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Some Guidelines For Using Nonparametric Methods For 
Modeling Data From Response Surface Designs 

 
            Christine M. Anderson-Cook                       Kathryn Prewitt 
               Statistical Sciences Group                     Mathematics and Statistics 
                                Los Alamos National Laboratory                   Arizona State University 
 
 
Traditional response surface methodology focuses on modeling responses using parametric models with 
designs chosen to balance cost with adequate estimation of parameters and prediction in the design space. 
Using nonparametric smoothing to approximate the response surface offers both opportunities as well as 
problems. This article explores some conditions under which these methods can be appropriately used to 
increase the flexibility of surfaces modeled. The Box and Draper (1987) printing ink study is considered 
to illustrate the methods. 
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Introduction 
 
In his review of the current status and future 
directions in response surface methodology, 
Myers (1999) suggests that one of the new 
frontiers is to utilize nonparametric methods for 
response surface modeling. Explored in this 
article are some of the key issues influencing the 
success of these methods used together. 
Combining nonparametric smoothing 
approaches, which typically depend on space-
filling samples of points in the desired prediction 
region, with response surface designs, which 
primarily focus on an economy of points for 
adequate prediction of prespecified parametric 
models, presents some unique challenges. 
Nonparametric approaches are typically used 
either as an exploratory data analytic tool in 
conjunction with a parametric method or 
exclusively  because  a  parametric model  didn't 
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provide the necessary sensitivity to curvature. 
The number and location of design 

points impose a limitation on the order of the 
polynomial the parametric model can 
accommodate. This, in turn, imposes a limitation 
on the type of curvature of the fitted model. 
Standard response surface techniques using 
parametric models often assume a quadratic 
model. Nonparametric techniques assume a 
certain amount of smoothness, but do not 
impose a form for the curvature of the target 
function. Local polynomial models which fit a 
polynomial model within a window of the data 
can pick up important curvature, which a 
parametric fit typically cannot. Issues of what 
designs are suitable for utilizing nonparametric 
methods, appropriate choices of smoother types 
as well as bandwidth considerations will all be 
discussed. Important limitations exist for 
incorporating these methods into surface 
modeling, because ill-defined or nonsensical 
models can easily be generated without careful 
consideration of how to blend the method and 
design. 

Vining and Bohn (1998) utilized the 
Gasser-Mueller estimator (G-M) (see Gasser & 
Mueller, 1984) which is a kernel based 
smoothing method to estimate the process vari-
ance for a dual response system for the Box and 
Draper (1987) printing ink study. In that study, a 
full 33 factorial design was used with three 
replicates per combination of factors. Each 
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variable was considered in the range [-1, 1] for 
the coded variables. Dual models were 
developed to find an optimal location by 
modeling both the mean of the process, which 
has a desired target value of 500, and the 
variance of the process, which ideally would be 
minimized. Using a parametric model for the 
mean and a nonparametric model for the 
variance, Vining and Bohn (1998) obtained a 
location in the design space with a substantially 
improved estimate mean square error (MSE) 
over parametric models for both mean and 
variance presented by Del Castillo and 
Montgomery (1993) and Lin and Tu (1995). The 
estimated MSE was the chosen desirability 
function for simultaneously optimizing the mean 
and variances of the process. 

The Box and Draper (1987) example has 
some interesting features that suggest con-
sideration of nonparametric methods for 
modeling the variability of the data set. Because 
the mean response has been carefully studied 
and appears to be relatively straightforward to 
model, the focus is on the characteristics and 
modeling of the standard deviation. This is only 
half of the problem for the dual modeling 
approach, but the nonparametric issues here are 
many.  

First, an overview of the characteristics 
of that part of the data set is provided. Figure 1 
shows a plot of the 27 estimates of the standard 
deviation at the 33 factorial locations. Clearly, 
there is no easily discernible pattern in this 
response such as a simple function of the three 
factors. In addition, the range of the data should 
give us some concern. Within the range of the 
experimental design space, the standard 
deviation varies from a value of 0 (all three 
observations at each of (-1,-1,0) and (0,0,0) were 
measured to be exactly the same) to a value of 
158.2 at (1,0,1). 

