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Two Sides Of The Same Coin:  
Bootstrapping The Restricted Vs. Unrestricted Model 

 
Panagiotis Mantalos 

Department of Statistics 
Lund University, Sweden 

 
 
The properties of the bootstrap test for restrictions are studied in two versions: 1) bootstrapping under the 
null hypothesis, restricted, and 2) bootstrapping under the alternative hypothesis, unrestricted. This article 
demonstrates the equivalence of these two methods, and illustrates the small sample properties of the 
Wald test for testing Granger-Causality in a stable stationary VAR system by Monte Carlo methods. The 
analysis regarding the size of the test reveals that, as expected, both bootstrap tests have actual sizes that 
lie close to the nominal size. Regarding the power of the test, the Wald and bootstrap tests share the same 
power as the use of the Size-Power Curves on a correct size-adjusted basis. 
 
Key words: Bootstrap, Granger-Causality, VAR system, Wald test 
 
 

Introduction 
 

When studying the small sample properties of a 
test procedure by comparing different tests, two 
aspects are of importance: 

 
a) to find the test that has actual size closest to  

the nominal size, and given that (a) holds, 
and 

b) to find the test that has the greatest power. 
 
In most cases, however, the distributions of the 
test statistic used are known only asymptotically 
and, unfortunately, unless the sample size is very 
large, the tests may not have the correct size. 
Inferential comparisons and judgements based 
on them might be misleading. Gregory and Veall 
(1985) can be consulted for an illustrative 
example.  

One of the ways to deal with this 
situation is to use the bootstrap. The use of this 
procedure is increasing with the advent of 
personal computers. 
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However, the issue of the bootstrap test, 
even it is applied, is not trivial. One of the 
problems is that one needs to decide how to 
resample the data, and whether to resample 
under the null hypothesis or under the alternative 
hypothesis. 
 By bootstrapping under the null 
hypothesis, an approximation is made of the 
distribution of the test statistic, thereby 
generating more robust critical values for our 
test statistic. Alternately, by bootstrapping under 
the alternative hypothesis, an approximation is 
made of the distribution of the parameter, and is 
subsequently used to make inferences. 

In either case, it does not matter whether 
the nature of the theoretical distribution of the 
parameter estimator or the theoretical 
distribution of the test statistic is known. What 
matters is that the bootstrap technique 
approximates those distributions. 

In this article, the bootstrap test 
procedure shows that  

 
a) by bootstrapping under the null 

hypothesis (that is, bootstrapping the restricted 
model), and 

b) by bootstrapping under the alternative 
hypothesis (that is, bootstrapping the 
unrestricted model) 
 
will lead to the same results. 
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The properties of the two different 
methods will be illustrated and investigated 
using Monte Carlo methods. The Residual 
Bootstrap, (RB), will be used to study the 
properties of the test procedure when the errors 
are identically and independently distributed. To 
provide an example that is easy to be extended 
to a more general hypothesis, it is convenient to 
use the Wald test for restrictions for testing 
Granger-causality in a stable stationary VAR 
system. 

 
The Model 
Consider the general linear model 
 
                      y β δ= X +          (1) 
 

where y is an ( )1n×  vector, X is an ( )n K×  

matrix and b is a ( )1K×  vector. It is assumed 

that δ  is an n-dimensional normal vector 
(0, )Ω� . 

Consider testing q independent linear 
restrictions: 
 
     1:  R  = r   vs.    : R   roH Hβ β ≠ ,         (2) 

 
where q and r are fixed (q x 1) vectors and R is a 

fixed ( )q K×  matrix with rank q. It is possible 

to base a test of 0H  on the Wald criterion 

 
1ˆ ˆ ˆ(  - ) (  ) (  - ).sT R r Var R R r

−
⎡ ⎤′= ⎣ ⎦β β β        (3) 

 
Bootstrap critical values 
 The bootstrap technique improves the 
critical values, so that the true size of the test 
approaches its nominal value. The principle of 
bootstrap critical values is to draw a number of 
Bootstrap samples from the model under the null 
hypothesis, calculate the Bootstrap test statistic 

*
sT , and compare it with the observed test 

statistic. 
 The bootstrap procedure for calculation 
of the critical values is given by the following 
steps: 
 
a)  Estimate the test statistic as in (3) 

b)  Use the adjusted OLS residuals 
ˆ( )iδ δ−  i = 1,...,T to draw i.i.d * *

1 ,...,  Tδ δ  data. 

