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Determining The Correct Number Of Components To Extract From A Principal
Components Analysis: A Monte Carlo Study Of The Accuracy Of The Scree Plot.

Gibbs Y. Kanyongo
Department of Foundations and Leadership
Duquesne University

This article pertains to the accuracy of the of the scree plot in determining the correct number of
components to retain under different conditions of sample size, component loading and variable-to-
component ratio. The study employs use of Monte Carlo simulations in which the population parameters
were manipulated, and data were generated, and then the scree plot applied to the generated scores.

Key words: Monte Carlo, factor analysis, principal component analysis, scree plot

Introduction

In social science research, one of the decisions
that quantitative researchers make is determining
the number of components to extract from a
given set of data. This is achieved through
severa factor analytic procedures. The scree plot
is one of the most common methods used for
determining the number of components to
extract. It is available in most statistical software
such as the Statistical Software for the Social
Sciences (SPSS) and Statistical  Analysis
Software (SAS).

Factor analysis is a term used to refer to
statistical procedures used in summarizing
relationships among variables in a parsimonious
but accurate manner. It is a generic term that
includes several types of analyses, including (a)
common factor analysis, (b) principal
component analysis (PCA), and (c¢) confirmatory
factor analysis (CFA). According to Merenda,
(1997) common factor analysis may be used
when a primary goal of the research is to
investigate how well a new set of data fits a
particular well-established model. On the other
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hand, Stevens (2002) noted that principal
components analysis is usually used to identify
the factor structure or modd for a set of
variables. In contrast; CFA is based on a strong
theoretical foundation that allows the researcher
to specify an exact model in advance. In this
article, principal components analysis is of
primary interest.

Principal component analysis

Principal component analysis develops a
small set of uncorrelated components based on
the scores on the variables. Tabachnick and
Fidel (2001) pointed that components
empirically summarize the corrdations among
the variables. PCA is the more appropriate
method than CFA if there are no hypotheses
about components prior to data collection, that
is, it is used for exploratory work.

When one measures several variables,
the corrdation between each pair of variables
can be arranged in a table of correlation
coefficients between the variables. The
diagonals in the matrix are all 1.0 because each
variable theoretically has a perfect correation
with itself. The off-diagonal elements are the
correlation  coefficients between pairs of
variables. The existence of clusters of large
correlation coefficients between subsets of
variables suggests that those variables are
rdated and could be measuring the same
underlying dimension or concept. These
underlying dimensions are called components.
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A component is a linear combination of
variables; it is an underlying dimension of a set
of items. Suppose, for instance a researcher is
interested in studying the characteristics of
freshmen students. Next, a large sample of
freshmen are measured on a numbe of
characteristics like personality, motivation,
intellectual  ability, family socio-economic
status, parents characteristics, and physical
characteristics. Each of these characteristics is
measured by a set of variables, some of which
are correlated with one another.

An analysis might reveal corrdation
patterns among the variables that are thought to
show the underlying processes affecting the
behavior of freshmen students. Several
individual variables from the personality trait
may combine with some variables from
motivation and intellectual ability to yield an
independence component. Variables from family
socio-economic status might combine with other
variables from parents characteristics to give a
family component. In essence what this means is
that the many variables will eventually be
collapsed into a smaller number of components.

Vdicer . a., (2000) noted that a
central purpose of PCA isto determineif a set of
p observed variables can be represented more
parsimoniously by a set of m derived variables
(components) such that m < p. In PCA the
original variables are transformed into a new set
of linear combinations (principal components).
Gorsuch (1983) described the main aim of
component analysis as to summarize the
interrelationships among the variables in a
concise but accurate manner. This is often
achieved by including the maximum amount of
information from the original variablesin as few
derived components as possible to keep the
solution understandable.

