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Regression By Data Segments Via Discriminant Analysis

Stan Lipovetsky

Michagl Conklin

GfK Custom Research Inc
Minneapolis, Minnesota

It is known that two-group linear discriminant function can be constructed via binary regression. In this
article, it is shown that the opposite relation is also relevant — it is possible to present multiple regression
as a linear combination of a main part, based on the pooled variance, and Fisher discriminators by data
segments. Presenting regression as an aggregate of the discriminators allows one to decompose
coefficients of the model into sum of several vectors related to segments. Using this technique provides
an understanding of how the total regression model is composed of the regressions by the segments with
possible opposite directions of the dependency on the predictors.
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Introduction

Linear Discriminant Analysis (LDA) was
introduced by Fisher (1936) for classification of
observations into two groups by maximizing the
ratio of between-group variance to within-group
variance (Rao, 1973; Lachenbruch, 1979; Hand,
1982; Dillon & Goldstein, 1984; McLachlan,
1992; Huberty, 1994). For two-group LDA, the
Fisher linear discriminant function can be
represented as a linear regression of a binary
variable (groups indicator) by the predictors
(Fisher, 1936; Anderson, 1958; Ladd, 1966;
Hastie, Tibshirani & Buja, 1994; Ripley, 1996).
Many-group LDA can be described in terms of
the Canonical Correlations Analysis (Bartlett,
1938; Kendall & Stuart, 1966; Dillon &
Goldstein, 1984; Lipovetsky, Tishler, & Conklin,
2002). LDA is used in various applications, for
example, in marketing research
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(Morrison, 1974; Hora & Wilcox, 1982;
Lipovetsky & Conklin, 2004).

Considered in this article is the possibility
of presenting a multiple regression by segmented
data as a linear combination of the Fisher
discriminant functions. This technique is based
on the relationship between total and pooled
variances. Using this approach, we can interpret
regression as an aggregate of discriminators, that
alows us to decompose the coefficients of
regression into a sum of vectors related to the
data segments. Such a decomposition helps
explain how a regression by total data could have
the opposite direction of the dependency on the
predictors, in comparison with the coefficients
related to each segment.

These effects correspond to well-known
Simpson’s and Lord's paradoxes (Blyth, 1972;
Holland & Rubin, 1983; Good & Mittal, 1987;
Pearl, 2000; Rinott & Tam, 2003; Skrondal &
Rabe-Hesketh, 2004; Wainer & Brown, 2004),
and to treatment and causal effects in the models
(Arminger, Clogg & Sobel, 1995; Rosenbaum,
1995; Winship & Morgan, 1999).

The article is organized as follows. Linear
discriminant analysis and its relation to binary
regression are first described. The next section
considers regression by segmented data and its
decomposition by Fisher  discriminators,
followed by a numerical example and a
summary.
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Methodol ogy

Consider the main features of LDA. Denote X a
data matrix of n by p order consisting of n rows
of observations by p variables x;, X, ..., X,. Also
denote y a vector of size n consisting of binary
values 1 or O that indicate belonging of each
observations to one or another class. Suppose
there are n; observations in the first class (y =1),
n, observations in the second class (y =0), and
total number of observations n=n;+n, . Construct
alinear aggregate of x-variables:

z= Xa, 1)

where a is a vector of p-th order of unknown
parameters, and z is an n-th order vector of the
aggregate scores. Averaging scores z (1) within
each group yields two aggregates:

Z(l) — m(l)a’ Z(z) — m(z)a’ (2)

where m® and m® are vectors of p-th order of
mean values m® and m{? of each j-th variable

X within the first and second group of
observations, respectively. The maximum
squared distance between two groups ||ZV-Z2)f =
(m®-m?)a|? versus the pooled variance of
scores a' S0 @ defines the objective for linear
discriminator:

e a’(m(l) _ m(Z))(m(l) _ m(Z))'a (3)
a'S,, a

with elements of the pooled matrix defined by
combined cross-products of both groups:

n
(Spool )jk = Z_: (in - mjgl))(xki - mil))

+30 0 ~mi?)(x, ~f?)
@

Equation (3) can represent as a conditional
objective:

F — a’(m(l) _ m(z) )(m(l) _ m(z) )’a
, 5
-A(@'s_, a-1) ©)

pool

where A is Lagrange multiplier. The first-order
condition oF /0a =0 yidds:

(m? -m?)(m® -m?)Ya=1S,,a, (6)

that is a generalized eigenproblem. The matrix at
the left-hand side (6) is of the rank one because it
equals the outer product of a vector of the group
means differences. So the problem (6) has just
one eigenvalue different from zero and can be
simplified. Using a constant of the scalar product

c=(m® —m®?)’a, reduces (6) to the linear
system:

Spool a=¢q (m(l) - m(Z)) ’ (7)

where g=c/A is another constant. The solution of
this system is:

a=S,, (m® -m®), (8)

that defines Fisher famous two-group linear
discriminator (up to an arbitrary constant).

The same Fisher discriminator (8) can be
obtained if instead of the pooled matrix (4) the
total matrix of second-moments defined as a
cross-product X' X of the centered data is used, so
the elements of this matrix are:

(Sot Kk = Z (le mj )(in - mk) ’ (9)

where m, corr&ponds to mean value of each x
by total sample of size n. Similarly to
transformation known in the anaysis of
variance, consider decomposition of the cross-
product (9) into several items when the total set
of n observations is divided into subsets with
sizesn, witht=1,2, ..., T

(sm)ik=i(x —m)(%, —m) = zz[(x<°—m<°)+(m<” m,)Ix0

Z Z (X(t) m(t) )X(t) + Z Z (m(t) m )X(t)

t=1 i t=1 i=1
= 2306 =m0 =)+ S (i) —m m ~m).
t=1
(10)

-

=1
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The obtained double sum equals the pooled
second moment (4) for T groups, and the last sum
corresponds to a total (weighted by sub-sample
sizes) of the second moment of group means
centered by the total means of the variables. So
(20) can be rewrote in a matrix form as:

-
Sot = Spool + Z nt (m(t) - m)(m(t) - m), ’ (ll)

t=1
where m" is a vector of mean values m{® of

each j-th variable within t-th group, and m is a
vector of means for all variables by the total
sample.

Consider the case of two groups, T=2. Then
(11) can bereduced to

nm® +n,m® j
n, +n,

’

® ®)
nm® +nm
-[m‘l) — 1 2 j

_ ()
SOI - Spool + nl{m -

n +n,
® @
n,m® +n,m
+n,| m? -2 2 (12)
n,+n,
’
® @
nm® +n,m
(m(z) _'h 2 j
n,+n,

= Spool + h(m(l) _ m(z) )(m(l) _ m(z) )”

where h = mn/( m+ny) is a constant of the
harmonic sum of sub-sample sizes. In place of the
pooled matrix S, let us use the total matrix

S, (12) inthe LDA problem (7):

(Spool +h (m(l) _ m(2) )(m(l) _ m(Z))'

)a. (13)
= (m(l) _ m(Z))

Applying a known Sherman-Morrison formula
(Rao, 1973; Harville, 1997)

Aluv/A?

At = A ———
( ) 1+ Uu'Alv

: (14)

where A is a non-singular sguare n-th order
matrix, u and v are vectors of n-th order, the
matrix in the left-hand side (13) is inverted and
solution obtained:

a=S§,(m” -m?)q

— q
1+ h(m® - m?@)’s? (m® —m®)

pool

L, (m ~m®),

. (15)

Comparison of (8) and (15) shows that both
discriminant  functions coincide (up to
unimportant in LDA constant in the denominator
(15)), so we can use S instead of Sy -

This feature of proportional solutions for
the pooled or total matrices holds for more than
two classification groups as well. Consider a
criterion of maximizing ratio (3) of between-
group to the within-group variances for many
groups. Using therelation (11) yields:

_ a,(Sot B Spool )a

F ’

aAS,y a "
(X, nm -mym —my)a
- a’s,,a

pool

Similarly to derivation (5)-(6), (16) is reduced to
an eigenproblem:

[i n, (m(t) - m)(m(t) - m),ja =4 Spool a, (17)

t=1

that is a generalized eigenproblem for the many
groups. Denoting the scalar products at the left-
hand side (17) as some constants ¢, =(m®-m)’'a,
the solution of (22) via a linear combination of
Fisher discriminators is presented:

.
a=>¢cnS(mY-m. (18
t=1

pool

In the case of two groups we have simplification
(12) that reduces the eigenproblem (17) to the
solution (8). But the discriminant functions in
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multi-group LDA with the pooled matrix or the
total matrix in (17) are the same (up to a
normalization) — a feature similar to two group
LDA (15). To show this, rewrite (17) using (16)
in terms of these two matrices as a generalized
eigenproblem:

(SOI - Spool )a =1 Spool a. (19)

Multiplying S by the relation (19) reduces it
to a regular eigenproblem
(SpesSw)@=(A+1)a. Taking the objective

(16) with the total matrix in denominator, another
generalized eigenproblem is obtained:

(SOI - Spool )b = U SOI b ’ (20)

with eigenvalues x4 and eigenvectors b in this
case. Multiplying S_* by the relation (20), it is

pool
represented as (S5, S )b = (1/(1- ))b. Both
problems (19) and (20) are reduced to the
eigenproblem for the same matrix S 2, S, with
the eigenvalues connected as (1+4)(1-x)=1 and
with the coinciding eigenvectors a and b.
Now, consider some properties of linear
regression related to discriminant analysis.

Multiple regression can be presented in a matrix
form as amode!:

y=Xa+¢g, (22)

where Xa is a vector of theoretical values of the
dependent variable y (corresponding to the linear
aggregate z (1)), and & denotes a vector of errors.
The Least Squares objectivefor minimizing is:

LS=]e" = (y—Xa) (y~Xa)
=yy-2aX’'y+aXXa
(22)
The condition for minimization oLS/da=0

yields a normal system of equations:
(XX)a= XY, (23)

with the solution for the coefficients of the
regression model:

a=(XX)"*X¥y. (24)

Matrix of the second moments X' X in (23)
for the centered data is the same matrix S, (9).

If the dependent variable y is binary, then the
vector X'y is proportional to the vector of
differences between mean values by two groups
m® —m® | and solution (24) is proportional to
the solution (15) for the discriminant function
defined via S, . As it was shown in (15), the
results of LDA are essentially the same with both
Su O S, matrices. Although the Fisher

discriminator can be obtained in regular linear
regression of the binary group indicator variable
by the predictors, a linear regression with binary
output can aso be interpreted as a Fisher
discriminator. Predictions z=Xa (21) by the
regression model are proportional to the
classification (1) by the discriminator (15).

Regression as an Aggregate of Discriminators
Now, the regression is described by data
segments presented via an aggregate of
discriminators. Suppose the data are segmented,
for instance, the segments are defined by
clustering the independent variables, or by
severa intervals within a span of the dependent
variable variation. |dentify the segments by index
t =1,...,T to present the total second-moment

matrix S, = XX as the sum (11) of the pooled
second-moment matrix S, and the total of

outer products for the vectors of deviations of
each segment’'s means from the total means.
Using the relation (11), the normal system of
equations (23) for linear regression is represented
asfollows:

[Spoo, + i n (m® —m)(m® — m)’j a=XYy.
7 (25

where the pooled cross-product is defined due to
(10)-(11) as:
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T N T

Sps =22 () —m)(x -mP) = Y5,
t=1 i=1 t=1

(26)

where S are the matrices of second moments

within each t-th segment. Introducing the
constants

¢, =(mY —m)a, (27)

defined similarly to those in derivation (17)-(18),
reducing the system (25) to:

-
Spool a= Xy_ Z ntct (m(t) - m) . (28)

t=1

Then solution of (28) is:

.
a= S;iol XS/—Z ne, S;ol (m® —m)
t=1
T )
=, —2 NG A
t=1
(29)
In (29) the notations used are;
s = S XY 8= Syky (¥ —m),
(30)

S0 the vector age corresponds to the main part of
the total vector in (29) of the regression
coefficients defined via the pooled matrix (26),
and additional vectors a; correspond to Fisher
discriminators (8) between each t-th particular
segment and total data set. Decomposition (29)
shows that regression coefficients a consist of the
part a,o and a linear aggregate (with weights
nc;) of Fisher discriminators a; of the segments
versus total data. It isinteresting to note that if to
increase number of segments up to the number of
observations (T=n, with only one observation in
each segment) then each variabl€' s mean in any
segment coincides with the original observation

itsdf, m" =x¥, s0 S, =0 in (26). In this

case the sum in (25) coincides with the total
second-moment matrix, so the regular regression

pool

solution can be seen as an aggregate of the
discriminators by each observation versus total
vector of means.