This should alert one to a possible 
problem immediately as this range occurring in 
an actual process seems extreme. Figure 2 shows 
several different ranges of response standard 
deviations from 1 to 20. It is uncertain as to what 
a maximal proportional difference between 
minimum and maximum variance should be, 
however, a 1:10 or 1:20 ratio already seems 
excessive for most well-controlled industrial 
processes. Hence, one of the goals of the 

modeling should likely be to moderate this range 
of observed variability to more closely reflect 
what is believed to be realistic for the actual 
process. 

If the modeling undersmoothes the data 
(approaching interpolating between observed 
points), a risk exists of basing the dual response 
optimization on non-reproducible idiosyncrasies 
of the data. If the data is oversmoothed, 
important curvature is flattened making it 
difficult to find the best location for the process. 
This perpetual problem of modeling is doubly 
important here as the results of the model are 
being used to determine weights for the 
modeling of the mean of the process as well as 
for the optimization of the global process 
through the dual modeling paradigm. Hence, as 
different models for the variability are 
considered, predicted ranges will be noted 
throughout the design space. 

Reviewed in this article are some of the 
basics of nonparametric methods and their 
implications for the designed experiment are 
discussed with limited sample size and 
structured layout of design points. Then 
compared are different nonparametric 
approaches to the existing parametric choices 
and those presented in Vining and Bohn (1998) 
for this particular example, and conclude with 
some general recommendations for how to 
sensibly and appropriately use nonparametric 
methods for response surface designs 
 
Smoothing Methods 

Smoothing methods are distinct from 
traditional response surface parametric modeling 
in that they use different subsets of the data and 
different weightings for the selected points at 
different locations in the design space. There are 
several popular nonparametric smoothing 
methods such as the Nadaraya-Watson 
(Nadaraya, 1964) and Watson (1964) which fits 
a constant to the data in a window, the Gasser-
Mueller (Gasser & Mueller, 1984) which is a 
convolution-type estimator, spline smoothing 
(Eubank, 1999), and local polynomial methods 
(Fan & Gijbels, 1996) which fit polynomials in 
the local data window. 
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Figure 1: Printing Ink standard deviation raw data 
 

  
 

Figure 2: Range of observed responses likely with different values for a variety of 
standard deviations 
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The local polynomial methods (lowess) 
have several positive properties for this problem. 
Generally, these methods fit a polynomial within 
a window of data determined by a bandwidth 
with the kernel function providing weights for 
the points. The estimators are linear 
combinations of the responses just as the 
familiar parametric regression estimators. The 
Nadaraya-Watson estimator fits a constant in the 
window so it is a special case of the local 
polynomial method. When fitting polynomials 
of order greater than one, these estimators have 
been shown to naturally account for the bias 
issues on the boundary (Ruppert & Wand, 
1994). In the problem, most of the data (26 of 27 
locations) are on the edge, so the concern should 
be with the behavior of estimators on the 
boundary.  

Typically the nonparametric literature 
differentiates between behavior on the boundary 
and behavior in the interior. The variance of this 
estimator conditioned on the data is unbounded. 
The unconditional variance of the estimator is 
actually infinite (Seifert & Gasser, 1996) if the 
number of points in the window is small (two or 
less in the local linear, univariate X case). 
Consequently, the number of points in the 
window should be greater than two in the 
univariate X case and in practice greater than the 
minimum necessary to calculate the estimator. 
The conditional unbounded variance is due to 
the fact that the coefficients of the iY ’s in the 

estimator can be positive or negative).  
Problem can be envisioned as all data 

points are on the edges of a cube with the 
exception of the point (0, 0, 0). The minimum 
bandwidth which would include at least 4 data 
points would be larger than 1 (half of the range 
of each coded variable) otherwise the number of 
points in the window would be too small to 
allow estimation. 