Stevens (2002) noted that if we have a
single group of participants measured on a set of
variables, then PCA partitions the total variance
by first finding the linear combination of
variables that accounts for the maximum amount
of variance. Then the procedure finds a second
linear combination, uncorrdlated with the first
component, such that it accounts for the next
largest amount of variance, after removing the
variance attributable to the first component from
the system. The third principal component is

constructed to be uncorrelated with the first two,
and accounts for the third largest amount of
variance in the system. This process continues
until all possible components are constructed.
The final result is a set of components that are
not correlated with each other in which each
derived component accounts for unique variance
in the dependent variable.

Uses of principal components analysis

Principal component analysis is
important in a number of situations. When
several tests are administered to the same
examinees, one aspect of validation may involve
determining whether there are one or more
clusters of tests on which examinees display
similar relative performances. In such a case,
PCA functions as a validation procedure. It
helps evaluate how many dimensions or
components are being measured by a test.

Another situation is in exploratory
regression analysis when a researcher gathers a
moderate to a large number of predictors to
predict some dependent variable. If the number
of predictors is large relative to the number of
participants, PCA may be used to reduce the
number of predictors. If so, then the sample size
to variable ratio increases considerably and the
possibility of the regression equation holding up
under cross-validation is much better (Stevens
2002). Here, PCA is used as a variable reduction
scheme because the number of simple
correlations among the variables can be very
large. It aso helps in determining if there is a
small number of underlying components, which
might account for the main sources of variation
in such a complex set of corrdations. If thereare
30 variables or items, 30 different components
are probably not being measured. It therefore
makes sense to use some variable reduction
scheme that will indicate how the variables or
items cluster or “hang” together.

The use of PCA on the predictors is also
away of attacking the multicollinearity problem
(Stevens, 2002). Multicollinearity occurs when
predictors are highly correlated with each other.
Thisis a problem in multiple regression because
the predictors account for the same variance in
the dependent variable. This redundancy makes
the regression model less accurate in as far as
the number of predictors required to explain the
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variance in the dependent variable in a
parssmonious way is concerned. This is so
because several predictors will have common
variance in the dependent variable. The use of
PCA creates new components, which are
uncorrelated; the order in which they enter the
regression equation makes no difference in
terms of how much variance in the dependent
variable they will account for.

Principal component analysis is also
useful in the development of a new instrument.
A researcher gathers a set of items, say 50 items
designed to measure some construct like attitude
toward education, sociability or anxiety. In this
situation PCA is used to cluster highly correlated
items into components. This helps determine
empirically how many components account for
most of the variance on an instrument. The
original variables in this case are the items on
the instrument.

Stevens (2002) pointed out severa
limitations (e.g., reliability consideration and
robustness) of the k group MANOVA
(Multivariate Analysis of Variance) when a
large number of criterion variables are used. He
suggests that when there are a large humber of
potential criterion variables, it is advisable to
perform a PCA on them in an attempt to work
with a smaller set of new criterion variables.

The scree plot

The scree plot is one of the procedures
used in determining the number of factors to
retain in factor analysis, and was proposed by
Cattdl (1966). With this procedure eigenvalues
are plotted against their ordinal numbers and one
examines to find where a break or a leveling of
the slope of the plotted line occurs. Tabachnick
and Fidell (2001) referred to the break point as
the point where a line drawn through the points
changes direction. The number of factors is
indicated by the number of eigenvalues above
the point of the break. The eigenvalues below
the break indicate error variance. An eigenvalue
is the amount of variance that a particular
variable or component contributes to the total
variance. This corresponds to the equivalent
number of variables that the component
represents. Kachigan, (1991) provided the
following explanation: a component associated
with an eigenvalue of 3.69 indicates that the

component accounts for as much variance in the
data collection as would 3.69 variables on
average. The concept of an eigenvalue is
important in determining the number of
components retained in principal component
analysis.

The scree plot is an available option in
most statistical packages. A major weakness of
this procedure is that it reies on visual
interpretation of the graph. Because of this, the
scree plot has been accused of being subjective.
Some authors have attempted to develop a set of
rules to help counter the subjectivity of the scree
plot. Zoski and Jurs (1990) presented rules for
the interpretation of the scree plot. Some of their
rules are: (&) the minimum number of break
points for drawing the scree plot should be three,
(b) when more than one break point exists in the
curve, the first one should be used, and (c) the
slope of the curve should not approach vertical.
Instead, it should have an angle of 40 degrees or
less from the horizontal.

