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Regression By Data Segments Via Discriminant Analysis 
 

Stan Lipovetsky         Michael Conklin 
GfK Custom Research Inc 
Minneapolis, Minnesota 

 
 
It is known that two-group linear discriminant function can be constructed via binary regression. In this 
article, it is shown that the opposite relation is also relevant – it is possible to present multiple regression 
as a linear combination of a main part, based on the pooled variance, and Fisher discriminators by data 
segments. Presenting regression as an aggregate of the discriminators allows one to decompose 
coefficients of the model into sum of several vectors related to segments. Using this technique provides 
an understanding of how the total regression model is composed of the regressions by the segments with 
possible opposite directions of the dependency on the predictors. 
 
Key words: Regression, discriminant analysis, data segments 
 
 

Introduction 
 
Linear Discriminant Analysis (LDA) was 
introduced by Fisher (1936) for classification of 
observations into two groups by maximizing the 
ratio of between-group variance to within-group 
variance (Rao, 1973; Lachenbruch, 1979; Hand, 
1982; Dillon & Goldstein, 1984; McLachlan, 
1992; Huberty, 1994). For two-group LDA, the 
Fisher linear discriminant function can be 
represented as a linear regression of a binary 
variable (groups indicator) by the predictors 
(Fisher, 1936; Anderson, 1958; Ladd, 1966; 
Hastie, Tibshirani & Buja, 1994; Ripley, 1996). 
Many-group LDA can be described in terms of 
the Canonical Correlations Analysis (Bartlett, 
1938; Kendall & Stuart, 1966; Dillon & 
Goldstein, 1984; Lipovetsky, Tishler, & Conklin, 
2002). LDA is used in various applications, for 
example, in marketing research  
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(Morrison, 1974; Hora & Wilcox, 1982; 
Lipovetsky & Conklin, 2004). 
          Considered in this article is the possibility 
of presenting a multiple regression by segmented 
data as a linear combination of the Fisher 
discriminant functions. This technique is based 
on the relationship between total and pooled 
variances. Using this approach, we can interpret 
regression as an aggregate of discriminators, that 
allows us to decompose the coefficients of 
regression into a sum of vectors related to the 
data segments. Such a decomposition helps 
explain how a regression by total data could have 
the opposite direction of the dependency on the 
predictors, in comparison with the coefficients 
related to each segment.  

These effects correspond to well-known 
Simpson’s and Lord’s paradoxes (Blyth, 1972; 
Holland & Rubin, 1983; Good & Mittal, 1987; 
Pearl, 2000; Rinott & Tam, 2003; Skrondal & 
Rabe-Hesketh, 2004; Wainer & Brown, 2004), 
and to treatment and causal effects in the models 
(Arminger, Clogg & Sobel, 1995; Rosenbaum, 
1995; Winship & Morgan, 1999).  
          The article is organized as follows. Linear 
discriminant analysis and its relation to binary 
regression are first described. The next section 
considers regression by segmented data and its 
decomposition by Fisher discriminators, 
followed by a numerical example and a 
summary. 
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Methodology 
 

Consider the main features of LDA. Denote X a 
data matrix of n by p order consisting of n rows 
of observations by p variables x1, x2, …, xp. Also 
denote y a vector of size n consisting of binary 
values 1 or 0 that indicate belonging of each 
observations to one or another class. Suppose 
there are n1 observations in the first class (y =1), 
n2 observations in the second class (y =0), and 
total number of observations n=n1+n2 . Construct 
a linear aggregate of x-variables: 
 
                     aXz = ,                                      (1) 
 
where a is a vector of p-th order of unknown 
parameters, and z is an n-th order vector of the 
aggregate scores. Averaging scores z (1) within 
each group yields two aggregates: 
                                             

           ,, )2()2()1()1( amzamz ==                 (2) 
 
where m(1) and m(2) are vectors of p-th order of 

mean values )1(
jm  and )2(

jm of each j-th variable 

xj within the first and second group of 
observations, respectively. The maximum 
squared distance between two groups ||z(1)-z(2)||2 = 
||(m(1)-m(2))a||2 versus the pooled variance of 
scores a’Spool a defines the objective for linear 
discriminator: 
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with elements of the pooled matrix defined by 
combined cross-products of both groups:  
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Equation (3) can represent as a conditional 
objective: 
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where λ is Lagrange multiplier. The first-order 
condition 0/ =∂∂ aF  yields: 
                               

aSammmm poolλ=′−− ))(( )2()1()2()1( ,       (6) 

 
that is a generalized eigenproblem. The matrix at 
the left-hand side (6) is of the rank one because it 
equals the outer product of a vector of the group 
means’ differences. So the problem (6) has just 
one eigenvalue different from zero and can be 
simplified. Using a constant of the scalar product 

ammc )( )2()1( ′−= , reduces (6) to the linear 
system: 
                         

