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Determining The Correct Number Of Components To Extract From A Principal 
Components Analysis: A Monte Carlo Study Of The Accuracy Of The Scree Plot.  

 
Gibbs Y. Kanyongo 

Department of Foundations and Leadership 
Duquesne University 

 
 
This article pertains to the accuracy of the of the scree plot in determining the correct number of 
components to retain under different conditions of sample size, component loading and variable-to-
component ratio. The study employs use of Monte Carlo simulations in which the population parameters 
were manipulated, and data were generated, and then the scree plot applied to the generated scores. 
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Introduction 
 
In social science research, one of the decisions 
that quantitative researchers make is determining 
the number of components to extract from a 
given set of data. This is achieved through 
several factor analytic procedures. The scree plot 
is one of the most common methods used for 
determining the number of components to 
extract. It is available in most statistical software 
such as the Statistical Software for the Social 
Sciences (SPSS) and Statistical Analysis 
Software (SAS). 

Factor analysis is a term used to refer to 
statistical procedures used in summarizing 
relationships among variables in a parsimonious 
but accurate manner. It is a generic term that 
includes several types of analyses, including (a) 
common factor analysis, (b) principal 
component analysis (PCA), and (c) confirmatory 
factor analysis (CFA). According to Merenda, 
(1997) common factor analysis may be used 
when a primary goal of the research is to 
investigate how well a new set of data fits a 
particular well-established model. On the other  
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hand, Stevens (2002) noted that principal 
components analysis is usually used to identify 
the factor structure or model for a set of 
variables. In contrast; CFA is based on a strong 
theoretical foundation that allows the researcher 
to specify an exact model in advance. In this 
article, principal components analysis is of 
primary interest. 
 
Principal component analysis  

Principal component analysis develops a 
small set of uncorrelated components based on 
the scores on the variables. Tabachnick and 
Fidell (2001) pointed that components 
empirically summarize the correlations among 
the variables. PCA is the more appropriate 
method than CFA if there are no hypotheses 
about components prior to data collection, that 
is, it is used for exploratory work. 

When one measures several variables, 
the correlation between each pair of variables 
can be arranged in a table of correlation 
coefficients between the variables. The 
diagonals in the matrix are all 1.0 because each 
variable theoretically has a perfect correlation 
with itself. The off-diagonal elements are the 
correlation coefficients between pairs of 
variables. The existence of clusters of large 
correlation coefficients between subsets of 
variables suggests that those variables are 
related and could be measuring the same 
underlying dimension or concept. These 
underlying dimensions are called components. 
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A component is a linear combination of 
variables; it is an underlying dimension of a set 
of items. Suppose, for instance a researcher is 
interested in studying the characteristics of 
freshmen students. Next, a large sample of 
freshmen are measured on a number of 
characteristics like personality, motivation, 
intellectual ability, family socio-economic 
status, parents’ characteristics, and physical 
characteristics. Each of these characteristics is 
measured by a set of variables, some of which 
are correlated with one another.  

An analysis might reveal correlation 
patterns among the variables that are thought to 
show the underlying processes affecting the 
behavior of freshmen students. Several 
individual variables from the personality trait 
may combine with some variables from 
motivation and intellectual ability to yield an 
independence component. Variables from family 
socio-economic status might combine with other 
variables from parents’ characteristics to give a 
family component. In essence what this means is 
that the many variables will eventually be 
collapsed into a smaller number of components. 
 Velicer et. al., (2000) noted that a 
central purpose of PCA is to determine if a set of 
p observed variables can be represented more 
parsimoniously by a set of m derived variables 
(components) such that m < p.  In PCA the 
original variables are transformed into a new set 
of linear combinations (principal components). 
Gorsuch (1983) described the main aim of 
component analysis as to summarize the 
interrelationships among the variables in a 
concise but accurate manner. This is often 
achieved by including the maximum amount of 
information from the original variables in as few 
derived components as possible to keep the 
solution understandable. 