Previous studies found mixed results on
the accuracy of the scree plot. Zwick and Velicer
(1986) noted that “the scree plot had moderate
overal reliability when the mean of two trained
raters was used” (p.440). Cattdl and Jaspers
(1967) discovered that the scree plot displayed
very good rdiability. On the other hand,
Crawford and Koopman (1979) reported very
poor reiability of the scree plot.

Monte Carlo study

Hutchinson and Bandalos, (1997)
pointed that Monte Carlo studies are commonly
used to study the behavior of statistical tests and
psychometric procedures in situations where the
underlying assumptions of a test are violated.
They use computer-assisted simulations to
provide evidence for problems that cannot be
solved mathematically. Robey and Barcikowski
(1992) stated that in Monte Carlo simulations,
the values of a statistic are observed in many
samples drawn from a defined population.

Monte Carlo studies are often used to
investigate the effects of assumption violations
on statistical tests. Statistical tests are typically
developed mathematically using algorithms
based on the properties of known mathematical
distributions such as the normal distribution.
Hutchinson and Bandalos, (1997) further noted
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that these distributions are chosen because their
properties are understood and because in many
cases they provide good models for variables of
interest to applied researchers. Using Monte
Carlo simulations in this study has the advantage
that the population parameters are known and
can be manipulated; that is, the internal validity
of the design is strong athough this will
compromise the external validity of the results.

According to Brooks et a. (1999),
Monte Carlo simulations perform functions
empirically through the analysis of random
samples from populations whose characteristics
are known to the researcher. That is, Monte
Carlo methods wuse computer assisted
simulations to provide evidence for problems
that cannot be solved mathematically, such as
when the sampling distribution is unknown or
hypothesisis not true.

Mooney, (1997) pointed that the
principle behind Monte Carlo simulation is that
the behavior of a statistic in a random sample
can be assessed by the empirical process of
actually drawing many random samples and
observing this behavior. The idea is to create a
pseudo-population  through mathematical
procedures for generating sets of numbers that
resemble samples of data drawn from the
population.

Mooney (1997) further noted that other
difficult aspects of the Monte Carlo design are
writing the computer code to simulate the
desired data conditions and interpreting the
estimated sampling plan, data collection, and
data analysis. An important point to note is that
a Monte Carlo design takes the same format as a
standard research design. This was noted by
Brooks et a., (1999) when they wrote “ It should
be noted that Monte Carlo design is not very
different from more standard research design,
which typically includes identification of the
population, description of the sampling plan,
data collection and data analysis’ (p. 3).

Methodol ogy

Sample size (n)

Sample size is the number of
participants in a study. In this study, sample size
is the number of cases generated in the Monte
Carlo simulation. Previous Monte Carlo studies

by (Velicer e al. 2000, Velicer and Fava, 1998,
Guadanoli & Veicer, 1988) found sample size
as one of the factors that influences the accuracy
of procedures in PCA. This variable had three
levels (75, 150 and 225). These values were
chosen to cover both the lower and the higher
ends of the range of values found in many
applied research situations.

Component loading (&)

Fidd (2000) defined a component
loading as the Pearson correlation between a
component and a variable Gorsuch, 1983
defined it as a measure of the degree of
generalizability found between each variable and
each component. A component loading reflects a
quantitative relationship and the further the
component loading is from zero, the more one
can generalize from that component to the
variable. Velicer and Fava, (1998), Vdicer et al.,
(2000) found the magnitude of the component
loading to be one of the factors having the
greatest effect on accuracy within PCA. This
condition had two levels (.50 and .80). These
values were chosen to represent a moderate
coefficient (.50) and a very strong coefficient
(.80).