                        )( )2()1( mmqaS pool −= ,         (7) 

 
where q=c/λ is another constant. The solution of 
this system is: 
                        

                        )( )2()1(1 mmSa pool −= − ,           (8) 

 
that defines Fisher famous two-group linear 
discriminator (up to an arbitrary constant). 
          The same Fisher discriminator (8) can be 
obtained if instead of the pooled matrix (4) the 
total matrix of second-moments defined as a 
cross-product X’X  of the centered data is used, so 
the elements of this matrix are: 
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where mj corresponds to mean value of each xj 
by total sample of size n. Similarly to 
transformation known in the analysis of 
variance, consider decomposition of the cross-
product (9) into several items when the total set 
of n observations is divided into subsets with 
sizes nt  with t = 1, 2, …, T :  
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The obtained double sum equals the pooled 
second moment (4) for T groups, and the last sum 
corresponds to a total (weighted by sub-sample 
sizes) of the second moment of group means 
centered by the total means of the variables. So 
(10) can be rewrote in a matrix form as: 
                                

∑
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′−−+=
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t

tt
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1

)()( ))(( ,   (11) 

where )(tm  is a vector of mean values )(t
jm  of 

each  j-th variable within t-th group, and m is a 
vector of means for all variables by the total 
sample. 
          Consider the case of two groups, T=2. Then 
(11) can be reduced to 
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where h = n1n2/( n1+n2) is a constant of the 
harmonic sum of sub-sample sizes. In place of the 
pooled matrix poolS  let us use the total matrix 

totS  (12) in the LDA problem (7): 
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Applying a known Sherman-Morrison formula 
(Rao, 1973; Harville, 1997)  
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where A is a non-singular square n-th order 
matrix, u and v are vectors of n-th order, the 
matrix in the left-hand side (13) is inverted and 
solution obtained: 
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Comparison of (8) and (15) shows that both 
discriminant functions coincide (up to 
unimportant in LDA constant in the denominator 
(15)), so we can use Stot instead of Spool .  
          This feature of proportional solutions for 
the pooled or total matrices holds for more than 
two classification groups as well. Consider a 
criterion of maximizing ratio (3) of between-
group to the within-group variances for many 
groups. Using the relation (11) yields: 
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Similarly to derivation (5)-(6), (16) is reduced to 
an eigenproblem: 
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that is a generalized eigenproblem for the many 
groups. Denoting the scalar products at the left-

hand side (17) as some constants ct =( )(tm -m)’a , 

the solution of (22) via a linear combination of 
Fisher discriminators is presented: 
                                              

                 ∑
=

− −=
T

t

t
pooltt mmSnca

1

)(1 )( .         (18) 

 
In the case of two groups we have simplification 
(12) that reduces the eigenproblem (17) to the 
solution (8). But the discriminant functions in 
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multi-group LDA with the pooled matrix or the 
total matrix in (17) are the same (up to a 
normalization) – a feature similar to two group 
LDA (15). To show this, rewrite (17) using (16) 
in terms of these two matrices as a generalized 
eigenproblem:   
                                         
               aSaSS poolpooltot λ=− )( .             (19) 

 

Multiplying 1−
poolS  by the relation (19) reduces it 

to a regular eigenproblem 

aaSS totpool )1()( 1 +=− λ . Taking the objective 

(16) with the total matrix in denominator, another 
generalized eigenproblem is obtained:  
                                          
                 bSbSS totpooltot µ=− )( ,             (20) 

 
 with eigenvalues µ and eigenvectors b in this 

case. Multiplying 1−
poolS  by the relation (20), it is 

represented as bbSS totpool ))1/(1()( 1 µ−=− . Both 

problems (19) and (20) are reduced to the 

eigenproblem for the same matrix totpoolSS 1−  with 

the eigenvalues connected as (1+λ)(1-µ)=1 and 
with the coinciding eigenvectors a and b.  
          Now, consider some properties of linear 
regression related to discriminant analysis. 
Multiple regression can be presented in a matrix 
form as a model: 
               