Stevens (2002) noted that if we have a 
single group of participants measured on a set of 
variables, then PCA partitions the total variance 
by first finding the linear combination of 
variables that accounts for the maximum amount 
of variance. Then the procedure finds a second 
linear combination, uncorrelated with the first 
component, such that it accounts for the next 
largest amount of variance, after removing the 
variance attributable to the first component from 
the system. The third principal component is 

constructed to be uncorrelated with the first two, 
and accounts for the third largest amount of 
variance in the system.  This process continues 
until all possible components are constructed. 
The final result is a set of components that are 
not correlated with each other in which each 
derived component accounts for unique variance 
in the dependent variable. 
 
Uses of principal components analysis 

Principal component analysis is 
important in a number of situations. When 
several tests are administered to the same 
examinees, one aspect of validation may involve 
determining whether there are one or more 
clusters of tests on which examinees display 
similar relative performances. In such a case, 
PCA functions as a validation procedure. It 
helps evaluate how many dimensions or 
components are being measured by a test. 

Another situation is in exploratory 
regression analysis when a researcher gathers a 
moderate to a large number of predictors to 
predict some dependent variable. If the number 
of predictors is large relative to the number of 
participants, PCA may be used to reduce the 
number of predictors. If so, then the sample size 
to variable ratio increases considerably and the 
possibility of the regression equation holding up 
under cross-validation is much better (Stevens 
2002). Here, PCA is used as a variable reduction 
scheme because the number of simple 
correlations among the variables can be very 
large. It also helps in determining if there is a 
small number of underlying components, which 
might account for the main sources of variation 
in such a complex set of correlations. If there are 
30 variables or items, 30 different components 
are probably not being measured. It therefore 
makes sense to use some variable reduction 
scheme that will indicate how the variables or 
items cluster or “hang” together. 

The use of PCA on the predictors is also 
a way of attacking the multicollinearity problem 
(Stevens, 2002). Multicollinearity occurs when 
predictors are highly correlated with each other. 
This is a problem in multiple regression because 
the predictors account for the same variance in 
the dependent variable. This redundancy makes 
the regression model less accurate in as far as 
the number of predictors required to explain the 
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variance in the dependent variable in a 
parsimonious way is concerned. This is so 
because several predictors will have common 
variance in the dependent variable. The use of 
PCA creates new components, which are 
uncorrelated; the order in which they enter the 
regression equation makes no difference in 
terms of how much variance in the dependent 
variable they will account for.  

Principal component analysis is also 
useful in the development of a new instrument. 
A researcher gathers a set of items, say 50 items 
designed to measure some construct like attitude 
toward education, sociability or anxiety. In this 
situation PCA is used to cluster highly correlated 
items into components. This helps determine 
empirically how many components account for 
most of the variance on an instrument. The 
original variables in this case are the items on 
the instrument. 

Stevens (2002) pointed out several 
limitations (e.g., reliability consideration and 
robustness) of the k group MANOVA 
(Multivariate Analysis of Variance) when a 
large number of criterion variables are used. He 
suggests that when there are a large number of 
potential criterion variables, it is advisable to 
perform a PCA on them in an attempt to work 
with a smaller set of new criterion variables. 
 
The scree plot 
 The scree plot is one of the procedures 
used in determining the number of factors to 
retain in factor analysis, and was proposed by 
Cattell (1966). With this procedure eigenvalues 
are plotted against their ordinal numbers and one 
examines to find where a break or a leveling of 
the slope of the plotted line occurs. Tabachnick 
and Fidell (2001) referred to the break point as 
the point where a line drawn through the points 
changes direction. The number of factors is 
indicated by the number of eigenvalues above 
the point of the break. The eigenvalues below 
the break indicate error variance. An eigenvalue 
is the amount of variance that a particular 
variable or component contributes to the total 
variance. This corresponds to the equivalent 
number of variables that the component 
represents. Kachigan, (1991) provided the 
following explanation: a component associated 
with an eigenvalue of 3.69 indicates that the 