Variable-to-component ratio (p:m)

This is the number of variables per
component. The number of variables per
component will be measured counting the
number of variables correlated with each
component in the population conditions. The
number of variables pe component has
repeatedly been found to influence the accuracy
of the results, with more variables per
component producing more stable results. Two
levels for this condition were used (8:1 and 4:1).
Because the number of variables in this study
was fixed at 24, these two ratios yielded three
and six variables per factor respectively.

Number of variables

This study set the number of variables a
constant at 24, meaning that for the variable-to-
component ratio of 4:1, there were six variables
loading onto one component, and for variable-
to-component ratio of 8:1, eight variables |oaded
onto a component (see Appendixes A to D).
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Generation of population correlation matrices

A pseudo-population is an artificial
population from which samples used in Monte
Carlo studies are derived. In this study, the
underlying population correlation matrices were
generated for each possible g and p:m
combination, yielding a total of four matrices
(see Appendixes E to H).

The population correlation matrices
were generated in the following manner using
RANCORR programme by Hong (1999):

1 The factor pattern matrix was specified
based on the combination of values for p:m and
aj (see Appendixes A to D).

2. After specifying the factor pattern
matrix and the program is executed, a population
correlation matrix was produced for each
combination of conditions.

3. The program was executed four times to
yield four different population correation
matrices, one corrdation matrix for each
combination of conditions (see Appendixes E to
H).

After the population correlation matrices
were generated, the Multivariate Normal Data
Generator (MNDG) program (Brooks, 2002)
was used to generate samples from the
population correlation matrices. This program
generated multivariate normally distributed data.
A total of 12 cells were created based on the
combination of n, p: m and g;. For each cell, 30
replications were done to give a total of 360
samples, essentially meaning that 360 scree plots
were generated. Each of the samples had a pre-
determined factor structure since the parameters
were set by the researcher. The scree plots were
then examined to see if they extracted the exact
number of components as set by the researcher.

Interpretation of the scree plots

The scree plots were given to two raters
with some experience in interpreting scree plots.
These raters were graduate students in
Educational Research and Evaluation and had
taken a number of courses in Educational
Statistics and M easurement.

First, the raters were asked to look at the
plots independently to determine the number of
components extracted. Second, they were asked
to interpret the scree plots together. The raters
had no prior knowledge of how many
components were built into the data. The
accuracy of the scree plot was measured by how
many times it extracted the exact number of
components.

Results

The first research question of the study is: How
accurate is the scree plot in determining the
correct number of components? This question
was answered in two parts. First, this question
was answered by considering the degree of
agreement between the two raters. Table 1 is of
the measure of agreement between the two raters
when component loading was .80. To interpret
Table 1, the value of 1 indicates a correct
decision and a value of O indicates a wrong
decision by the raters as they interpreted the
scree plots. A correct decision means that the
scree plot extracted the correct number of
components (either three components for 8:1
ratio or six components for 4:1). Thus, from
Table 1, the two raters agreed correctly 108 of
the times while they agreed wrongly 52 times.

Table 1. A cross tabulation of the measure of
agreement when component loading was .80
between rater 1 and rater 2.

Rater 2
0 1 Total
Rater 1 O 52 11 63
1 9 108 117
Total 61 119 180

An examination of Figures 1 and 2 show
that when component loading was .80, it was
relatively clear where the cut-off point was for
determining the number of components to
extract. Figurel clearly shows that six the
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Figure 1. The scree plot for variable-to-component ratio of 4:1, component loading of .80

Eigenvalue

Component Number

Figure2. The scree plot for variable-to-component ratio of 8:1, component loading of .80

Eigenvalue

1:5 1’7 1’9 2’1 23

Component Number

components were extracted and in Figure 2,
three components were extracted. These two
plots show why it was easy for the raters to have
more agreement for component loading of .80.
This was not the case when component loading
was .50 as the raters had few cases of agreement
and more cases of disagreement.