                    ε+= aXy ,                               (21) 
 
where Xa is a vector of theoretical values of the 
dependent variable y (corresponding to the linear 
aggregate z (1)), and ε denotes a vector of errors. 
The Least Squares objective for minimizing is: 
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                                                                         (22) 
 
The condition for minimization 0/ =∂∂ aLS  
yields a normal system of equations: 
            yXaXX ′=′ )( ,                                   (23) 
 

with the solution for the coefficients of the 
regression model: 
  

                yXXXa ′′= −1)( .                            (24) 
 
          Matrix of the second moments X’X  in (23) 
for the centered data is the same matrix totS  (9). 

If the dependent variable y is binary, then the 
vector X’y is proportional to the vector of 
differences between mean values by two groups 

)2()1( mm − , and solution (24) is proportional to 
the solution (15) for the discriminant function 
defined via totS . As it was shown in (15), the 

results of LDA are essentially the same with both 

totS  or poolS  matrices. Although the Fisher 

discriminator can be obtained in regular linear 
regression of the binary group indicator variable 
by the predictors, a linear regression with binary 
output can also be interpreted as a Fisher 
discriminator. Predictions z=Xa (21) by the 
regression model are proportional to the 
classification (1) by the discriminator (15). 
 
Regression as an Aggregate of Discriminators 

Now, the regression is described by data 
segments presented via an aggregate of 
discriminators. Suppose the data are segmented; 
for instance, the segments are defined by 
clustering the independent variables, or by 
several intervals within a span of the dependent 
variable variation. Identify the segments by index 
t =1,…,T to present the total second-moment 
matrix XXStot ′= as the sum (11) of the pooled 

second-moment matrix poolS  and the total of 

outer products for the vectors of deviations of 
each segment’s means from the total means. 
Using the relation (11), the normal system of 
equations (23) for linear regression is represented 
as follows: 
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where the pooled cross-product is defined due to 
(10)-(11) as: 
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where St are the matrices of second moments 
within each t-th segment. Introducing the 
constants  
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defined similarly to those in derivation (17)-(18), 
reducing the system (25) to: 
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In (29) the notations used are: 
                                      

)(, )(11 mmSayXSa t
pooltpoolpool −=′= −− ,        

                                                                         (30) 
 
so the vector apool corresponds to the main part of 
the total vector in (29) of the regression 
coefficients defined via the pooled matrix (26), 
and additional vectors at correspond to Fisher 
discriminators (8) between each t-th particular 
segment and total data set. Decomposition (29) 
shows that regression coefficients a consist of the 
part apool and a linear aggregate (with weights 
ntct) of Fisher discriminators at of the segments 
versus total data. It is interesting to note that if to 
increase number of segments up to the number of 
observations (T=n, with only one observation in 
each segment) then each variable’s mean in any 
segment coincides with the original observation 

itself, )()( t
ki

t
k xm = , so 0=poolS  in (26). In this 

case the sum in (25) coincides with the total 
second-moment matrix, so the regular regression 

solution can be seen as an aggregate of the 
discriminators by each observation versus total 
vector of means.  

The obtained decomposition (29) is 
useful for interpretation, but it still contains the 
unknown parameters  ct (27) that need to be 
estimated. First, notice that the Fisher 
discriminators at (30) of each segment versus 
entire data, are restricted by the relation: 
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Thus, for T segments there are only T-1 
independent discriminators.  
           Consider a simple case of two segments in 
data. In difference to the described two-group 
LDA problem (12)-(15) and its relation to the 
binary linear regression (24), we can have a non-
binary output, for instance, a continuous 
dependent variable. Using the derivation (12)-
(15) for the inversion of the matrix of the normal 
system of equations (25), the solution (29) is 
obtained for two-segment linear regression in 
explicit form:  
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where h is the same constant as in (12). It can be 
seen that the vector of coefficients for two-
segment regression, similarly to the general 
solution (29), equals the main part apool (30) 
minus a constant (in the parentheses at the right-
hand side (32) multiplied by the discriminator 
(8). 
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          Another analytical result can be obtained 
for three segments in data, when a general 
solution (29) contains two discriminators. For this 
case we extended the Sherman-Morrison formula 
(14) to the inversion of a matrix 2211 vuvuA ′+′+ , 

