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Inferences About Regression Interactions Via A Robust Smoother  
With An Application To Cannabis Problems 

 
 Rand R. Wilcox      Mitchell Earleywine 

Department of Psychology 
University of Southern California, Los Angeles 

 
 
A flexible approach to testing the hypothesis of no regression interaction is to test the hypothesis that a 
generalized additive model provides a good fit to the data, where the components are some type of robust 
smoother. A practical concern, however, is that there are no published results on how well this approach 
controls the probability of a Type I error. Simulation results, reported here, indicate that an appropriate 
choice for the span of the smoother is required so that the actual probability of a Type I error is 
reasonably close to the nominal level. The technique is illustrated with data dealing with cannabis 
problems where the usual regression model for interactions provides a poor fit to the data. 
 
Key words: Robust smoothers, curvature, interactions 
 
 

Introduction 
 
A combination of extant regression methods 
provides a very flexible and robust approach to 
detecting and modeling regression interactions. 
In particular, both curvature and nonnormality 
are allowed. The main goal in this paper is to 
report results on the small-sample properties of 
this approach when a particular robust smoother 
is used to approximate the regression surface. 
The main result is that in order to control the 
probability of a Type I error, an appropriate 
choice for the span must be used which is a 
function of the sample size. However, before 
addressing this issue, we provide a motivating 
example for considering smoothers when 
investigating interactions. 

A well-known approach to detecting and 
modeling regression interactions is to assume 
that for a sample of n vectors of observations,   
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(Yi,Xi1,Xi2),  

0 1 1 2 2 3 1 2 ,i i i i i iY X X X Xβ β β β ε= + + + + (1) 

 
i=1,...,n, where ε  is independent of 1iX  and 

2iX , ( ) 0.E ε =  The hypothesis of no 

interaction corresponds to  
 

0 3: 0.H β =  

 
This approach appears to have been first 

suggested by Saunders (1956). A practical issue 
is whether this approach is flexible enough to 
detect and to model an interaction if one exists. 
We consider data collected by the second author 
to illustrate that at least in some situations, a 
more flexible model is required. The data deal 
with cannabis problems among adult males. 
Responses from n=296 males were obtained 
where the two regressors were the participants’ 
use of cannabis ( 1X ) and consumption of 

alcohol ( 2X ). The dependent measure (Y) 

reflected cannabis dependence as measured by 
the number of DSM-IV symptoms reported. An 
issue of interest was determining whether the 
amount of alcohol consumed alters the 
association between Y and the amount of 
cannabis used, and there is the issue of 
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understanding how the association changes if an 
interaction exists. 

Using a method derived by Stute, 
González-Manteiga and Presedo-Quindimil 
(1998), it is possible to test the hypothesis that 
the model given by equation (1) provides a good 
fit to the data. If, for example, 
 

2
0 1 1 2 2 3 1 2 ,i i i i i iY X X X Xβ β β β ε= + + + +  

 
then there is an interaction, but the family of 
regression equations given by (1) is 
inappropriate. The Stute et al. method can be 
applied using the S-PLUS or R function lintest 
in Wilcox (2003). Estimating the unknown 
parameters via least squares, this hypothesis is 
rejected at the .05 level. A criticism is that when 
testing the hypothesis that (1) is an appropriate 
model for the data, and when using the ordinary 
least squares estimator when estimating the 
unknown parameters, the probability of a Type I 
error might not be controlled (Wilcox, 2003). 

Replacing the least squares estimator with 
various robust estimators corrects this problem. 
Here, using the robust M-estimator derived by 
Coakley and Hettmansperger (1993), or using a 
generalization of the Theil-Sen estimator to 
multiple predictors (see Wilcox, 2005), again the 
hypothesis is rejected. Moreover, the R (or S-
PLUS) function pmodchk in Wilcox (2005) 
provides a graphical check of how well the 
model given by (1) fits the data when a least 
squares estimate of the parameters is used, 
versus a more flexible fit based on what is called 
a running interval smoother, and a poor fit based 
on (1) is indicated. Robust variations give 
similar results. So, at least in this case, an 
alternative and more flexible approach to testing 
the hypothesis of no interaction seems 
necessary. 

To provide more motivation for a more 
flexible approach when modeling interactions, 
note that equation (1) implies a nonlinear 
association between Y versus 1X  and 2X . A 

concern, however, is that a nonlinear association 
does not necessarily imply an interaction. If, for 
example, X1, X2 and ε  are independent and 

have standard normal distributions, and if 
2

1 2Y X X ε= + + , the probability of rejecting 

0H : 3 0β =  is .18 when testing at the .05 level 

with a sample size of twenty. Of course, in this 
case, standard diagnostics can be used to detect 
the curvature, but experience with smoothers 
suggest that dealing with curvature is not always 
straightforward. 