Observe n independent data points 
( , iYiX ) where 1 2( , , , )i i ipX X X= �iX  are the 

locations in the design space, and iY  is the 

response. The model assuming homoscedastic 
error for nonparametric function estimation is: 

    
 ( ) ( )i iY m σ ε= +i iX X         (1) 

where ( ) 0iE ε =  with ( ) 1iVar ε =  and 
2 ( ) ( | )x Var Y X xσ = = . The smoothing 

function, m(.) is also called the regression 
function, ( | )E Y X x= . It is assumed that the 
variance of the error term for the problem of 
modeling the printing ink standard deviations 
would be reasonably constant. 

Kernel smoothing nonparametric 
methods involve the choice of a kernel function 
and a bandwidth as a smoothing parameter 
which determines the window of data to be 
utilized in the estimation process. The idea is to 
weight the data according to its closeness to the 
target location, hence to estimate 0( )m x , greater 

weight is given to the iY  values with associated 

iX  values close to 0x . 

Spline smoothing methods are 
categorized as a nonparametric technique and 
involve a smoothing parameter but no kernel 
function. One of the few references to an 
application of nonparametric methods to 
response surface problems is Hardy et al. (1997) 
who explored the use of R-splines with a 
significantly larger number of design points and 
with the goal of selecting variables for the 
regression model rather than obtaining a 
plausible curve. 

There are special considerations when 
using nonparametric methods for the printing 
data problem which are next outlined. Most of 
the literature regarding nonparametric methods 
shows application to space-filling designs and a 
larger number of sample points. The printing 
example has 27 data points which is 
significantly smaller than the data typically seen 
in the smoothing literature. Most of these points 
are on the boundary or edge. It is known that 
nonparametric estimators can exhibit so-called 
boundary effects. If a method such as the 
Gasser-Mueller (Gasser & Mueller, 1984) is 
used, the bias is bounded but not decreasing with 
increased sample size as one would want unless 
kernel functions called boundary kernels are 
used. This means that a different kernel needs to 
be used when a point is on the boundary. 

Local polynomial methods of order 
greater than 1 incorporate naturally the boundary 
kernels necessary. These methods are easily 
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explained by comparing them to a weighted least 
squares problem where the kernel function 
provides the weights and the estimate is 
provided by solving a familiar looking matrix 
operation. Most of the nonparametric methods 
literature provides results and examples for 
sample sizes much larger than the printing data 
and also provides leading terms of the bias and 
variance to describe the behavior of the 
estimator which implies that there are negligible 
terms as n grows large. The problem then is 
much different than has been addressed before: 
the sample size is small, the design is not space-
filling and most of the points are on the edge. 
 
Bandwidth issues  

One of the most important choices to 
make when using a nonparametric method of 
function estimation is the smoothing parameter. 
For kernel methods, the bandwidth is such a 
parameter. Large bandwidths provide very 
smooth estimates and smaller bandwidths 
produce a more noisy summary of the 
underlying relationship. The reason for this 
behavior can be seen in the leading terms of the 
bias and variance for a point in the interior in the 
univariate explanatory variable case: 

 
2 21

2( ( )) ''( ) ( )Bias m x m x b K u u du≈ ∫
�

 

and   
 

          

2 2( )
( ( ))

( )

K u du
Var m x

nbf x

σ
≈ ∫�

         (2) 

 
where f(x) is the density of the X explanatory 
variable, K(.) the kernel function, and b the 
bandwidth. The effect of the bandwidth can be 
observed: large values of the bandwidth increase 
the bias and reduce the variance of the predicted 
function; small values decrease the bias and 
increase the variance. This difficulty is called 
the bias-variance tradeoff. Bandwidth selection 
methods can be local (potentially changing at 
each point at which the function is to estimated) 
or global (where a single bandwidth is used for 
the entire curve). Typically, the bandwidth is 
often chosen to minimize an optimality criterion, 
such as an estimate of the leading terms of the 
MSE or cross-validation (see Eubank, 1988, Fan 