component accounts for as much variance in the 
data collection as would 3.69 variables on 
average. The concept of an eigenvalue is 
important in determining the number of 
components retained in principal component 
analysis. 
  The scree plot is an available option in 
most statistical packages. A major weakness of 
this procedure is that it relies on visual 
interpretation of the graph. Because of this, the 
scree plot has been accused of being subjective. 
Some authors have attempted to develop a set of 
rules to help counter the subjectivity of the scree 
plot. Zoski and Jurs (1990) presented rules for 
the interpretation of the scree plot. Some of their 
rules are: (a) the minimum number of break 
points for drawing the scree plot should be three, 
(b) when more than one break point exists in the 
curve, the first one should be used, and (c) the 
slope of the curve should not approach vertical. 
Instead, it should have an angle of 40 degrees or 
less from the horizontal. 

Previous studies found mixed results on 
the accuracy of the scree plot. Zwick and Velicer 
(1986) noted that “the scree plot had moderate 
overall reliability when the mean of two trained 
raters was used” (p.440). Cattell and Jaspers 
(1967) discovered that the scree plot displayed 
very good reliability. On the other hand, 
Crawford and Koopman (1979) reported very 
poor reliability of the scree plot.  
 
Monte Carlo study 

Hutchinson and Bandalos, (1997) 
pointed that Monte Carlo studies are commonly 
used to study the behavior of statistical tests and 
psychometric procedures in situations where the 
underlying assumptions of a test are violated. 
They use computer-assisted simulations to 
provide evidence for problems that cannot be 
solved mathematically. Robey and Barcikowski 
(1992) stated that in Monte Carlo simulations, 
the values of a statistic are observed in many 
samples drawn from a defined population.  
 Monte Carlo studies are often used to 
investigate the effects of assumption violations 
on statistical tests. Statistical tests are typically 
developed mathematically using algorithms 
based on the properties of known mathematical 
distributions such as the normal distribution. 
Hutchinson and Bandalos, (1997) further noted 
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that these distributions are chosen because their 
properties are understood and because in many 
cases they provide good models for variables of 
interest to applied researchers. Using Monte 
Carlo simulations in this study has the advantage 
that the population parameters are known and 
can be manipulated; that is, the internal validity 
of the design is strong although this will 
compromise the external validity of the results. 

According to Brooks et al. (1999), 
Monte Carlo simulations perform functions 
empirically through the analysis of random 
samples from populations whose characteristics 
are known to the researcher. That is, Monte 
Carlo methods use computer assisted 
simulations to provide evidence for problems 
that cannot be solved mathematically, such as 
when the sampling distribution is unknown or 
hypothesis is not true. 
 Mooney, (1997) pointed that the 
principle behind Monte Carlo simulation is that 
the behavior of a statistic in a random sample 
can be assessed by the empirical process of 
actually drawing many random samples and 
observing this behavior. The idea is to create a 
pseudo-population through mathematical 
procedures for generating sets of numbers that 
resemble samples of data drawn from the 
population. 

Mooney (1997) further noted that other 
difficult aspects of the Monte Carlo design are 
writing the computer code to simulate the 
desired data conditions and interpreting the 
estimated sampling plan, data collection, and 
data analysis. An important point to note is that 
a Monte Carlo design takes the same format as a 
standard research design. This was noted by 
Brooks et al., (1999) when they wrote “It should 
be noted that Monte Carlo design is not very 
different from more standard research design, 
which typically includes identification of the 
population, description of the sampling plan, 
data collection and data analysis” (p. 3). 
 

Methodology 
 

Sample size (n)  
Sample size is the number of 

participants in a study. In this study, sample size 
is the number of cases generated in the Monte 
Carlo simulation. Previous Monte Carlo studies 

by (Velicer et al. 2000, Velicer and Fava, 1998, 
Guadanoli & Velicer, 1988) found sample size 
as one of the factors that influences the accuracy 
of procedures in PCA. This variable had three 
levels (75, 150 and 225). These values were 
chosen to cover both the lower and the higher 
ends of the range of values found in many 
applied research situations. 
 