In Table 2, when component loading
was .50, the two raters agreed correctly only 28
times and agreed wrongly 97 times. Compared
to component loading of .80, the scree plot was
not as accurate when component loading was
.50. Thisfinding is consistent with that of Zwick
and Vdicer (1986) who noted in their study that,
“The raters in this study showed greater
agreement at higher than at lower component
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loading levels.” (p. 440). Figures 1 and 2 show
typical scree plots that were obtained for
component loading of .50. In Figure 3, the
number of components extracted was supposed
to be six, but it is not clear from the plot were
the cut-off point is for six components. One can
see why there were a lot of disagreements
between the two raters when component loading
was low. In Figure 4, the plot was supposed to
extract three components, but it is not quite clear
even to an experienced rater, how many
components to be extracted with this plot. These
cases show how it is difficult to use the scree
plots especially in exploratory studies when the
researcher does not know the number of
components that exist.

Table 2. A cross tabulation of the measure of
agreement when component loading was .50
between rater 1 and rater 2.

Rater 2
0 1 Total
Rater 1 O 97 50 147
1 5 28 33
Total 102 78 180

Reports of rater reliability on the scree
plot have ranged from very good (Cattdl &
Jaspers, 1967) to quite poor (Crawford &
Koopman, 1979). This wide range and the fact
that data encountered in redl life situations rarely
have perfect structure with high component
loading makes it difficult to recommend this
procedure as a stand-alone procedure for
practical uses in determining the number of
components. Generally, most real data have low
to moderate component loading, which makes
the scree plot an unreliable procedure of choice
(Zwick & Véicer, 1986).

The second part of question one was to
consider the percentages of time that the scree
plots were accurate in determining the exact
number of components, and those percentages
were computed for each cell (see table 5). In

Table 5, results of the two raters are presented
according to variable-to-component ratio,
component loading and sample size. The table
shows mixed results of the interpretation of the
scree plot by the two raters. However, the scree
plot appeared to do well when component
loading was high (.80) with a small number of
variables (three). When variable-to-component
ratio was 8:1 and component loading was .80,
the scree plot was very accurate. The lowest
performance of the scree plot in this cell was
87% for a sample size of 75. On the other hand,
when variable-to-component ratio was 4:1,
component |oading was .80, and sample size was
225, the scree plot was only accurate 3% of the
time with rater 1. With rater 2 under the same
conditions, the scree plot was correct 13% of the
time.

The second question was. Does the
accuracy of the scree plot change when two
experienced raters interpret the scree plots
together? For this question, percentages were
computed of how many times the two raters
were correct when they interpreted the scree
plots together. The results are presented in table
5 in the row Consensus row. These results show
that even if two raters work together, the
accuracy of the scree plot does not necessarily
improve when component loading was .50.
When variable-to-component ratio was 8:1 and
component loading was .50, rater 2 was actually
better than when the two raters worked together.
This is again an example of the mixed results
obtained by the scree plot which makes it
unreliable. On the other hand, the accuracy of
the scree plot improved when component
loading was .80, and variable-to-component
ratio was 4:1. When component |oading was .80,
and variable-to-component ratio was 8:1, having
two rates work together did not change anything
since the scree plot was very accurate when the
two raters work independently.

The bottom line is in this study, the
scree plot produced mixed results and this is
mainly due to its subjectivity. Although it was
100% accurate under certain conditions, it was
also terrible under other conditions. It however
emerged from this study that the accuracy of the
scree plot improves when the component
loading is high, and the number of variables per
component is few.
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Figure 3. The scree plot for variable-to-component ratio of 4:1, component |oading of .50
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Figure4. The scree plot for variable-to-component ratio of 8:1, component loading of .50
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Table 5. Performance of scree plot (as a percentage) under different conditions of variable-to-
component ratio, component loading and sample size.