The obtained decomposition (29) is
useful for interpretation, but it still contains the
unknown parameters ¢ (27) that need to be
estimated. First, notice that the Fisher
discriminators & (30) of each segment versus
entire data, are restricted by the relation:

T T
> na=>nS.,m"-m)
t=1 t=1
T
=S > n(m—m) . (31
t=1

T T
=S, (Zn[m“) —mZn[j:O

t=1 t=1

Thus, for T segments there are only T-1
independent discriminators.

Consider a simple case of two segmentsin
data. In difference to the described two-group
LDA problem (12)-(15) and its relation to the
binary linear regression (24), we can have a non-
binary output, for instance, a continuous
dependent variable. Using the derivation (12)-
(15) for the inversion of the matrix of the normal
system of equations (25), the solution (29) is
obtained for two-segment linear regression in
explicit form:

a=S,XYy
[ex DSy (MP —m@)(m® —m®P)’s 5 X
= pool 1+h (m(l) _ m(z) ),S;éol (m(l) _ m(z))

_ s x| M -mIYSe XY
pool 1+ h(m(l) . m(z))/S;i‘)l (m(l) _ m(z))
Sk (m? —m®),
(32)

where h is the same constant as in (12). It can be
seen that the vector of coefficients for two-
segment regression, similarly to the general
solution (29), equals the main part a0 (30)
minus a constant (in the parentheses at the right-
hand side (32) multiplied by the discriminator

(8).
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Another analytical result can be obtained
for three segments in data, when a genera
solution (29) contains two discriminators. For this
case we extended the Sherman-Morrison formula

(14) to theinversion of amatrix A+ UV, +U,V,,
where A is a non-singular matrix and U,V + U,V,

are two outer products of vectors. The derivation
for theinverted matrix of such a structureis given
in the Appendix. In this case, the system (25) can
be presented in the notations:

A= Spool v W=V :\/E(m(l) _m)!

U, =V, =/n, (m? —m)
(33)

Applying the formula (A16) with definitions (33),
we obtain solution of the system (25) for three
segments. In accordance with the relations (29)-
(31), this solution is expressed via the vector apgg
and two Fisher discriminators.

In a general case of any number T of
segments, the parameters ¢; in the decompasition
(29) can be obtained in the following procedure.
Theoretical values of the dependent variable are
predicted by the regresson modd (28) as
follows:

y=Xa= XSk Xy

T-1 & ’
+>GINX Sy (m=m)] = §,.5 + > G,
— t=1
(34)

where a predicted vector Y is decomposed to the
vector Y, defined via the pooled variance and

the items Y, related to the Fisher discriminator
functions in the prediction:

ypool - nggol XS/, yt =N nggol (m- m(t)) .
(35)
All the vectors in (35) can be found from the

data, so using y (34) in the regression (21), the
mode! is reduced to:

T-1
Ay=> ¢y, +e, (36)

t=1
where Ay =y—-Y,,, is a vector of difference

between empirical and predicted by pooled
variance theoretical values of the dependent
variable. The relation (36) is also a modd of
regression of the dependent variable Ay by the

new predictors - the Fisher classifications Y,

(35). This regression can be constructed in the
Least Squares approach (22)-(24). In difference
to the regresson (21) by possibly many
independent x variables, the model (36) contains
just a few regressors Y,, because a number of

segments is usually small.

Regression decomposition (25)-(35) uses
the segments within the independent variables,
that is expressed in presentation of the total
second-moment matrix of x-s at the left-hand side
(25) via the pooled matrix of x-s (26). However,
thereis also a vector X'y of the x-s cross-products
with the dependent variable y at the right-hand
side of normal system of equations (25). The
decomposition of this vector can aso be
performed by the relations (10)-(11). Suppose,
we use the same segments for all x-s and y
variables, then:

XS/E (Xy)tot = (Xy)pool
My -9)’

where ) and y are the mean values of the

(37)

dependent variable in each t-th segment and the
total mean. The elements of the vector (XY)

in (37) are defined dueto (10)-(11) as:

pool

TN
(X,j y) pool — Z (Xgit) - mgt) )(yi(t) - y(t)) ’
t=1 i=1

(38)

where x; is a column of observations for the j-th
variable in the X matrix. Using the presentation
(37)-(38) in place of the vector X'y in (29)-(30)
yields a more detailed decomposition of the
VeCtor ayo0 by the segments within the dependent
variable data. In the other relations (32), or (34)-
(35), this further decomposition can be used as
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well. In a more general case we can consider
different segments for the independent variables
and for the dependent variabley.