Component loading (aij) 

Field (2000) defined a component 
loading as the Pearson correlation between a 
component and a variable. Gorsuch, 1983 
defined it as a measure of the degree of 
generalizability found between each variable and 
each component. A component loading reflects a 
quantitative relationship and the further the 
component loading is from zero, the more one 
can generalize from that component to the 
variable. Velicer and Fava, (1998), Velicer et al., 
(2000) found the magnitude of the component 
loading to be one of the factors having the 
greatest effect on accuracy within PCA. This 
condition had two levels (.50 and .80). These 
values were chosen to represent a moderate 
coefficient (.50) and a very strong coefficient 
(.80).  
 
Variable-to-component ratio (p:m)  

This is the number of variables per 
component. The number of variables per 
component will be measured counting the 
number of variables correlated with each 
component in the population conditions. The 
number of variables per component has 
repeatedly been found to influence the accuracy 
of the results, with more variables per 
component producing more stable results. Two 
levels for this condition were used (8:1 and 4:1). 
Because the number of variables in this study 
was fixed at 24, these two ratios yielded three 
and six variables per factor respectively. 
 
Number of variables 
 This study set the number of variables a 
constant at 24, meaning that for the variable-to-
component ratio of 4:1, there were six variables 
loading onto one component, and for variable-
to-component ratio of 8:1, eight variables loaded 
onto a component (see Appendixes A to D). 
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Generation of population correlation matrices 
 A pseudo-population is an artificial 
population from which samples used in Monte 
Carlo studies are derived.  In this study, the 
underlying population correlation matrices were 
generated for each possible aij and p:m 
combination, yielding a total of four matrices 
(see Appendixes E to H).  

The population correlation matrices 
were generated in the following manner using 
RANCORR programme by Hong (1999): 

 
1. The factor pattern matrix was specified 
based on the combination of values for p:m and 
aij (see Appendixes A to D). 
2. After specifying the factor pattern 
matrix and the program is executed, a population 
correlation matrix was produced for each 
combination of conditions. 
3. The program was executed four times to 
yield four different population correlation 
matrices, one correlation matrix for each 
combination of conditions (see Appendixes E to 
H).  
 
 After the population correlation matrices 
were generated, the Multivariate Normal Data 
Generator (MNDG) program (Brooks, 2002) 
was used to generate samples from the 
population correlation matrices. This program 
generated multivariate normally distributed data. 
A total of 12 cells were created based on the 
combination of n, p: m and aij. For each cell, 30 
replications were done to give a total of 360 
samples, essentially meaning that 360 scree plots 
were generated. Each of the samples had a pre-
determined factor structure since the parameters 
were set by the researcher. The scree plots were 
then examined to see if they extracted the exact 
number of components as set by the researcher. 
 
Interpretation of the scree plots 

The scree plots were given to two raters 
with some experience in interpreting scree plots. 
These raters were graduate students in 
Educational Research and Evaluation and had 
taken a number of courses in Educational 
Statistics and Measurement.  

 
 

First, the raters were asked to look at the 
plots independently to determine the number of 
components extracted. Second, they were asked 
to interpret the scree plots together. The raters 
had no prior knowledge of how many 
components were built into the data. The 
accuracy of the scree plot was measured by how 
many times it extracted the exact number of 
components.  
 

Results 
 
The first research question of the study is: How 
accurate is the scree plot in determining the 
correct number of components? This question 
was answered in two parts. First, this question 
was answered by considering the degree of 
agreement between the two raters. Table 1 is of 
the measure of agreement between the two raters 
when component loading was .80. To interpret 
Table 1, the value of 1 indicates a correct 
decision and a value of 0 indicates a wrong 
decision by the raters as they interpreted the 
scree plots. A correct decision means that the 
scree plot extracted the correct number of 
components (either three components for 8:1 
ratio or six components for 4:1). Thus, from 
Table 1, the two raters agreed correctly 108 of 
the times while they agreed wrongly 52 times.  
 
Table 1. A cross tabulation of the measure of 
agreement when component loading was .80 
between rater 1 and rater 2. 
 