V-C-R 4, 1 8 1
Comp.loading .50 .80 .50 .80

Sample size 75 150 225 75 150 225 75 150 225 75 150 225

Rater 1 73% 20% 10% 10% 16% 3% 33% 13% 27% 87% 100% 100%

Rater 2 67% 10% 16% 26% 23% 13% |63% 57% 77% 100% 100% 100%

Consensus 23% 20% 10% 75% 100% 100% | 47% 23% 47% 100% 97%  100%
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Conclusion

Generally, the findings of this study are in
agreement with previous studies that found
mixed results on the scree plot. The subjectivity
in the interpretation of the procedure makes it
such an unreliable procedure to use as a stand-
alone procedure. The scree plot would probably
be useful in confirmatory factor analysis to
provide a quick check of the factor structure of
the data. In that case the researcher already
knows the structure of the data as opposed to
using it in exploratory studies where the
structure of the data is unknown. If used in
exploratory factor analysis, the scree plot can be
misleading even for experienced researcher
because of its subjectivity.

Based on the findings of this study, it is
recommended that the scree plot not be used as a
stand-alone procedure in determining the
number of components to retain. Researchers
should use it with other procedures like parallée
analysis or Vdicer's Minimum Average Partial
(MAP) and parallel analysis. In situations where
the scree plot is the only procedure available,
users should be very cautious in using it and
they can do so in confirmatory studies but not
exploratory studies.
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Appendix A : Population Pattern Matrix p:m=8:1 (p = 24, m= 3 &; = .80).

p 1

1 .80
2 .80
3 .80
4 .80
5 .80
6 .80
7 .80
8 .80
9 .00
10 .00
11 .00
12 .00
13 .00
14 .00
15 .00
16 .00
17 .00
18 .00
19 .00
20 .00
21 .00
22 .00
23 .00

24 .00

Components (m)

2 3
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.00 .00
.80 .00
.80 .00
.80 .00
.80 .00
.80 .00
.80 .00
.80 .00
.80 .00
.00 .80
.00 .80
.00 .80
.00 .80
.00 .80
.00 .80
.00 .80
.00 .80
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Appendix B: Population Pattern Matrix p:m = 8:1 (p = 24, m = 3 aij = .50).
Components (m)

p 1 3

1 .50 .00 .00

2 .50 .00 .00

3 .50 .00 .00

4 .50 .00 .00

5 .50 .00 .00

6 .50 .00 .00

7 .50 .00 .00

8 .50 .00 .00

9 .00 .50 .00

10 .00 .50 .00

11 .00 .50 .00

12 .00 .50 .00

13 .00 .50 .00

14 .00 .50 .00

15 .00 .50 .00

16 .00 .50 .00

17 .00 .00 .50

18 .00 .00 .50

19 .00 .00 .50

20 .00 .00 .50

21 .00 .00 .50

22 .00 .00 .50

23 .00 .00 .50

24 .00 .00 .50

Appendix C: Population Pattern Matrix p:m = 4:1 (p = 24, m = 6, aij = .80).

Components (m)