where A is a non-singular matrix and 2211 vuvu ′+′  
are two outer products of vectors. The derivation 
for the inverted matrix of such a structure is given 
in the Appendix. In this case, the system (25) can 
be presented in the notations: 
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Applying the formula (A16) with definitions (33), 
we obtain solution of the system (25) for three 
segments. In accordance with the relations (29)-
(31), this solution is expressed via the vector apool 
and two Fisher discriminators. 
          In a general case of any number T of 
segments, the parameters ct in the decomposition 
(29) can be obtained in the following procedure. 
Theoretical values of the dependent variable are 
predicted by the regression model (28) as 
follows: 
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where a predicted vector y~  is decomposed to the 

vector pooly~  defined via the pooled variance and 

the items ty~  related to the Fisher discriminator 

functions in the prediction: 
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                                                                         (35) 
 
All the vectors in (35) can be found from the 
data, so using y~  (34) in the regression (21), the 
model is reduced to: 
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t
tt ycy ,               (36) 

where poolyyy ~−=∆  is a vector of difference 

between empirical and predicted by pooled 
variance theoretical values of the dependent 
variable. The relation (36) is also a model of 
regression of the dependent variable y∆  by the 

new predictors - the Fisher classifications ty~  

(35). This regression can be constructed in the 
Least Squares approach (22)-(24). In difference 
to the regression (21) by possibly many 
independent x variables, the model (36) contains 
just a few regressors ty~ , because a number of 

segments is usually small. 
          Regression decomposition (25)-(35) uses 
the segments within the independent variables, 
that is expressed in presentation of the total 
second-moment matrix of x-s at the left-hand side 
(25) via the pooled matrix of x-s (26). However, 
there is also a vector X’y of the x-s cross-products 
with the dependent variable y at the right-hand 
side of normal system of equations (25). The 
decomposition of this vector can also be 
performed by the relations (10)-(11). Suppose, 
we use the same segments for all x-s and y 
variables, then:  

                     
( ) ( )

1

( ) ( )

( )( )

tot pool

T
t t

t
t

X y X y X y

n m m y y
=

′ ′ ′≡ =

+ − −∑
,      (37) 

where )(ty  and y  are the mean values of the 

dependent variable in each t-th segment and the 
total mean. The elements of the vector poolyX )( ′  

in (37) are defined due to (10)-(11) as: 
                                  

∑∑
= =

−−=′
T

t

n

i

tt
i

t
j

t
jipoolj

t

yymxyx
1 1

)()()()( ))(()( ,   

                                                                         (38) 
 
where xj is a column of observations for the j-th 
variable in the X matrix. Using the presentation 
(37)-(38) in place of the vector X’y in (29)-(30) 
yields a more detailed decomposition of the 
vector apool by the segments within the dependent 
variable data. In the other relations (32), or (34)-
(35), this further decomposition can be used as 
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well. In a more general case we can consider 
different segments for the independent variables 
and for the dependent variable y.  
          If y is an ordinal variable, and the segments 
are chosen by its levels, then within each segment 

there are zero equaled deviations 0)()( =− tt
i yy . 

Thus, in (38) the values 0)( =′ poolj yx , and the 

decomposition (37) does not contain the pooled 
vector poolyX )( ′ . Solution (29) can then be given 

as: 
             

( ) ( )
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1

( )( )
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T
t t

t T
t

pool t tT
tt

t t
t

n m m y y

a S a

n c m m

γ=−

=

=
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∑
∑

∑

,   

                                                                         (39) 
 
where the vectors by segments and the constants 
are defined as: 
                           

)(,)( )()(1
t

t
tt

t
poolt cyynmmSa −−=−= − γ . 

                                                                         (40) 
 
Thus, the solution (29)-(30) is in this case 
reduced to the linear combination of discriminant 
functions at with the weights tγ , without the apool 

input. This solution corresponds to the 
classification (18) by several groups in 
discriminant analysis. The parameters tγ  can be 

estimated as it is described in the procedure (32)-
(36). If we work with a centered data, a vector of 
total means by x-variables 0=m  and the mean 
value 0=y , so these items can be omitted in all 
the formulae. 