Define 
 

                           * *
0

ˆ =  + y Xβ δ .         (4) 

c) Then, calculate the test statistic *
sT  as in 

(3), i.e., by applying the Wald test procedure to 
the (4) model. Repeat this step Νb times and take 
the (1-α)th quintile of the bootstrap distribution 

of *
sT  to obtain the α - level Bootstrap critical 

values ( *
tc
α

). Reject Ho if sT ≥
*
tc
α

.  
Among articles that advocated this 

approach are Horowitz (1994) and Mantalos and 
Shukur (1998), whereas Davidson and 
MacKinnon (1999) and Mantalos (1998) 
advocated the estimate of the P-value. A 
bootstrap estimate of the P-value for testing is 

P*{ *
sT ≥ sT }. 

 
Bootstrap-hypothesis testing 
 One of the important considerations for 

generating the *
ty  leading to the bootstrap 

critical values is whether to impose the null 
hypothesis on the model from which is 

generated the *
ty . However, some authors, 

including Jeong and Chung (2001), argued for 
bootstrapping under the alternative hypothesis. 
‘Let the data speak’ is their principle in apply 
the bootstrap. The bootstrap procedure to 
resample the data from the unrestricted model 
consists of the following steps: 
 
a) Estimate the test statistic as in (3) 

b) Use the adjusted OLS residuals ˆ( )iδ δ−  i 

= 1,...,T. to draw i.i.d * *
1 ,...,  Tδ δ  data. Define 

* *ˆ =  + y Xβ δ , noting that β̂  is the 

unconstrained LS estimator of β . That is, the 

unrestricted model is used to simulate the *y . 
c) Calculate 

                     
( )2

*

*

*

ˆ ˆ(  - )

ˆ(  )
s

R
T

Var R

β β

β
=  .        (5) 
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By repeating this step Νb times the (1-
α)th quintile can be used of the bootstrap 
distribution of the (5) as the α - level Bootstrap 

critical values ( *
tc
α

). Reject Ho if sT ≥
*
tc
α

. The 

bootstrap estimate of the P-value is 

P*{ *
sT ≥ sT }. 

Since Efron’s (1979) introduction of the 
bootstrap as a computer-based method for 
evaluating the accuracy of a statistic, there have 
been significant theoretical refinements of the 
technique. Horowitz (1994) and Hall and 
Horowitz (1996) discussed the method and 
showed that bootstrap tests are more reliable 
than asymptotic tests, and can be used to 
improve finite-sample performance. They 
provided a heuristic explanation of why the 
bootstrap provides asymptotic refinements to the 
critical values of test statistics. See Hall (1992) 
for a wider discussion on bootstrap refinements 
based on the Edgeworth expansion. 

Davidson and MacKinnon (1999) 
provided an explanation of why the bootstrap 
provides asymptotic refinements to the p- values 
of a test. The same authors conclude that by 
using the bootstrap critical values or bootstrap 
test, the size distortion of a bootstrap test is at 

least of order 
1

2T
−

smaller than that of the 
corresponding asymptotic test. 
 