Suppose instead 2
1 1 2| |Y X X X ε= + + + , 

so there is no interaction even though there is a 
nonlinear association. Then with a sample size 
of fifty, and when testing at the .05 level, the 
probability of rejecting 0H : 3 0β =  is .30. In 

contrast, using the more flexible method 
described here, the probability of rejecting the 
hypothesis of no interaction is .042. 

If we ignore the result that (1) is an 
inadequate model for the cannabis data and 
simply test 0H : 3 0β =  (using least squares in 

conjunction with a conventional T test), or if we 
test H0: β3=0 using a more robust hypothesis 

testing method derived for the least squares 
estimator that is based on a modified percentile 
bootstrap method (Wilcox, 2003), or when using 
various robust estimators (such as an M-
estimator with Schweppe weights or when using 
the Coakley-Hettmansperger estimator), we 
reject. But an issue is whether we reject because 
there is indeed an interaction, or because the 
model provides an inadequate representation of 
the data. And another concern is that by using an 
invalid model, an interaction might be masked. 

A more general and more flexible approach 
when investigating interactions is to test the 
hypothesis that there exists some functions 1f  

and 2f  such that  

 
      0 1 1 2 2( ) ( ) .Y f X f Xβ ε= + + +              (2) 

 
Equation (2) is called a generalized additive 
model, a general discussion of which can be 
found in Hastie and Tibshirani (1990). A special 
case is where 1 1 1 1( )f X Xβ= , 2 2 2 2( )f X Xβ= , 

but (2) allows situations where the regression 
surface is not necessarily a plane, even when 
there is no interaction. If the model represented 
by (2) is true, then there is no interaction in the 
following sense. Pick any two values for 2X , 
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say 6 and 8. Then no interaction means that the 
regression line between Y and 1X , given that 

2 6X = , is parallel to the regression line 

between Y and X1, given that 2 8X = . 

For completeness, Barry (1993) derived 
a method for testing the hypothesis of no 
interaction assuming an ANOVA-type 
decomposition where  

 

0 1 1 2 2 3 1 2( ) ( ) ( , ) ,Y f X f X f X Xβ ε= + + + +
 
in which case the hypothesis of no interaction is  

 
                      0 3 1 2: ( , ) 0.H f X X ≡  

 
Barry (1993) used a Bayesian approach 

assuming that the (conditional) mean of Y is to 
be estimated and that prior distributions for 1f , 

2f  and 3f  can be specified. The goal in this 

article is to investigate the small-sample 
properties of a non-Bayesian method where the 
mean is replaced by some robust measure of 
location (cf. Samarov, 1993). 

 
Methodology 

 
There are, in fact, many approaches that might 
be used that are based on combinations of 
existing statistical techniques. The problem is 
finding a combination of methods that controls 
the probability of a Type I error in simulations 
even when the sample size is relatively small. 
One possibility is to use some extension of the 
method in Dette (1999), this was considered, but 
in simulations no variation was found that 
performed well in terms of controlling the 
probability of a Type I error. 

Only one method was found that 
performs well in simulations; it is based on a 
combination of methods summarized in Wilcox 
(2005). The approach is outlined here, and the 
computational details are relegated to 
Appendices A and B. Briefly, the method begins 
by fitting the model given by (2) using the so-
called backfitting algorithm (Hastie & 
Tibshirani, 1990) in conjunction with a what is 
called a running interval smoother. Generally, 
smoothers are methods for approximating 

regression lines without forcing them to have a 
particular shape such as a straight line. As with 
most smoothers, the running interval smoother is 
based in part on something called a span, κ, 
which plays a role when determining whether 
the value X is close to a particular value of 1X  

(or 2X ). Details are provided in Appendix A.  

There are many ways of fitting the 
model given by (2). Here, the focus is on a 
method where the goal is to estimate a robust 
measure of location associated with Y, given 

1 2( , )X X , because of the many known 

advantages such measures have (e.g., Hampel, 
Ronchetti, Rousseeuw & Stahel, 1986; Huber, 
1981; Staudte & Sheather, 1990; Wilcox, 2003, 
2005). Primarily for convenience, the focus is on 
a 20% trimmed mean, but various robust M-
estimators are certainly a possibility. The 
advantages associated with robust measures of 
location include an enhanced ability to control 
the probability of a Type I error in situations 
where methods based on means are known to 
fail, and substantial gains in power, over 
methods based on means, even under slight 
departures from normality. (Comments about 
using the mean, in conjunction with the 
proposed method, are made in the final section 
of this paper.) Here, the main reason for not 
using a robust M-estimator (with say, Huber’s 
Ψ), is that this estimator requires division by the 
median absolute deviation (MAD) statistic, and 
in some situations considered here, when the 
sample size is small, MAD is zero. 