 Rater 2  

 0 1 Total 

Rater 1      0 52 11 63 

                  1 9 108 117 

Total 61 119 180 

 
An examination of Figures 1 and 2 show 

that when component loading was .80, it was 
relatively clear where the cut-off point was for 
determining the number of components to 
extract.    Figure 1  clearly   shows  that   six  the  
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components were extracted and in Figure 2, 
three components were extracted. These two 
plots show why it was easy for the raters to have 
more agreement for component loading of .80. 
This was not the case when component loading 
was .50 as the raters had few cases of agreement 
and more cases of disagreement. 
 
 

 

 
In Table 2, when component loading 

was .50, the two raters agreed correctly only 28 
times and agreed wrongly 97 times. Compared 
to component loading of .80, the scree plot was 
not as accurate when component loading was 
.50. This finding is consistent with that of Zwick 
and Velicer (1986) who noted in their study that, 
“The raters in this study showed greater 
agreement at higher than at lower component 

 
Figure 1. The scree plot for variable-to-component ratio of 4:1, component loading of .80 
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Figure 2.  The scree plot for variable-to-component ratio of 8:1, component loading of .80 
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loading levels.” (p. 440). Figures 1 and 2 show 
typical scree plots that were obtained for 
component loading of .50. In Figure 3, the 
number of components extracted was supposed 
to be six, but it is not clear from the plot were 
the cut-off point is for six components. One can 
see why there were a lot of disagreements 
between the two raters when component loading 
was low. In Figure 4, the plot was supposed to 
extract three components, but it is not quite clear 
even to an experienced rater, how many 
components to be extracted with this plot. These 
cases show how it is difficult to use the scree 
plots especially in exploratory studies when the 
researcher does not know the number of 
components that exist. 
 
Table 2. A cross tabulation of the measure of 
agreement when component loading was .50 
between rater 1 and rater 2. 
 
 Rater 2  

 0 1 Total 

Rater 1       0 97 50 147 

                  1 5 28 33 

Total 102 78 180 

 
Reports of rater reliability on the scree 

plot have ranged from very good (Cattell & 
Jaspers, 1967) to quite poor (Crawford & 
Koopman, 1979). This wide range and the fact 
that data encountered in real life situations rarely 
have perfect structure with high component 
loading makes it difficult to recommend this 
procedure as a stand-alone procedure for 
practical uses in determining the number of 
components. Generally, most real data have low 
to moderate component loading, which makes 
the scree plot an unreliable procedure of choice 
(Zwick & Velicer, 1986). 

The second part of question one was to 
consider the percentages of time that the scree 
plots were accurate in determining the exact 
number of components, and those percentages 
were computed for each cell (see table 5). In 

Table 5, results of the two raters are presented 
according to variable-to-component ratio, 
component loading and sample size. The table 
shows mixed results of the interpretation of the 
scree plot by the two raters. However, the scree 
plot appeared to do well when component 
loading was high (.80) with a small number of 
variables (three). When variable-to-component 
ratio was 8:1 and component loading was .80, 
the scree plot was very accurate. The lowest 
performance of the scree plot in this cell was 
87% for a sample size of 75. On the other hand, 
when variable-to-component ratio was 4:1, 
component loading was .80, and sample size was 
225, the scree plot was only accurate 3% of the 
time with rater 1. With rater 2 under the same 
conditions, the scree plot was correct 13% of the 
time.  

The second question was: Does the 
accuracy of the scree plot change when two 
experienced raters interpret the scree plots 
together? For this question, percentages were 
computed of how many times the two raters 
were correct when they interpreted the scree 
plots together. The results are presented in table 
5 in the row Consensus row. These results show 
that even if two raters work together, the 
accuracy of the scree plot does not necessarily 
improve when component loading was .50.  
When variable-to-component ratio was 8:1 and 
component loading was .50, rater 2 was actually 
better than when the two raters worked together. 
This is again an example of the mixed results 
obtained by the scree plot which makes it 
unreliable. On the other hand, the accuracy of 
the scree plot improved when component 
loading was .80, and variable-to-component 
ratio was 4:1. When component loading was .80, 
and variable-to-component ratio was 8:1, having 
two rates work together did not change anything 
since the scree plot was very accurate when the 
two raters work independently. 