Two sides of the same coin 
 Consider the general linear model 
 
                               y β δ= X +           (1) 
 
and suppose that the interest is in testing the q 
independent linear restrictions 
 

1:  R  = r   vs.    : R   roH Hβ β ≠ .         (2) 

 
Let the LS unconstrained estimator of β  be 

denoted by β̂  and the equality-constrained 

estimator be denoted by 0β̂ . The bootstrap 

GDPs are: 
 

a) Restricted:    * *
0

ˆ
Ry β δ= X + .                      (6) 

 

b) Unrestricted: * *ˆ
uy β δ= X + .                      (7) 

   

Let *
β̂  be the LS estimator of the b coefficient 

in the model relating *
Ry  to X, and *ˆ̂

β  be the LS 

estimator of the b in the *
uy  on X model. Thus, 

 
* 1 * 1 *

0
ˆ ˆ( ) ( )Ryβ β δ

− −′ ′ ′ ′= = +X X X X X X     (8) 

    
and 
 

* 1 * 1 *ˆ̂ ˆ( ) ( )uyβ β δ
− −′ ′ ′ ′= = +X X X X X X .     (9) 

 
From (8) and (9)  
 

               * 1 *
0

ˆ ˆ ( )β β δ
−

′ ′− = X X X                (10) 

and 
 

              * 1 *ˆ̂ ˆ ( )β β δ
−

′ ′− = X X X .       (11) 

 
Because the right-hand components of the (10) 
and (11) are equal,  
 

              ( )* *
0

ˆˆ ˆ ˆ ˆβ β β β
⎛ ⎞⎟⎜− = − ⎟⎜ ⎟⎝ ⎠

.                   (12) 

  
It is not difficult to see from (12) that the same 
results from the both methods are expected: 
there are two sides to the same coin. These 
results will be illustrated by a Monte Carlo 
experiment. 
 
Wald test for restrictions in a VAR model 
 Consider a data-generation process 
(DGP) that consists of the k-dimensional 
multiple time series generated by the VAR(p) 
process 
 

1 1 p =  ... +At t t p ty A y y ε
− −

+ + ,       (13) 

where ( )1t kt = ,  ..., tε ε ε

′

 is a zero mean 

independent white noise process with non-
singular covariance matrix 

ε
Σ  and, for j = 1, ... , 
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k, 
2

 jt

τ

ε

+

Ε <∞  for some τ > 0. The order p 

of the process is assumed to be known. Define 
 

( ) ( )1:  = , ,       k x TTy yY �  matrix, 

( )1:  = , , ,     (k x (kp+ 1)) pv A AB � matrix, 

( )

1

1

:   =       (kp +1) x 1 
t

t

t p

y

y
− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Z
�

 matrix,  

( ) ( ):  = , ,      (kp+1) x T
−0 T 1Z Z Z�  matrix  

 
and 
 

( ) ( )1:  = , ,       k x TTδ ε ε�  matrix. 

By using this notation, for t = 1, …, T, the VAR 
(p) model including a constant term ( v ) can be 
written compactly as  
 
                          =  + δY BZ .                    (14) 
     
Then, the LS estimator of the B  is  
 

                  ( )
1ˆ  = 
−

′ ′B YZ ZZ .        (15) 

 

Let 1  ,   ,p pvec A Aα ⎡ ⎤=
⎣ ⎦
�  be the vector of 

the true parameters, and 1 p
ˆ ˆˆ  = vec A ,   ,Apα

⎡ ⎤
⎢ ⎥⎣ ⎦
�  

be the vector the LS estimators of the 
parameters, where vec[.] denotes the 
vectorization operator that stacks the columns of 
the argument matrix. Then, 
 

( ) ( )1/ 2 ˆ 0,p p pT Nα α− ⇒ Σ ,                    (16) 

   
where ⇒ denotes weak convergence in 

distribution and the [ 2( )k p  x 2( )k p ] 

covariance matrix pΣ  is non-singular. 

Now, suppose that in testing q 
independent linear restrictions is of interest 
 

1:  R  = s   vs.    : R   so p pH Hα α ≠ ,         (17)  

 

where q and s are fixed (q x 1) vectors and R is a 

fixed [q x 2k p ] matrix with rank q. 

We can base a test of 0H  on the Wald 

criterion 
 

1

_ ˆ ˆ ˆ(  - ) (  - ) (  - )s wald p p pT R s Var R s R sα α α
−

′⎡ ⎤= ⎣ ⎦ . 

                                               (18) 
 
Let  

( )1ˆ
1T kp

-1YY - YZ (ZZ ) ZYδ ′ ′ ′ ′Σ =
− −

   (19) 

   
be the estimate of the residual covariance 
matrix. 