A useful property of the solution (30) 
consists in the inversion of the pooled matrix 

poolS  instead of inversion of the total matrix 

XXStot ′= as in (24). If the independent 

variables are multicollinear, their covariance or 
correlation matrix is ill-conditioned or close to a 
singular matrix. The condition number, defined 
as ratio between the biggest and the smallest 
eigenvalues, is large for the ill-conditioned 
matrices and even infinite for a singular matrix. 
For such a total matrix X’X  there could be a 

problem with its inversion. At the same time the 
pooled matrix obtained as a sum of segmented 
matrices (26), is usually less ill-conditioned. The 
numerical simulations showed that the condition 
numbers of the pooled matrices are regularly 
many times less than these values of the related 
total second-moment matrices. It means that 
working with a pooled matrix in (30) yields more 
robust results, not as prone to multicollinearity 
effects as in a regular regression approach. 
 
Numerical example 

Consider an example from a real 
research project with 550 observations, where 
the dependent variable is customer overall 
satisfaction with a bank merchant’s services, and 
the independent variables are: x1 – satisfaction 
with the account set up;  x2 – satisfaction with 
communication; x3 – satisfaction with how sales 
representatives answer questions; x4 – 
satisfaction with information needed for account 
application;  x5 – satisfaction with the account 
features; x6 – satisfaction with rates and fees; x7 
– satisfaction with time to deposit into account. 
All variables are measured with a ten-point scale 
from absolutely non-satisfied to absolutely 
satisfied (1 to 10 values). The pair correlations 
of all variables are positive. The data is 
considered in three segments of non-satisfied, 
neutral, and definitely satisfied customers, where 
the segments correspond to the values of the 
dependent variable from 1 to 5, from 6 to 9, and 
10, respectively.  
          Consider the segments’ contribution into 
the regression coefficients and into the total 
model quality. The coefficients of regression for 
the standardized variables are presented in the 
last column of Table 1.  
 The coefficient of multiple 
determination for this model is R2=0.485, and F-
statistics equals 73.3, so the quality of the 
regression is good. The first four columns in 
Table 1 present inputs to the coefficients of 
regression from the pooled variance of the 
independent variables combined with the pooled 
variance of the dependent variable and three 
segments (37)-(38). The sum of these items in 
the next column comprises the pooled subtotal 
apool (30). 
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Table 1. Regression Decomposition by the Items of Pooled Variance and Discriminators. 

 

Pooled Variance of Predictors 
Fisher 

Discriminators 
Variable 

 
Pooled  

Dependent 
Segment 

1 
Segment 

2 
Segment 

3 
Pooled 

Subtotal 
Segment 

1 
Segment 

3 

Regression 
 

Total 
 

x1 .116 .026 .015 .064 .222 -.011 -.044 .166 
x2 .007 .149 .001 .049 .206 -.064 -.034 .108 
x3 .008 .232 -.006 .048 .282 -.100 -.033 .149 
x4 -.035 .005 .021 .077 .068 -.002 -.053 .013 
x5 .039 .101 -.016 -.028 .096 -.044 .019 .072 
x6 .054 .325 .012 .142 .533 -.141 -.098 .294 
x7 .048 .102 .018 .095 .262 -.044 -.065 .153 

 
Table 2. Regression Decomposition by Segments. 

 

Core Input Segment 1 Segment3 Regression Total 

Variable Coefficient 
Net 

Effect Coefficient 
Net 

Effect Coefficient 
Net 

Effect Coefficient 
Net 

Effect 
x1 .131 .072 .015 .008 .020 .011 .166 .091 
x2 .008 .005 .084 .046 .015 .008 .108 .059 
x3 .003 .001 .131 .069 .015 .008 .149 .078 
x4 -.014 -.006 .003 .001 .024 .011 .013 .006 
x5 .023 .008 .057 .020 -.009 -.003 .072 .025 
x6 .066 .037 .184 .103 .044 .025 .294 .165 
x7 .065 .026 .058 .023 .030 .012 .153 .061 
R2 .143 .271 .071 .485 