If yisan ordinal variable, and the segments
are chosen by its levels, then within each segment

there are zero equaled deviations y — y® =0.
Thus, in (38) the values (X]Y) ., =0, and the
decomposition (37) does not contain the pooled
vector (XY) ., . Solution (29) can then be given

as

pool

> n(m? -m(y© )

]
a=S.,| 7. =2 %&.
=2 ng (m?-m) B
t=1

(39)

where the vectors by segments and the constants
are defined as:

a = Sﬁiol (m(t) -m), "= nt(y(t) - y_ct)'
(40)

Thus, the solution (29)-(30) is in this case
reduced to the linear combination of discriminant
functions a; with the weights 7, , without the ape
input. This solution corresponds to the
classification (18) by severa groups in
discriminant analysis. The parameters y, can be
estimated as it is described in the procedure (32)-
(36). If we work with a centered data, a vector of
total means by x-variables m=0 and the mean
value Y = 0, so these items can be omitted in all
theformulae.

A useful property of the solution (30)
consists in the inversion of the pooled matrix
S0 instead of inversion of the total matrix

So =XXas in (24). If the independent

variables are multicollinear, their covariance or
correlation matrix is ill-conditioned or close to a
singular matrix. The condition number, defined
as ratio between the biggest and the smallest
eigenvalues, is large for the ill-conditioned
matrices and even infinite for a singular matrix.
For such a total matrix X'X there could be a

problem with its inversion. At the same time the
pooled matrix obtained as a sum of segmented
matrices (26), is usually less ill-conditioned. The
numerical simulations showed that the condition
numbers of the pooled matrices are regularly
many times less than these values of the related
total second-moment matrices. It means that
working with a pooled matrix in (30) yields more
robust results, not as prone to multicollinearity
effects asin aregular regression approach.

Numerical example

Consider an example from a red
research project with 550 observations, where
the dependent variable is customer overal
satisfaction with a bank merchant’ s services, and
the independent variables are: x; — satisfaction
with the account set up; X, — satisfaction with
communication; xs; — satisfaction with how sales
representatives answer  questions;, X, —
satisfaction with information needed for account
application; xs — satisfaction with the account
features,; x5 — satisfaction with rates and fees; x;
— satisfaction with time to deposit into account.
All variables are measured with a ten-point scale
from absolutely non-satisfied to absolutely
satisfied (1 to 10 values). The pair corrdations
of al variables are positive. The data is
considered in three segments of non-satisfied,
neutral, and definitely satisfied customers, where
the segments correspond to the values of the
dependent variable from 1 to 5, from 6 to 9, and
10, respectively.

Consider the segments contribution into
the regression coefficients and into the total
model quality. The coefficients of regression for
the standardized variables are presented in the
last column of Table 1.

The coefficient of multiple
determination for this model is RP=0.485, and F-
statistics equals 73.3, so the quality of the
regression is good. The first four columns in
Table 1 present inputs to the coefficients of
regression from the pooled variance of the
independent variables combined with the pooled
variance of the dependent variable and three
segments (37)-(38). The sum of these items in
the next column comprises the pooled subtotal

apool (30).
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Table 1. Regression Decompasition by the Items of Pooled Variance and Discriminators.

Fisher Regression
Pooled Variance of Predictors Discriminators
Variable Pooled Segment Segment Segment Pooled Segment Segment  Total
Dependent 1 2 3 Subtotal 1 3
X1 116 .026 .015 .064 222 -.011 -.044 .166
X2 .007 .149 .001 .049 .206 -.064 -.034 .108
X3 .008 232 -.006 .048 .282 -.100 -.033 .149
X4 -.035 .005 .021 .077 .068 -.002 -.053 .013
Xs .039 101 -.016 -.028 .096 -.044 .019 .072
Xs .054 .325 .012 142 .533 -.141 -.098 294
X7 .048 102 .018 .095 .262 -.044 -.065 153

Table 2. Regression Decomposition by Segments.