The running interval smoother provides 
a predicted value for Y, given 1 2( , )i iX X , say 

îY ; see Appendix A. Next, compute the 

residuals ˆ
i i ir Y Y= − . If the model given by (2) 

is true, meaning that there is no interaction, then 
the regression surface when predicting r, given 

1 2( , )X X , should be a horizontal plane. The 

hypothesis that this regression surface is indeed 
a horizontal plane can be tested using the 
method derived by Stute et al. (1998). The 
details can be found in Appendix B. 
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Results 
 
Simulations were conducted as a partial check 
on the ability of the method, just outlined, to 
control the probability of a Type I error. Values 
for 1X , 2X  and ε  were generated from four 

types of distributions: normal, symmetric and 
heavy-tailed, asymmetric and light-tailed, and 
asymmetric and heavy-tailed. For non-normal 
distributions, observations were generated from 
a g-and-h distribution which is described in 
Appendix C. The goal was to check on how the 
method performs under normality, plus what 
would seem like extreme departures from 
normality, with the idea that if good 
performance is obtained under extreme 
departures from normality, the method should 
perform reasonably well with data encountered 
in practice. The correlation between 1X  and 2X  

was taken to be either ρ=0 or ρ=.5. 
 Initial simulation results revealed that 

the actual probability of a Type I error, when 
testing at the .05 level, is sensitive to the span, κ. 
(Härdle & Mammen, 1993, report a similar 
result for a method somewhat related to the 
problem at hand.) If the span is too large, the 
actual Type I error probability can drop well 
below the nominal level. When testing at the .05 
level, simulations were used to approximate a 
reasonable choice for κ. Here, the span 
corresponding to the sample sizes 20, 30, 50, 80 
and 150 are taken to be .4, .36, .18, .15 and .09, 
respectively. It is suggested that when 
20≤n≤150, interpolation based on these values 
be used, and for n>150 use a span equal to .09. 
For n>150 and sufficiently large, perhaps the 
actual Type I error probability is well below the 
nominal level, but exactly how the span should 
be modified when n>150 is an issue that is in 
need of further investigation. 

 Table 1 contains α̂ , the estimated 
probability of making a Type I error when 
testing at the .05 level. n=20, and when Y= ε  or 

2
1 2Y X X ε= + + . (The g and h values are 

explained in Appendix C.) Simulations were 
also run when 1 2Y X X ε= + + , the results 

were very similar to the case Y=ε , so for brevity 
they are not reported. No situation was found 

where the estimated probability of a Type I error 
exceeded the nominal .05 level. The main 
difficulty is that when marginal distributions 
have a skewed, heavy-tailed distribution, ρ=.5, 
and there is curvature, the estimated probability 
of a Type I error dropped below .01. This 
situation corresponds to what would seem like 
an extreme departure from normality as 
indicated in Appendix C. 

 
An Illustration 
 Returning to the cannabis data described 
in the introduction, the hypothesis of no 
interaction is rejected at the .05 level when 
testing the model given by (2). (The test statistic 
described in Appendix B is D=3.37 and the .05 
critical value is 1.79.) To provide some overall 
sense of the association, Figure 1 shows an 
approximation of the regression surface based 
on a smooth derived by Cleveland and Devlin 
(1988) called loess. (Using the robust smooth in 
Wilcox, 2003, section 14.2.3, gives similar 
results when the span is set to 1.2.) Note the 
nonlinear appearance of the surface. Also, there 
appears to be little or no association over some 
regions of the 1X  and 2X  values. 

 Figure 2 shows the plot based on 1X  

and 2X  versus the residuals corresponding to 

the generalized additive model given by (2). 
This plot should be a horizontal plane if there is 
no interaction. As is evident, the surface appears 
to be nonlinear, at least to some degree 

 To further explore the nature of the 
interaction, first it is noted that the quartiles 
associated with X2 (alcohol use) are -0.732, -

0.352 and 0.332. The left panel of Figure 3 
shows three smooths between Y and 1X ; they 

are the smooths between Y and X1 given that 

2 0.73X = − , X2=-0.352 and 3 0.332X = . 