R2 share 29% 56% 15% 100% 
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The next two columns present the Fisher 
discriminators (30) for the first and the third 
segments. It is interesting to note that the 
condition numbers of the predictors total and 
pooled matrices of second moments equal 19.7 
and 11.9, so the latter one is much less ill-
conditioned. Adding the pooled subtotal apool 
and Fisher discriminators yields the total 
coefficients of regression in the last column of 
Table 1.   
           Combining some columns of the first 
table, Table 2 of the main contributions to the 
coefficients of regression is obtained. Table 2 
consists of doubled columns containing 
coefficients of regression and the corresponded 
net effects. In Table 2, the core input 
coefficients equal the sum of pooled dependent 
and the segment-2 columns from Table 1. 
Segment-1 coefficients in Table 2 equal the sum 
of two columns related to Segment-1 from Table 
1, and similarly for the Segment-3 coefficients. 

Summing all three of these columns of 
coefficients in Table 2 yields the total 
coefficients of regression. Considering 
coefficients in the columns of Table 2 in a way 
similar to factor loadings in factor analysis, we 
can identify which variables are more important 
in each segment of the total coefficients of 
regression. For instance, comparing coefficients 
in each row across three first columns in Table 
2, we see that the variables x1 and x7 have the 
bigger values in the core input than in segments, 
satisfaction with account set up and with time to 
deposit into account play a basic role in the 
customer overall satisfaction.  

Segment-1 has bigger coefficients by the 
variables x2, x3, x5, and x6, and the Segment-3 
has a bigger coefficient by the variable x4, so the 
corresponded attributes play the major roles in 
creating customers dissatisfaction or delight, 
respectively. It is interesting to note that this 
approach produces similar results to another 
technique developed specifically for the 
customer satisfaction studies (Conklin, Powaga 
& Lipovetsky, 2004).  
          Besides the coefficients of regression, 
Table 2 presents the net effects, or the 
characteristics of comparative influence of the 
regressors in the model (for more on this topic, 
see Lipovetsky &Conklin, 2001). Quality of 
regression can be estimated by the coefficient of 

multiple determination defined by the scalar 
product of the standardized coefficients of 
regression aj and the vector of pair correlations 
ryj of the dependent variable and each j-th 
independent variables, so ryj=(X’y)j. Items ryjaj 
in total R2 are called the net effects of each 

predictor: nynyy arararR ...2211
2 ++= . The net 

effects for core, two segment items, and their total 
(that is equal to the net effects obtained by the 
total coefficients of regression) are shown in 
Table 2.  

The net effects can be also used for 
finding the important predictors in each 
component of total regression. Summing net 
effects within their columns in Table 2 yields a 
splitting of total R2 =.485 into its core (R2 =.143), 
segment-1 (R2 =.271), and segment-3 (R2 =.071) 
components. In the last row of Table 2 we see 
that the core and two segments contribute to 
total coefficient of multiple determination by 
29%, 56%, and 15%, respectively. Thus, the 
main share in the regression is produced by 
segment-1 of the dissatisfaction influence.   
 

Conclusion 
 

Relations between linear discriminant analysis 
and multiple regression modeling were 
considered using decomposition of total matrix of 
second moments of predictors into pooled matrix 
and outer products of the vectors of segment 
means. It was demonstrated that regression 
coefficients can be presented as an aggregate of 
several items related to the pooled segments and 
Fisher discriminators. The relations between 
regression and discriminant analyses demonstrate 
how a total regression model is composed of the 
regressions by the segments with possible 
opposite directions of the dependency on the 
predictors. Using the suggested approach can 
provide a better understanding of regression 
properties and help to find an adequate 
interpretation of regression results. 
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Appendix: 
 
The Sherman-Morrison formula 
                                    

vAu

AvuA
AvuA

1

11
11

1
)( −

−−
−−

′+
′

−=′+                   (A1) 

is well known in various theoretical and practical 
statistical evaluations. It is convenient to use 

when the inverted matrix 1−A  is already known, 
so the inversion of vuA ′+  can be expressed via 

1−A  due to the formula (A1). 
We extend this formula to the inversion 

of a matrix with two pairs of vectors. Consider a 
matrix 2211 vuvuA ′+′+ , where A is a square non-

singular matrix of n-th order, and 2211 vuvu ′+′  is 
a matrix of the rank 2, arranged via two outer 
products 11vu ′  and 22vu ′  of the vectors of n-th 
order. Suppose we need to invert such a matrix to 
solve a linear system:   
                     
              bavuvuA =′+′+ )( 2211 ,                 (A2) 
 
where a is a vector of unknown coefficients and b 
is a given vector. Opening the parentheses, we 
get an expression: 
                   
                   bkukuAa =++ 2211 ,               (A3) 
 
where k1 and k2 are unknown parameters defined 
as scalar products of the vectors: 
         