Core Input Segment 1 Segment3 Regression Total
Net Net Net Net
Variable Coefficient Effect Coefficient Effect Coefficient Effect Coefficient Effect
X1 A31 .072 .015 .008 .020 .011 .166 .091
Xo .008 .005 .084 .046 .015 .008 .108 .059
X3 .003 .001 A31 .069 .015 .008 .149 .078
Xa -.014 -.006 .003 .001 .024 .011 .013 .006
Xs .023 .008 .057 .020 -.009 -.003 .072 .025
Xs .066 .037 184 .103 .044 .025 .294 .165
X7 .065 .026 .058 .023 .030 .012 153 .061
R? 143 271 071 485
R? share 29% 56% 15% 100%
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The next two columns present the Fisher
discriminators (30) for the first and the third
segments. It is interesting to note that the
condition numbers of the predictors total and
pooled matrices of second moments equal 19.7
and 11.9, so the latter one is much less ill-
conditioned. Adding the pooled subtotal agu
and Fisher discriminators yields the total
coefficients of regression in the last column of
Tablel.

Combining some columns of the first
table, Table 2 of the main contributions to the
coefficients of regression is obtained. Table 2
consists of doubled columns containing
coefficients of regression and the corresponded
ne effects. In Table 2, the core input
coefficients equal the sum of pooled dependent
and the segment-2 columns from Table 1.
Segment-1 coefficients in Table 2 equal the sum
of two columns related to Segment-1 from Table
1, and similarly for the Segment-3 coefficients.

Summing all three of these columns of
coefficients in Table 2 yidds the total
coefficients of  regression.  Considering
coefficients in the columns of Table 2 in a way
similar to factor loadings in factor analysis, we
can identify which variables are more important
in each segment of the total coefficients of
regression. For instance, comparing coefficients
in each row across three first columns in Table
2, we see that the variables x; and x; have the
bigger values in the core input than in segments,
satisfaction with account set up and with time to
deposit into account play a basic role in the
customer overall satisfaction.

Segment-1 has bigger coefficients by the
variables x,, X3, Xs, and Xs, and the Segment-3
has a bigger coefficient by the variable x,, so the
corresponded attributes play the magjor roles in
creating customers dissatisfaction or delight,
respectively. It is interesting to note that this
approach produces similar results to another
techniqgue developed specifically for the
customer satisfaction studies (Conklin, Powaga
& Lipovetsky, 2004).

Besides the coefficients of regression,
Table 2 presents the net effects, or the
characteristics of comparative influence of the
regressors in the model (for more on this topic,
see Lipovetsky & Conklin, 2001). Quality of
regression can be estimated by the coefficient of

multiple determination defined by the scalar
product of the standardized coefficients of
regression g and the vector of pair correlations
rj of the dependent variable and each j-th
independent variables, so r;=(X'y);. ltems ry;g;
in total R? are called the net effects of each

predictor: R? =r,a, + 1,8, +..r,a,. The net

yn~n*
effects for core, two segment items, and their total
(that is equal to the net effects obtained by the
total coefficients of regression) are shown in
Table2.

The net effects can be also used for
finding the important predictors in each
component of total regression. Summing net
effects within their columns in Table 2 yields a
splitting of total R? =.485 into its core (R =.143),
segment-1 (R? =.271), and segment-3 (R =.071)
components. In the last row of Table 2 we see
that the core and two segments contribute to
total coefficient of multiple determination by
29%, 56%, and 15%, respectively. Thus, the
main share in the regression is produced by
segment-1 of the dissatisfaction influence.

Conclusion

Relations between linear discriminant analysis
and multiple regresson modeing were
considered using decomposition of total matrix of
second moments of predictors into pooled matrix
and outer products of the vectors of segment
means. It was demonstrated that regression
coefficients can be presented as an aggregate of
severa items related to the pooled segments and
Fisher discriminators. The reations between
regression and discriminant analyses demonstrate
how a total regression model is composed of the
regressions by the segments with possible
opposite directions of the dependency on the
predictors. Using the suggested approach can
provide a better understanding of regression
properties and help to find an adequate
interpretation of regression results.
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Appendix:

The Sherman-M orrison formula

A'uvA™
1+UA™Mv
is well known in various theoretical and practical
statistical evaluations. It is convenient to use
when the inverted matrix A is aready known,
so the inversion of A+uv’ can be expressed via
A™ dueto the formula (A1).