(These smooths were created using a slight 
generalization of the kernel regression estimator 
in Fan, 1993; see R or S-PLUS function kercon 
in Wilcox, 2005, Ch. 11.)  
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Table 1:  Estimated probability of a Type I error, n=20. 
 

    Y=ε  2
1 2Y X X ε= + +  

g h g h ρ=0 ρ=.5 ρ=0 ρ=.5
0.0 0.0 0.0 0.0 .033 .034 .047 .035

  0.0 0.5 .039 .034 .026 .031
  0.5 0.0 .045 .043 .045 .034
  0.5 0.5 .037 .035 .035 .032

0.0 0.5 0.0 0.0 .031 .032 .019 .015
  0.0 0.5 .032 .024 .020 .012
  0.5 0.0 .033 .031 .016 .013
  0.5 0.5 .029 .024 .023 .013

0.5 0.0 0.0 0.0 .029 .022 .036 .022
  0.0 0.5 .031 .020 .032 .014
  0.5 0.0 .040 .039 .037 .028
  0.5 0.5 .029 .027 .025 .020

0.5 0.5 0.0 0.0 .028 .024 .024 .003
  0.0 0.5 .026 .017 .015 .003
  0.5 0.0 .035 .029 .014 .006
  0.5 0.5 .020 .015 .015 .007

 
Figure 1: An approximation of the regression surface based on the smoother loess. 
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When there is no interaction, all three 

regression lines should be approximately parallel 
which is not the case. The regression lines 
corresponding to 2 0.73X = −  and -0.352 are 

reasonably parallel, and they are approximately 
horizontal suggesting that there is little 
association between Y and X1 for these special 

cases.  
 
 
 
 
 
 
 

 
 
But for 3 0.332X = , the association 

changes, particularly in the right portion of 
Figure 1 where the association becomes more 
positive. If the data are split into two groups 
according to whether Xi2 is less than the median 

of the values 12 2,..., nX X , -0.352, and then 

create a smooth between Y and 1X , the result is 

shown in right panel of Figure 3. 
 
  
 

 
 
 

 
Figure 2: A smooth of the residuals stemming from the generalized additive model versus the two predictors. 
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Conclusion 
 

In principle, the method in this article can be 
used with any measure of location. It is noted, 
however, that if the 20% trimmed mean is 
replaced by the sample mean, poor and unstable 
control over the probability of a Type I error 
results. 

Finally, all of the methods used in this 
paper are easily applied using the S-PLUS or R 
functions in Wilcox (2005). (These functions 
can be downloaded as described in chapter 1.) 
Information about S-PLUS can be obtained from 
www.insightful.com, and R is a freeware variant 
of S-PLUS that can be downloaded from 
www.R-project.org. For convenience, the 
relevant functions for the problem at hand have 
been combined into a single function called 
adtest. If, for example, the X values are stored in 
an S-PLUS matrix x, and the Y values are stored 
in y, the command adtest(x,y) tests the 
hypothesis that the model given by (2) is true. 
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Appendix A 
 
We begin by describing how to compute a 20% 
trimmed mean based on a sample of m 
observations. Put the observations in ascending 
order yielding (1) ( )mW W≤ ⋅⋅⋅ ≤ . Let � =[.2m], 

where [.2m] means to round .2m down to the 
nearest integer. Then the 20% trimmed mean is  

 

         
1

2

n

t iX W
n ι

−

( )
= +1

= .
− ∑

�

��
 

 
In terms of efficiency (achieving a small 

standard error relative to the usual sample 
mean), 20% trimming performs very well under 
normality but continues to perform well in 
situations where the sample mean performs 
poorly (e.g., Rosenberger & Gasko, 1983). 

Now, we describe the running interval 
smoother in the one-predictor case. Consider a 
random sample 1 1( , ),..., ( , )n nX Y X Y  and let κ 

be some constant that is chosen in a manner to 
be described. The constant κ is called the span. 
The median absolute deviation (MAD), based on 

1,..., nX X , is the median of the n values 

1| |,..., | |nX M X M− − , where M is the usual 

median. Let MADN=MAD/.6745. Under 
normality, MADN estimates σ, the standard 
deviation. Then the point X is said to be close to 

iX  if  

            | | .iX X MADNκ− ≤ ×  

 
Thus, for normal distributions, X is close to iX  

if X is within κ standard deviations of iX . Then 

îY  is the 20% trimmed mean of the jY  values 

for which jX  is close to iX . In exploratory 

work, a good choice for the span is often κ=.8 or 
1, but for the situation at hand an alternative 
choice is needed. 