              )(,)( 2211 avkavk ′=′= ,               (A4) 
 
Solution a can be found from (A3) as: 
          

  2
1

21
1

1
1 uAkuAkbAa −−− −−= .                  (A5) 

 
Substituting the solution (A5) into the system 
(A2) and opening the parentheses yields a vector 
equation: 
 

      1 1 2 2 1 11 1 2 12 1

1 21 2 2 22 2 1 1 2 2

k u k u k q u k q u

k q u k q u c u c u

+ + +
+ + = +

,            (A6) 

 
where the following notations are used for the 
known constants defined by the bilinear forms: 

          

1 1
11 1 1 12 1 2

1 1
21 2 1 22 2 2

1 1
1 1 2 2

, ,

, ,

, .

q v A u q v A u

q v A u q v A u

c v A b c v A b

− −

− −

− −

′ ′= =
′ ′= =

′ ′= =

         

                                                                        (A7) 
 
Considering equations (A6) by the elements of 
vector u1 and by the elements of vector u2, we 
obtain a system with two unknown parameters k1 
and k2: 
                                      

⎩
⎨
⎧

=++
=++

2222121

1212111

)1(

)1(

ckqkq

ckqkq
.                           (A8) 

 
So the solution for the parameters (A4) is: 
 

                 1 1 22 1 12 2

2 2 11 2 21 1

( ) / ,

( ) / ,

k c q c q c

k c q c q c

= + − ∆
= + − ∆

     (A9) 

 
with the main determinant of the system: 
 

11 22 12 21

1 1 1 1
1 1 2 2 1 2 2 1

(1 )(1 )

(1 )(1 )-( )( )

q q q q

v A u v A u v A u v A u− − − −

∆ = + + −
′ ′ ′ ′= + +

.  

                                                                      (A10) 
  
Using the obtained parameters (A9) in the vector 
a (A5), we get: 
 

1 1 1 1
1 1 22 2 2 11

1 1 1 1
1 1 2 12 2 1 21

(1 ) (1 )A u v A q A u v A q

A u v A q A u v A q
a A b

− − − −

− − − −
−

′ ′⎧ ⎫+ + +
⎪ ⎪

′ ′− −⎪ ⎪= −⎨ ⎬∆⎪ ⎪
⎪ ⎪
⎩ ⎭

                                                                      (A11) 
 
with the constants defined in (A7).  
          The expression in the figure parentheses 
(A11) defines the inverted matrix of the system 
(A2). It can be easily proved by multiplying the 
matrix in (A2) by the matrix in (A11), that yields 
the uniform matrix. In a simple case when both 
pairs of the vectors are equal, or 2211 vuvu ′=′ , 

they can be denoted as vuvuvu ′=′=′ 5.02211 , 
and the expression (A12) reduces to the formula 
(A1). We can explicitly present the inverted 
matrix (A11) as follows: 
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                                                                      (A12) 
 
          For the important case of a symmetric 
matrix A, each of the bilinear forms (A7) can be 
equally presented by the transposed expression, 
for instance,    
                   

                  

1 1
11 1 1 1 1

1 1
12 1 2 2 1

1 1
21 2 1 1 2

1 1
22 2 2 2 2

,

,

,

.

q v A u u A v

q v A u u A v

q v A u u A v

q v A u u A v

− −

− −

− −

− −

′ ′= =
′ ′= =
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     (A13) 

 
Using the property (A13) we simplify the 
numerator of the second ratio in (A12) to 
following:  
 

 

1 1 1 1 1 1
1 2 1 2 2 1 2 1

1 1 1 1 1 1
1 2 2 1 2 1 1 2

1 1 1
1 2 2 1 1 2 2 1( ) ( ) .
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So the formula (A12) for a symmetric matrix A 
can be represented as: 
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                  (A15) 
 
with the determinant defined in (A10). 
          In a special case of  the outer products of 
each vector by itself, when 11 vu =  and 22 vu = , 
the formula (A15) transforms into: 
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