We extend this formula to the inversion
of a matrix with two pairs of vectors. Consider a

matrix A+ U,V, +U,V,, where A is a square non-

(A+w)* =A" - (A1)

singular matrix of n-th order, and u,V; + U,V, is
a matrix of the rank 2, arranged via two outer
products u,V, and u,V, of the vectors of n-th

order. Suppose we need to invert such a matrix to
solve alinear system:

(A+uv, +u,V,)a=h, (A2)
where aisavector of unknown coefficients and b
is a given vector. Opening the parentheses, we
get an expression:

Aa+uk, +u,k, =b, (A3)

where k; and k;, are unknown parameters defined
as scalar products of the vectors:

k,=(via), k,=(va), (Ad)
Solution a can be found from (A3) as:

a=A"b-kA'y —k,A™u,. (A5)

Substituting the solution (A5) into the system

(A2) and opening the parentheses yields a vector
equation:

klul + k2u2 + qullul + qul2ul

, (A6)
+k1Q21u2 + szzzuz =qu, +Cu,

where the following notations are used for the
known constants defined by the bilinear forms:

0 = \/1A_1u1’ O = \/1A_1u2!
Oy = \/zA_lula 0, = \/zA_luw

c=VA', c,=V,A'h
(A7)

Considering equations (A6) by the eements of
vector u; and by the elements of vector u,, we
obtain a system with two unknown parameters k;
and kz:

{ 1+ Q11)k1 + Q12k2 =G _ (A8)
Q21k1 + (1+ Q22)k2 =G,
So the solution for the parameters (A4) is:
= - /A,
k= (C,+0,C — C,C,) (A9)

kz = (Cz + .G, — QZlcl) lA,
with the main determinant of the system:

A= (1+ 0&1)(1"‘ qzz) — 010y,
= (1+ \/1A_1U1)(1+ \/2A_1u2)'(\/1A_1u2)(\/2 A_lul) -
(A10)
Using the obtained parameters (A9) in the vector
a (A5), we get:
AUV AT L+ 0p) + AUV AT (L)
_ _A_lul\/z A_lcnz — A_luz\/lA_lqﬂ

a={A*
A

(A11)

with the constants defined in (A7).

The expression in the figure parentheses
(A1l) defines the inverted matrix of the system
(A2). It can be easily proved by multiplying the
matrix in (A2) by the matrix in (A11), that yields
the uniform matrix. In a simple case when both
pairs of the vectors are equal, or UV, = U,V,,
they can be denoted as u,v, =u,v, =0.5uv,
and the expression (A12) reduces to the formula

(Al). We can explicitly present the inverted
matrix (A11) asfollows:
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AU VAT + AUV, AT
A
AUV, AUV, AT + ATV, AT VAT
. [— Au Vv, AUV AT - AU,V AUV, A‘lJ
A

(A+uV, +u,v5) = A" -

(A12)

For the important case of a symmetric
matrix A, each of the bilinear forms (A7) can be
equally presented by the transposed expression,
for instance,

O, = VLAY, = WA,

Using the property (A13) we simplify the
numerator of the second ratio in (Al2) to
following:
AU AV AT+ AU ATV VAT
~ATU WAV VAT - AU U ATV, AT (AL4)
=A" (ulu; - uzui) A (Vl\/z - VZ\/l) A

So the formula (A12) for a symmetric matrix A
can be represented as:

(A+ ulvi + UZV;)_l =A"

AT (U] +U,vp) AT
- A_l(ulu; - uzui)A_l (V1V; - Vzvi) A_l
A )
(A15)

with the determinant defined in (A10).
In a special case of the outer products of

each vector by itself, when u, =v, and u, =v,,
the formula (A15) transforms into:

(A+uu] +u,uy) =A™
{A‘l(ului +Uuy)A™ j

- A_l(ulu; B UZUI)A_l (ulu; B uzui)A_l
(1+u Ay @+ Uy AMY,) - (U A™MY,)?

(A16)



	Journal of Modern Applied Statistical Methods
	5-1-2005

	Regression By Data Segments Via Discriminant Analysis
	Stan Lipovetsky
	Michael Conklin
	Recommended Citation


	Microsoft Word - toc_v4_n1.doc