& Gijbels, 1995; Prewitt & Lohr, 2002). The 
optimality quantities are more accurate when 
data sets are larger, i.e., the leading terms of the 
MSE leave out negligible terms which are often 
not negligible when n is small. In simulation 
studies with bivariate data, sample sizes of n < 
50 are not seen. The current problem, on the 
other hand, involves multivariate data with three 
explanatory variables and one response with a 
total of only 27 data points. Minimizing a 
quantity such as SSE where 
 

2

1

ˆ( ( ))
n

i
i

SSE Y m
=

= −∑ iX  (3) 

 
cannot be used for the purpose of goodness of fit 
because without a parametric form for m(.), SSE 
is minimized with ˆ ( )iY m= iX , i.e. the curve 

estimate which minimizes this quantity is 
obtained by connecting the points. The purpose 
of the bandwidth selection method is essentially 
to solve the bias-variance tradeoff difficulty 
described previously. The second derivative in 
the bias term suggests that these estimators 
typically underestimate peaks and overestimate 
valleys which is sometimes an argument for 
using a local bandwidth choice since the 
expectation would be to use a smaller bandwidth 
in regions where there are more curvature. 

Because the number of points in the 
problem is small, it would be more sensible to 
use a global bandwidth, one bandwidth for the 
entire curve. There are not enough points to 
justify accurate estimation of different local 
bandwidths. This is not to say that in the future 
it may be discovered that in fact different 
bandwidths should be used to estimate different 
portions of the surface, but existing methods 
(Fan & Gijbels, 1995; Prewitt, 2003) will not 
work. Methods for local bandwidth selection 
have relied on the fact that each candidate 
bandwidth for a particular point 0x  will 

incorporate additional data points as the 
bandwidth candidates become larger which may 
not be the case for the problem. 
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Methodology 
 
Nonparametric Methods for the Sparse Response 
Surface Designs 

Two methods were considered that take 
into account the special circumstances of the 
problem as previously outlined. The fitted 
constant (C) version of the local polynomial 
(Nadaraya, 1964; Watson, 1964) and the local 
linear version (LL) (see Fan & Gijbels, 1996) 
were used. The benefit of fitting these models is 
that curvature can be achieved without fitting 
higher order polynomials as is necessary when a 
completely parametric model is fit. There is the 
potential to capture different kinds of curvature 
consistent with what might be reasonable given 
the nature of the design implemented. The 
Epanechnikov kernel was used 

    

 2( ) 0.75(1 ) (| | 1)K u u I u= − ≤         (4) 
 
which is simple and has optimal properties 
(Mueller, 1988). 

At the point 1 2 3( , , )x x x=x  the 

weighted least squares estimate with a kernel 
function as the weight. The two methods can be 
described as follows where ˆ ( )Cm x is the local 

polynomial with fitted constant: Let the weight 
function be defined as:  

3

3
1

1
1

( , ) j ij
b b

j

x X
K x X K

b=

−⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∏ .  

 
This is called a product kernel because it is the 
product of three univariate kernel functions. The 
kernel function equals zero when data points are 
outside the window defined by the bandwidth 
and has a nonzero weight when iX  is inside the 

window. It is appropriate to use the same 
bandwidth in each of the three directions 
because the scaling of the coded variables in the 
set-up of the response surface design makes 
units comparable in all directions. The definition 
below resembles a weighted least squares 
estimator when a constant is fit. 

0

2
0

1

1

ˆ ( ) argmin ( ) ( )

( )

( )

n

NW i b
i

n
b

i b

m Y K

K Y

K

β β
=

=

= −

=

∑

∑
∑

i

i

i

x,X

x, X
x,X

x

 

                                                                    (5) 
 
The second method considered is 

defined below and resembles a weighted least 
squares estimator where a plane is fit with the 
data centered at x so that the desired estimator is 

0β̂  and the "LL" stands for local linear with no 

higher order terms. 
 

