetric distribution 
with heavy tails (g = h = 0.5). Table 2 shows the 
skewness 1( )κ  and kurtosis 2( )κ  for each 

distribution considered. For h = .5, the third and 

fourth moments are not defined and so no values 
for the skewness and kurtosis are reported. 
Additional properties of the g-and-h distribution 
are summarized by Hoaglin (1985). 
 
Table 1: Critical values, ,d

�
, for Rom’s method. 

 

   �  α  = .05   α = .01 

1 .05000 .01000 

2 .02500 .00500 

3 .01690 .00334 

4 .01270 .00251 

5 .01020 .00201 

6 .00851 .00167 

7 .00730 .00143 

8 .00639 .00126 

9 .00568 .00112 

10 .00511 .00101 

 
 
 
Table 2: Some properties of the g-and-h 
distribution. 
 

   g    h 
1( )κ  2( )κ

0.0 0.0 0.00 3.0 

0.0 0.5 0.00 — 

0.5 0.0 1.81 8.9 

0.5 0.5 — — 

 



RAND R. WILCOX 8 

 
Table 3: Estimated probability of a Type I error, J = K = 2, n = 20, α  = .05 

 
   Method A Method B Method C 

g h ρ Factor A Inter Factor A Inter Factor A Inter 

0.0 0.0 0.0 .074 .068 .046 .050 .051 .052 

0.0 0.0 0.8 .072 .073 .032 .036 .048 .048 

0.0 0.5 0.0 .046 .045 .048 .053 .025 .027 

0.0 0.5 0.8 .049 .036 .047 .038 .026 .027 

0.5 0.0 0.0 .045 .053 .045 .044 .045 .049 

0.5 0.0 0.8 .044 .024 .047 .029 .043 .048 

0.5 0.5 0.0 .030 .038 .030 .038 .021 .020 

0.5 0.5 0.8 .019 .027 .032 .015 .023 .024 

 
 

Table 4: Estimated Type I error rates using Methods A and C, J = 2, K = 3, n = 20, α  = .05 
 

   Method A  Method C  

  g     h     ρ Factor A Factor B Inter Factor A Factor B Inter 

0.0 0.0 0.0 .047 .036 .043 .059  .044  .049 

.047 
0.0 0.0 0.8 .062 .021 .023 .056  .057 .047 

0.0 0.5 0.0 .034 .023 .026 .026  .018 .019 

0.0 0.5 0.8 .038 .012 .015 .031  .023 .025 

0.5 0.0 0.0 .040 .032 .039 .053  .040 .045 

0.5 0.0 0.8 .055 .020 .016 .052  .047 .050 

0.5 0.5 0.0 .027 .017 .023 .024  .015 .019 

0.5 0.5 0.8 .035 .010 .010 .025  .024 .023 
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Simulations were run for the case J = K 
= 2 with n = 20. (Simulations also were run with 
n = 100 and 200 as a partial check on the 
software.) Table 3 shows the estimated 
probability of a Type I error when ρ  = 0 or .8 
when testing Factor A and the hypothesis of no 
interaction with method A. For brevity, results 
for Factor B are not shown because they are 
essentially the same as for Factor A, which should 
be the case. The estimates are based on 1,000 
replications. (From Robey & Barcikowski, 1992, 
1,000 replications is sufficient from a power 
point of view. More specifically, if we test the 
hypothesis that the actual Type I error rate is .05, 
and if we want power to be .9 when testing at 
the .05 level and the true α  value differs from 
.05 by .025, then 976 replications are required). 

As is evident, method A does a 
reasonable job of controlling the probability of a 
Type I error, the main difficulty being that when 
sampling from a very heavy-tailed distribution, 
the estimated probability of a Type I error can 
drop below .025. Switching to method B does 
not correct this problem. Generally, when using 
method B the estimated probability of a Type I 
error was approximately the same or smaller 
than the estimates shown in Table 3. For 
example, under normality with ρ  = .8, the 
estimates corresponding to Factor A and the 
hypothesis of no interaction were .035 and .011, 
respectively. As for method C it performs well 
with the possible appeal that the estimate never 
drops below .02, unlike method B. 

Table 4 reports results for methods A 
and C when J = 2 and K = 3. Both methods 
avoid Type I error probabilities well above the 
nominal level. Both methods have estimates that 
drop below .02, but in general method C seems a 
bit more satisfactory. 

When J = 3 and K = 5, method A 
deteriorates even more when dealing with Factor 
B and interactions, with estimated Type I error 
probabilities typically below .01. (One exception 
is normality with  ρ = 0; the estimates were .020 
and .023.) All indications are that method C 
does better at providing actual Type I error 
probabilities close to the nominal level. For 
example, under normality with  ρ = .8, method A 
has estimated Type I error probabilities equal to 
.044, .006 and .001 for Factors A, B and 

interactions, respectively. For method C, the 
estimates were .057, .042 and .068. 
 

Conclusion 
 
In summary, the bootstrap version of method A 
(method B) does not seem to have any practical 
value based on the criterion of controlling the 
probability of a Type I error. This is in contrast 
to the situations considered in Wilcox (2004) 
where pairwise multiple comparisons among J 
dependent groups were considered. A possible 
appeal of method B is that it uses the usual 
sample median when n is even rather than a 
single order statistic, but at the cost of risking 
actual Type I error probabilities well below the 
nominal level.  

Methods A, B and C perform well in 
terms of avoiding Type I error probabilities well 
above the nominal level, but methods A and B 
become too conservative in certain situations 
where method C continues to perform 
reasonably well. It seems that applied 
researchers rarely have interest in an omnibus 
hypothesis only; the goal is to know which 
levels of the factor differ. Because the linear 
contrasts can be tested in a manner that controls 
FWE, all indications are that method C is the 
best method for routine use. Finally, S-PLUS 
and R functions are available from the author for 
applying method C. Please ask for the function 
mwwmcp. 
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