Then, the diagonal elements of 

( ) 1 ˆZZ δ
−′ ⊗ Σ form the variance vector of the 

LS estimated parameters. Substitute (19) into 
(18) in order to have 

   

( )( )
_

1
1 ˆˆ ˆ(  - ) (  - ).

s wald

p p

T

R s R ZZ R R s
−−′ ′ ′= ⊗ Σ⎡ ⎤

⎣ ⎦δα α
                     

          (20) 
 
The null hypothesis of no Granger-causality may 
be expressed in terms of the coefficients of VAR 
process as 
 

1:  R  = 0   vs.    : R   0o p pH Hα α ≠ .       (21) 

 
Then, (20) can be written as 

( )( )
_

1
1 ˆˆ ˆ(  ) (  )

s wald

p p

T

R R ZZ R Rδα α
−−⎡ ⎤′ ′ ′= ⊗ Σ

⎣ ⎦

 

                                               (22) 
 
and the bootstrap variations as  

( )( )
*
_

1
1* * * * *ˆˆ ˆ(  ) (  )

s wald

p p

T

R R Z Z R R
δ

α α
−−′⎡ ⎤′ ′= ⊗ Σ

⎢ ⎥⎣ ⎦

 

                                               (23)            
for the restricted form and 
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( )( )
*
_

1
1* * * *

*

ˆˆ ˆ( - )

ˆ ˆ( -  )

s wald

p p

p p

T

R R R Z Z R

R R

δ
α α

α α

−−′⎡ ⎤′ ′= ⊗ Σ
⎢ ⎥⎣ ⎦

 

                                                          (24) 
for the unrestricted form. 
 

Methodology 
 

Monte Carlo experiment 
This section illustrates various 

generalizations of the Granger-causality tests in 
VAR systems with stationary variables, using 
Monte Carlo methods. The estimated size is 
calculated by observing how many times the null 
is rejected in repeated samples under conditions 
where the null is true. 

 
The following VAR(1) process is 

generated: 
 

11/ 2

0.5 0.3
 = 

0.5t t ty y
T

ε

γ
−

−

⎡ ⎤
⎢ ⎥ +
⎢ ⎥
⎣ ⎦

,          (25) 

where ( )2~ 0,  t N Iε , ( )1 2 = .t t ty y y
′

. If γ = 0, 

1ty  is Granger-noncausal for 2ty and if γ ≠ 0, 

1ty  causes 2ty . Therefore, γ = 0 is used to study 

the size of the tests.  
The order p of the process is assumed to 

be known. Because this assumption might be too 
optimistic, a VAR(2) is fitted: 

1 1 2 2 =  At t t ty v A y y ε
− −

+ + + . 

For each time series, 20 pre-sample 
values were generated with zero initial 
conditions, taking net sample sizes of T = 25 and 

50. The Bootstrap test statistic ( *
sT ) is 

calculated. As for Νb, which is the size of the 
bootstrap sample used to estimate bootstrap 
critical values and the P-value, Νb = 399 is used. 
Note that there are no initial bootstrap 
observations in bootstrap procedure. 

Next presented are the results of the 
Monte Carlo experiment concerning the sizes of 
the various versions of the tests statistics using 
the VAR(2) model. Graphical methods are used 
that were developed and illustrated by Davidson 

and MacKinnon (1998) because they are easy to 
interpret. The P-value plot is used to study the 
size, and the Size-Power curves is used to study 
the power of the tests. The graphs, the P-value 
plots and Size-Power curves are based on the 
empirical distribution function, the EDF of the 

P-values, denoted as ( )ˆ
jF x . 