0 0 1 1
1

ˆ ( )

arg min ( ( )

LL

n

i
i

m

Y xβ β β
=

= − − −∑ i1X

x

 

2
2 2 3 3( ) ( )) ( )bx x Kβ β− − − −i2 i3 iX X x, X  

                                                                         (6) 
One can also think of the above 

estimators as motivated by a desire to estimate 
( )m x  by using the first few terms of its Taylor 

expansion, ( )NWm x  is constructed by 

considering an interval around x and estimating 
the first term of the Taylor expansion around x 
where ( )LLm x uses estimates of first order terms 

of the Taylor expansion as an estimate of ( )m x . 
 
Printing Example Smoothing 

 It has already been noted that some 
particular issues concerning the application of 
nonparametric smoothing to a sparse small set of 
data with the vast majority of design locations 
on the edges. A related issue to consider is what 
type of surface is possible or likely. If the 
variability of the process can change very 
quickly and dramatically within the range of the 

design space, then the 33 factorial design is an 
inadequate choice and should be replaced by a 
much larger space filling design.  

However, if the surface should change 
moderately slowly throughout the region, then 

the 33 design may be adequate. As well, if the 
surface is likely to be relatively smooth and 
undergoes changes slowly, then a nonparametric 
method should be selected and bandwidth that 
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uses information from several nearby points to 
estimate the surface locally. Examined now are 
some of the implications of choosing different 

bandwidths for this 33 factorial design. 

The 33 factorial design is comprised of 
27 locations on the cube: 8 corner points, 12 
edge points, 6 face center points and one center 
point. Notably, all but one of the points are on 
the edge of the design space. This is standard 
practice for parametric estimation, because D- 
and G-efficiency both benefit from maximal 
spread of points to the edges of the design space.  

However, this set-up coupled with the 
extreme small sample size is highly unusual for 
nonparametric approaches. One of the 
advantages of the structured locations selected 
for a response surface design is that allows the 
investigation of the characteristics of estimation 
for different nonparametric bandwidth choices. 
For example, using the Epanechnikov kernel 
weighting function, the number of design points 
can be specified that will be used for estimation 
at each of the four categories of design points. 

Table 1 shows the effect of bandwidth 
on different locations as well as the range of the 
non-zero weights for particular bandwidths used 
for the local estimation. Bandwidths less than 
0.5 of the total range of each variable use only 
the observation at that location, while a 
bandwidth of 1 uses all observations. The 
weights associated with each design location 
change for different weights. As the bandwidth 
increases, not only do more locations get used, 
but also their relative contributions to the 
estimate become more comparable. For 
example, for a bandwidth of 0.6 at one of the 
design points, the observation at the location to 
be estimated is weighted approximately 35 times 
more (1.25 / 0.036) than the most distant non-
zero weighted observations. As well, for a 
design point and a bandwidth of 1, this ratio 
drops to 2.4 (0.75 / 0.316) and the points used 
are also further away. 

Various authors considered different 
models for the standard deviation for this data 
set. Parametric models considered include a 
linear model in all three factors on log(standard 

deviation +1), shown in Figure 3(a) with an R2 

of 29.4 %. The transformation of the standard 
deviation was done to improve fit, and to avoid 

negative predicted values. The range of 
predicted standard deviation values back on the 
original scale for this model range from 5.0 to 
113.5, which gives a ratio of maximum to 
minimum standard deviation of 22.7. A full 
quadratic model for log(standard deviation +1) 

yields an R2 of 40.6 % and is shown in Figure 
3(b). Here, the ratio of maximum to minimum 
standard deviation is 25.5 (145.1/5.7). 

Fitting the constant (C) and local first-
order polynomial (LL) methods for a variety of 
bandwidths to the data were also considered. 
Figures 4 (a), and (b), show predicted surfaces 
for the untransformed standard deviation with 
the constant C method and bandwidths of 0.8 
and 1.0, respectively. Figures 5(a), (b) and (c), 
show the LL method for the same response and 
bandwidths of 0.6, 0.8 and 1.0. For each of the 
parts of the figures, three slices of the design 
space are shown, with the third factor, C, at the 
low, middle and high value. Figures 6(a), (b) and 
7(a), (b) show the predicted surfaces when 
modeling using the log(standard deviation +1) 
response and bandwidths of 0.8 and 1.0. As the 
bandwidth increases, the surface becomes 
smoother, reflecting the idiosyncrasies of the 
data less.  