The bottom line is in this study, the 
scree plot produced mixed results and this is 
mainly due to its subjectivity. Although it was 
100% accurate under certain conditions, it was 
also terrible under other conditions. It however 
emerged from this study that the accuracy of the 
scree plot improves when the component 
loading is high, and the number of variables per 
component is few.  
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Figure 3.  The scree plot for variable-to-component ratio of 4:1, component loading of .50 
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Figure 4.  The scree plot for variable-to-component ratio of 8:1, component loading of .50 
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Table 5. Performance of scree plot (as a percentage) under different conditions of variable-to-
component ratio, component loading and sample size. 

 
V-C-R   4: 1     8: 1   
Comp.loading  .50   .80   .50   .80  

Sample size 75 150 225 75 150 225 75 150 225 75 150 225 

Rater 1 73% 20% 10% 10% 16% 3% 33% 13% 27% 87% 100% 100% 

Rater 2 67% 10% 16% 26% 23% 13% 63% 57% 77% 100% 100% 100% 

Consensus  23% 20% 10% 75% 100% 100% 47% 23% 47% 100% 97% 100% 
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Conclusion 
 

Generally, the findings of this study are in 
agreement with previous studies that found 
mixed results on the scree plot. The subjectivity 
in the interpretation of the procedure makes it 
such an unreliable procedure to use as a stand-
alone procedure. The scree plot would probably 
be useful in confirmatory factor analysis to 
provide a quick check of the factor structure of 
the data. In that case the researcher already 
knows the structure of the data as opposed to 
using it in exploratory studies where the 
structure of the data is unknown. If used in 
exploratory factor analysis, the scree plot can be 
misleading even for experienced researcher 
because of its subjectivity.  

Based on the findings of this study, it is 
recommended that the scree plot not be used as a 
stand-alone procedure in determining the 
number of components to retain. Researchers 
should use it with other procedures like parallel 
analysis or Velicer’s Minimum Average Partial 
(MAP) and parallel analysis. In situations where 
the scree plot is the only procedure available, 
users should be very cautious in using it and 
they can do so in confirmatory studies but not 
exploratory studies.  

 
References 

 
Brooks, G. P. (2002). MNDG. 

http://oak.cats.ohiou.edu.edu/~brooksg/mndg.ht
m. 

Brooks, G. P., Barcikowski, R. S., & 
Robey, R. R. (1999). Monte Carlo simulation 
for perusal and practice. A paper presented at 
the meeting of the American Educational 
Research Association, Montreal, Quebec, 
Canada. (ERIC Document Reproduction Service 
No. ED449178). 

Cattell, R. B. (1966). The scree test for 
the number of factors. Multivariate Behavioral 
Research, 1, 245-276. 

Cattell, R. B., & Jaspers, J. (1967). A 
general plasmode for factor analytic exercises 
and research. Multivariate Behavioral Research 
Monographs, 3, 1-212. 

 
 

Crawford, C. B., & Koopman, P. (1973). 
A note on Horn’s test for the number of factors 
in factor analysis. Multivariate Behavioral 
Research, 8, 117-125. 

Field, A. (2000). Discovering statistics 
using SPSS for Windows. London: UK. Sage. 
Gorsuch, R. L. (1983). Factor analysis (2nd 
ed.). Hillsdale, NJ: Lawrence Erlbaum 
Associates. 

Guadagnoli, E., & Velicer, W. F. 
(1988). Relation of sample size to the stability of  
component patterns. Psychological Bulletin, 
103, 265-275. 

Hong, S. (1999). Generating correlation 
matrices with model error for simulation studies 
in factor analysis: A combination of the Tucker-
Koopman-Linn model and Wijsman’s algorithm. 
Behavior Research Methods, Instruments & 
Computers, 31, 727-730. 