Virtually any smoother, including the 
one used here, can be extended to the 
generalized additive model given by (2) using 
the backfitting algorithm in Hastie and 

Tibshirani (1990). Set k=0 and let 0
jf  be some 
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initial estimate of jf  (j=1, 2). Here, 
0 ( ) ( | )j j j jf X S Y X= , where Sj(Y|Xj) is the 

running interval smooth based on the jth 
predictor, ignoring the other predictor under 
investigation. Next, iterate as follows. 
 
1. Increment k.  
2. Let  

 
1

1 1 1 2 2 1( ) ( ( ) | )k kf X S Y f X X−= −  

 
and  

 
1

2 2 2 1 1 2( ) ( ( ) | ).k kf X S Y f X X−= −  

 
3. Repeat steps 1 and 2 until convergence.  

Finally, estimate 0β  with the 20% trimmed 

mean of the values ( | )k
i j i ijY f Y X−∑ , 

i=1,...,n. The computations are performed by R 
or S-PLUS function adrun in Wilcox (2005). 

 

Appendix B 

 

This appendix describes the method for testing 
the hypothesis of no interaction. Fit the 
generalized additive model as described in 

Appendix A yielding îY , and let ˆ
i i ir Y Y= − , 

i=1,...,n. The goal is to test the hypothesis that 
the regression surface, when predicting the 
residuals, given 1 2( , )i iX X , is a horizontal 

plane. This is done using the wild bootstrap 
method derived by Stute, González-Manteiga 
and Presedo-Quindimil (1998). Let tr  be the 

20% trimmed mean based on the residuals 

1,..., nr r . Fix j and set 1iI =  if simultaneously 

1 1i jX X≤  and 2 2i jX X≤ , otherwise 0iI = .  

 

 

 

Let  

               

1
( )

1
,

j i i t

i i

R I r r
n

I v
n

= −

=

∑

∑         (3) 

where                           .i i tv r r= −  

The test statistic is the maximum 
absolute value of all the jR  values. That is, the 

test statistic is  

 
               | | .jD max R=          (4) 

An appropriate critical value is 
estimated with the wild bootstrap method as 
follows. Generate 1,..., nU U  from a uniform 

distribution and set  

 

                   12( .5),i iV U= −  

                           

                                    * ,i i ivVν =  

and  

                         * *.i t ir r v= +  

Then based on the n pairs of points ( 1X , 

2X , *
1r ), ..., ( nX , nX , *

nr ), compute the test 

statistic as described in the previous paragraph 

and label it *D . Repeat this process B times and 
label the resulting (bootstrap) test statistics 

D
*
1,...,D

*
B . Here, B=500 is used. Finally, put 

these B values in ascending order yielding 
* *
(1) ( )BD D≤ ⋅⋅⋅ ≤ . Then the critical value is *

( )uD , 

where u=(1-α)B rounded to the nearest integer. 
That is, reject if  

                           *
( ) .uD D≥  
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Appendix C 
 

Details regarding the simulations are as follows. 
Observations were generated where the marginal 
distributions have a g-and-h distribution 
(Hoaglin, 1985) which includes the normal 
distribution as a special case. More precisely, 
observations ijZ , (i=1,...,n; j=1, 2) were initially 

generated from a multivariate normal 
distribution having correlation ρ, then the 
marginal distributions were transformed to  

 

2

2

( ) 1
( / 2), if   0

( / 2), if   0

ij
ij

ij

ij

exp gZ
exp hZ g

gX

Zexp hZ g

−⎧
>⎪= ⎨

⎪ =⎩

 

where g and h are parameters that determine the 
third and fourth moments. The four (marginal) 
g-and-h distributions examined were the 
standard normal (g=h=0), a symmetric heavy-
tailed distribution (g=0, h=.5), an asymmetric 
distribution with relatively light tails (g=.5, 
h=0), and an asymmetric distribution with heavy 
tails (g=h=.5). Here, two choices for ρ were 
considered: 0 and .5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 shows the theoretical skewness 
( 1κ ) and kurtosis ( 2κ ) for each distribution 

considered. When g>0 and h>1/k, ( )kE X  is not 
defined and the corresponding entry in Table 2 
is left blank. Additional properties of the g-and-
h distribution are summarized by Hoaglin 
(1985). Some of these distributions might appear 
to represent extreme departures from normality, 
but the idea is that if a method performs 
reasonably well in these cases, this helps support 
the notion that they will perform well under 
conditions found in practice. 
 

Table 2: Some properties of the g-and-h 
distribution. 

 

g h 
1κ  2κ  

0.0 0.0 0.00 3.0 

0.0 0.5 0.00 --- 

0.5 0.0 1.75 8.9 

0.5 0.5 --- --- 
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