Tables 2 and 3 summarize the ranges of 
predicted values throughout the design space 
observed for the different methods for both the 
untransformed and log(standard deviation +1) 
responses. The C method tends to moderate the 
range of the predicted values considerably more 
than either the parametric or the lowess models. 
This is due the relative lack of influence of edge 
effects with extreme values. The transformation 
to the log-scale does not have a consistent effect 
on the range of prediction for the different 
approaches, with it moderating the range of 
predicted values for only some of the 
bandwidths. The LL method is susceptible to 
prediction of larger values near the edges of the 
design space, with a seeming sensitivity to edge 
effects. Notably missing from this comparison is 
the best Vining and Bohn (1998) smoother 
(Gasser-Mueller), which uses a bandwidth of 0.3 
of the total range. As noted in Table 1, this small 
bandwidth is essentially an interpolator with 
most regions having only a single observation 
used for the estimation. 
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Table 1: Number of points contributing to local estimation for 33 factorial, with Epanechnikov kernel. 

 

 
 
Table 2: Summary of Prediction Values for Lowess and Local Average on Untransformed Standard Deviations. 
 

 
 
Table 3: Summary of Prediction Values for Lowess and Local Average on Transformed Log (Standard 
Deviations+1). 
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Figure 3: Contour plots for best Linear and Quadratic parametric models based on the Box and Draper (1987) 
data for log (standard deviations + 1). 
 

 
 
Figure 4: Contour plots of local average models for untransformed response with bandwidths 0.8 and 1. 
 
(a) 

 
(b) 

 



ANDERSON-COOK & PREWITT 115 

 
 
 

 
 
 

 
Figure 5: Contour plots of lowess models for untransformed response with bandwidths 0.6, 0.8 and 1. 

 
(a)  
 

 
(b) 
 

 
(c)  

 



USING NONPARAMETRIC METHODS FOR MODELING RSM DATA  116 

 
Figure 6: Contour plots of local average models for logarithm transformed response with bandwidths 0.8 and 1. 
 
(a) 

 
(b) 

 
Figure 7: Contour plots of lowess models for logarithm transformed response with bandwidths 0.8 and 1. 

(a) 

 
(b) 
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The fit was next considered by 

comparing the R2 values for the different 
methods in Table 4. Unlike parametric models, 

where minimizing the R2 is desirable, here the 
goal is to obtain a good fit without merely 
interpolating between points. This is a 
particularly appropriate strategy given the 
extreme ranges of values for the standard 
deviation observed. Also reported are the cross-

validation R2 values which were obtained by 
removing a single observation, refitting the 
model with 26 points, and then calculating the 
difference between the predicted value and what 
was observed.  

Typically in other regression settings, 
this is a way of measuring the robustness of the 
model for future prediction. However, in this 
case, with such a small sparse data set, removing 
a single point (almost all of which are on the 
edge of the design space) has the result of 
leading us to do extensive extrapolation to 
obtain the new predicted values. As a result, the 
values obtained were very discouraging. For a 
number of the cases, including the quadratic 
parametric model and the small bandwidth LL 

method, negative R2 values were obtained, 
which imply that the model has predicted less 
well than just using a constant for the entire 
surface. Again, the structure of the data and the 
extreme amount of extrapolation involved in this 
calculation should be considered in interpreting 
these values. The 0.3 bandwidth Vining and 
Bohn (1998) smoother cannot be considered in 
this comparison, because an empty region in the 
design space was obtained for all of the points, 

which does not allow the cross-validation R2 

value to be calculated. 
However, there are a few general 

conclusions that can be reached. First, one 
should be quite cautious with any of these 
models. Due to the sparsity of the data, they can 
be influenced considerably by a single value. 