Hutchinson, S. R., & Bandalos, D. L. 
(1997). A guide to Monte Carlo simulation 
research for applied researchers. Journal of 
Vocational Education Research, 22, 233-245. 

Kachigan, S. K. (1991). Multivariate 
statistical analysis: A conceptual introduction 
(2nd ed.). New York: Radius Press. 

Linn, R. L. (1968). A Monte Carlo 
approach to the number of factors problem. 
Psychometrika, 33, 37-71.   

Merenda, F. P. (1997). A Guide to the 
proper use of factor analysis in the conduct and 
reporting of research: Pitfalls to avoid. 
Measurement and Evaluation in Counseling and 
Development, 30, 156-164. 

Mooney, C. Z. (1997). Monte Carlo 
simulation (Sage University Paper series on 
Quantitative Applications in the Social Sciences, 
series no. 07-116). Thousand Oaks, CA: Sage. 

O’Connor, B. P. (2000). SPSS and SAS 
programs for determining the number of 
components using parallel analysis and Velicer’s 
MAP test. Behavior Research Methods, 
Instruments & Computers, 32, 396-402. 

Robey, R. R., & Barcikowski, R. S. 
(1992). Type 1 error and the number of 
iterations in Monte Carlo studies of robustness. 
British Journal of Mathematical and Statistical 
Psychology, 45, 283-288. 

Stevens, J. (2002). Applied multivariate 
statistics for the social sciences. Mahwah. NJ: 
Lawrence Erlbaum Associates. 



KANYONGO 129 

Steiner, D. L. (1998). Factors affecting 
reliability of interpretations of scree plots. 
Psychological Reports, 83, 689-694. 

Tabachnick , B. G., &  Fidell, L. S. 
(2001). Using multivariate statistics (4th ed.) 
Needham Heights., MA: Pearson. 

Velicer, F. W., Eaton, C. A., & Fava, J. 
L. (2000). Construct Explication through factor 
or component analysis: A review and evaluation 
of alternative procedures for determining the 
number of factors or components. In R. D. 
Goffin, & E. Helmes (Eds.), Problems and 
solutions in human assessment (pp. 42 -71). 
Boston: Kluwer Academic Publishers. 
 

Zoski, K. W., & Jurs, S. (1990). Priority 
determination in surveys: an application of the             
scree test. Evaluation Review, 14, 214-219. 
 Zwick, R. W., & Velicer, F. V. (1986). 
Comparison of five rules for determining the 
number of components to retain. Psychological 
Bulletin, 99, 432-442. 

 
 
 
 
 
 
 
 

Appendix: 
 

Appendix A : Population Pattern Matrix p:m = 8:1 (p = 24, m = 3 aij = .80). 
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Appendix B:  Population Pattern Matrix p:m = 8:1 (p = 24, m = 3 aij = .50). 
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Appendix C:  Population Pattern Matrix p:m = 4:1 (p = 24, m = 6, aij = .80). 
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Appendix D: Population Pattern Matrix p:m = 4:1 (p = 24, m = 6, aij = .50). 

 
   Components (m)    

p 1 2 3 4 5 6 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

.50 

.50 

.50 

.50 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 
 

.00 

.00 

.00 

.00 

.50 

.50 

.50 

.50 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.50 

.50 

.50 

.50 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.50 

.50 

.50 

.50 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.50 

.50 

.50 

.50 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.50 

.50 

.50 

.50 

 
 



A MONTE CARLO STUDY OF THE ACCURACY OF THE SCREE PLOT  132 

 
Appendix E. Population correlation matrix p:m = 8: 1 (p = 24, m = 3, aij = .80). 

 
 

 
Appendix F : Population correlation matrix p:m = 8:1 ( p= 24, m= 3, aij = .50) 
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Appendix G:  Population correlation matrix p:m = 4:1 (p = 24, m = 6, aij = .8). 

 
 

Appendix H:  Population matrix p: m = 4:1 (p = 24, m = 6, aij = .50). 
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