For the P-value plots, if the distribution 
used to compute the sp  terms is correct, each of 

the sp  terms should be distributed uniformly on 

(0,1). Therefore the resulting graph should be 

close to the 45o line.  
Furthermore, to judge the 

reasonableness of the results, a 95% confidence 
interval is used for the nominal size ( 0π ) as: 

0 0
0

 (1 )
2  

N

π π

π

−

± , where N is the number 

of Monte Carlo replications. Results that lie 
between these bounds will be considered 
satisfactory. For example, if the nominal size is 
5%, define a result as reasonable if the estimated 
size lies between 3.6% and 6.4%. The P-value 
plots also make it possible and easy to 
distinguish between tests that systematically 
over-reject or under-reject, and those that reject 
the null hypothesis about the right proportion of 
the time. 

Figure 1 shows the truncated P-value 
plots for the actual size of the bootstrap and the 
Wald tests, using 25 and 50 observations. 
Looking at these curves, it is not difficult to 
make the inference that both the bootstrap tests 
perform adequately, as they lie inside the 
confidence bounds. However, using the 
asymptotic critical values, the Wald test shows a 
tendency to over-reject the null hypothesis.  

The superiority of the bootstrap test over 
the Wald test, concerning the size of the tests, is 
considerable, and more noticeable in small 
samples of size 25. The power of the Wald and 
bootstrap tests by using sample sizes of 25 and 
50 observations was examined. The power 
function is estimated by calculating the rejection 
frequencies in 1000 replications using the value 
γ = 2.  

The Size-Power Curves are used to 
compare the estimated power functions of the 
alternative test statistics. This proved to be quite 
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adequate, because those tests that gave 
reasonable results regarding size usually differed 
very little regarding power.  

The same processes are followed for the 
size investigation to evaluate the EDFs denoted 

by ( )ˆ
jF x⊕ , by using the same sequence of 

random numbers used to estimate the size of the 
tests. Size-Power Curves are used to plot the 
estimated power functions against the nominal 
size. The estimated power functions are plotted 

against the true size, that is, plotting ( )ˆ
jF x⊕  

against ( )ˆ
jF x , which produces the Size-Power 

Curves on a correct size-adjusted basis.  
Figure 2 shows the results of using the 

Size-Power Curves. The Wald test has higher 
power than the restricted and unrestricted 
bootstrap tests. A sample effect can also be seen. 
The larger the sample, the larger is the power of 
the tests. As the sample size increases, the power 
difference decreases. 

However, the most interesting result is 
that both the restricted and unrestricted bootstrap 
tests share the same power. This result confirms 
the view that these two bootstrap methods are 
two sides of the same coin. 

When using the Size-Power Curves on a 
correct size-adjusted basis, however, the 
situation is different concerning the power of the 
Wald and the bootstrap tests. Now the Wald, 
restricted and unrestricted bootstrap tests share 
the same power, as seen in Figure 3. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Conclusion 
 
The purpose of this study was to provide advice 
on whether to resample under the null 
hypothesis or under the alternative hypothesis. 
In summary: 
 
a) the restricted bootstrap test was used, in 
which the distribution of the test statistic was 
approximated, generating more robust critical 
values for our test statistic, and 
b) the unrestricted bootstrap test, where the 
distribution of the parameter (coefficient) was 
approximated. 
 

In both cases it does not matter whether 
or not the nature of the theoretical distribution of 
the parameter estimator or the theoretical 
distribution of the test statistic is known. What 
matters is that the bootstrap technique well 
approximates those distributions. Moreover, this 
article demonstrated the equivalence of these 
two methods. 

The conclusion to this investigation for 
the Granger-causality test is that both bootstrap 
tests have an actual size that lies close to the 
nominal size. Given that the both unrestricted 
and restricted models have the same power, it 
makes sense to choose the bootstrap ahead of the 
classical tests, especially in small samples. 
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Figure 1. P-values Plots Estimated Size of the Wald and Bootstrap Tests. 
 

Figure 1a: 25 observations 

 

Figure 1b: 50 observations 

 
Dash 3Dot lines: 95% Confidence interval 
 

Figure 2. Estimated Power of the Wald and Bootstrap Tests. 
 

Figure 2a: 25 observations 

 

Figure 2b: 50 observations 

 
 

Figure3. Size-adjusted Power of the Wald and Bootstrap Tests. 
 

Figure 3a: 25 observations 
 

 

Figure 3b: 50 observations 
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