Secondly, larger bandwidths give lower R2 

values, but generally perform better under the 
challenges of the cross-validation assessment. 
Finally, the LL method appears to outperform 

the C method for the R2 values, but consistently 

underperform C for the cross-validation R2. This 
reflects the sensitivity to edge effects of this 

method, which either yields good responsiveness 
if using the values near the edge, or wide 
extrapolation when this point is removed. This 
seems to imply some superiority for the C 
method, which outperforms both the parametric 
models, and appears to retain some useful 
predictive ability even when used for 
extrapolation. 

Based on an overall assessment of all 
characteristics of the methods considered, the 
Nadaraya-Watson local averaging (C) method 
with bandwidth of either 0.8 or 1.0 emerge as 
leading choices. The bandwidth of 1.0 uses all of 
the data, with diminishing weights for more 
distant points. The 0.8 bandwidth excludes 
points on the opposite side of the design space 
for corner, edge and face-center points. Both of 
these models allow for greater flexibility than 
either of the parametric models, by allowing 
greater adaptability of the shape of the surface, 
while also utilizing a significant proportion of 
the data for estimation. They provide enough 
smoothing to produce a surface that likely is 
consistent with underlying assumptions of how 
the standard deviation of the process might vary 
across the range of the design space 

 
Conclusion 

 
Based on sparseness of the data sets typical for 
many response surface designs, it should be 
evident that the use of nonparametric methods 
must be used with care to avoid nonsensical 
results. However, the printing ink example has 
demonstrated that nonparametric models have 
real potential for helping with modeling 
responses, when the restrictions of a parametric 
model are too limiting. The ability to adapt the 
shape of the surface locally is desirable, and can 
be done even when there are only a small 
number of values observed across the range of 
each variable. It is particularly important to 
consider a priori what the surface, range and 
ratio of maximum to minimum predicted values 
reasonably might be. The chosen method should 
balance optimizing fit, while still maintaining 
characteristics of the appropriate shape. 
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Due to a large number of points on the 
edge of the design space, which is highly 
desirable for D- and G-efficiency when using a 
parametric model, a smoother which is 
insensitive to edge effects is recommended. The 
local averaging smoother (C) performed quite 
well although the (LL) supposedly has superior 
boundary capability in the bias term both in 
order and boundary kernel adjustment. The 
reason for this apparent contradiction may be 
again that the sample size is small and the 
boundary order results depend on larger sample 
sizes or as pointed out in Ruppert and Wand 
(1994)  the  boundary  variance  of the (LL) may  

 
 

be larger than the boundary variance of the (C) 
estimator. Consequently the local averaging (C) 
estimator is recommended for this problem. 

The local first-order polynomial works 
well in many standard applications, where the 
proportion of edge points is small, but does not 
seem like a suggested choice for most response 
surface designs. 

To avoid near-interpolation, a moderate 
to large bandwidth needs to be used. Table 5 
considers perhaps the most popular class of 
response surface designs, the Central Composite 
Design. It gives the number of points used for 
estimation for the different types of points for a 

 
Table 4: Fit of models to Log (Standard Deviation +1) response. 

 
 

 
 

Table 5: Number of points contributing to local estimation for different Central Composite Designs and widths. 
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number of different bandwidths. A bandwidth of 
size less than 0.5, or half the range of the coded 
variables, yield estimates for some of the points 
using only a small number of observations. 

By coupling moderate to large 
bandwidths with the Epanechnikov kernel, it is 
possible to downweight but not eliminate the 
contribution of more distant points, and hence a 
balance between local adaptivity and moderating 
extreme values is retained. 

Symmetric designs, such as 3k factorials 
and Central Composite, are likely to perform 
better than non-symmetric designs, like Box-
Behnken or fractional factorial designs (with 
some corners of the design space unexplored). 
While the non-symmetric design performs well 
for parametric models, the surface will be 
disproportionately poorly estimated in some 
regions. 

Given the inherent different structure of 
response surface designs compared to more 
standard regression studies typically considered 
in the nonparametric smoothing literature, 
considerably more research is possible to 
determine not only reasonable, but optimal 
smoothing strategies in this context. 
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