p 1 2 4 5 6
1 .80 .00 .00 .00 .00 .00
2 .80 .00 .00 .00 .00 .00
3 .80 .00 .00 .00 .00 .00
4 .80 .00 .00 .00 .00 .00
5 .00 .80 .00 .00 .00 .00
6 .00 .80 .00 .00 .00 .00
7 .00 .80 .00 .00 .00 .00
8 .00 .80 .00 .00 .00 .00
9 .00 .00 .80 .00 .00 .00
10 .00 .00 .80 .00 .00 .00
11 .00 .00 .80 .00 .00 .00
12 .00 .00 .80 .00 .00 .00
13 .00 .00 .00 .80 .00 .00
14 .00 .00 .00 .80 .00 .00
15 .00 .00 .00 .80 .00 .00
16 .00 .00 .00 .80 .00 .00
17 .00 .00 .00 .00 .80 .00
18 .00 .00 .00 .00 .80 .00
19 .00 .00 .00 .00 .80 .00
20 .00 .00 .00 .00 .80 .00
21 .00 .00 .00 .00 .00 .80
22 .00 .00 .00 .00 .00 .80
23 .00 .00 .00 .00 .00 .80
24 .00 .00 .00 .00 .00 .80
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Appendix D: Population Pattern Matrix p:m = 4:1 (p = 24, m = 6, aij = .50).
Components (m)
p 1 2 3 4 5 6
1 .50 .00 .00 .00 .00 .00
2 .50 .00 .00 .00 .00 .00
3 .50 .00 .00 .00 .00 .00
4 .50 .00 .00 .00 .00 .00
5 .00 .50 .00 .00 .00 .00
6 .00 .50 .00 .00 .00 .00
7 .00 .50 .00 .00 .00 .00
8 .00 .50 .00 .00 .00 .00
9 .00 .00 .50 .00 .00 .00
10 .00 .00 .50 .00 .00 .00
11 .00 .00 .50 .00 .00 .00
12 .00 .00 .50 .00 .00 .00
13 .00 .00 .00 .50 .00 .00
14 .00 .00 .00 .50 .00 .00
15 .00 .00 .00 .50 .00 .00
16 .00 .00 .00 .50 .00 .00
17 .00 .00 .00 .00 .50 .00
18 .00 .00 .00 .00 .50 .00
19 .00 .00 .00 .00 .50 .00
20 .00 .00 .00 .00 .50 .00
21 .00 .00 .00 .00 .00 .50
22 .00 .00 .00 .00 .00 .50
23 .00 .00 .00 .00 .00 .50
24 .00 .00 .00 .00 .00 .50
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Appendix E. Population correlation matrix p:m=8: 1 (p = 24, m= 3, &; = .80).

VI V2 VI V4 VS V6 V7 V3 VO VIO VIl VI2 VI3 V4 VI5 VI6 VI7 VIS VI0 V20 VII V21 Va3 VM
1.00
620 100
560 674 100
613 697 698 100
1562 679 750 732 100
626 655 708 711 740 100
{706 606 565 570 542 585 100
686 607 570 568 543 573 716 10O
M -01 035 -02 01g -02 000 .019 T6D
.01 -02 030 003 041 064 -02 -04 637 10O
02 006 049 046 D066 058 -05 -02 644 632 10
07 012 085 041 108 054 -07 -07 682 660 .68l 10O
05 D024 058 039 D068 031 -07 -04 653 623 00 603 100
05 020 102 107 157 148 -09 -11 630 33 01 738 674 {00
W4 D02 032 005 024 011 -05 -01 648 636 681 64 692 638 10D
000 -02 -02 -B4 -04 -06 0M 046 679 581 638 642 640 564 625 10D
033 0138 -03 004 -04 -01 000 021 -04 -04 0F -05 017 -05 030 -01 | 100
.03 D011 001 -02 -01 -D6 01l 013 045 -04 -03 020 000 -05 -02 053|608 10O
002 033 -4 -02 -06 -09 015 030 000 -09 -02 -04 017 -13 012 054|683 695 10O
06 -01 -4 001 -04 038 033 020 -05 .015 004 -05 -03 002 -02 -03 | 675 588 610 100
-4 038 03 D46 D060 017 -05 -07 -01 006 -01 051 024 051 -01 -02 (608 |663 648 608 10O
03 015 000 -03 -03 -07 -02 .009 015 -04 -01 000 036 -10 044 024|670 678 727 604 656 100
02 -02 040 013 057 074 -01 -04 003 087 000 045 -00 100 -0f -05 (578 600 540 644 658 Se0 o0
02 077 021 053 044 41 -05 -05 -03 021 036 007 025 061 031 -06 | 666 601 613 656 667 640 640 100
Appendix F : Population correlation matrix p:m= 8:1 ( p= 24, m= 3, a; = .50)
V1l oWl Vi w4 Vs We W7 OVE V9 V10D V11l VI2 VW13 VW14 V15 Via VI7 VI8 VI VI0 Vil VIZ VI3 VM
1.00
471 1.00
(381 303 1.00
184 297 275 100
A X1 276 243 100
(233 293 287 303 239 100
(280 226 250 213 250 (199 1.00
190 236 229 296 333 242 21§ 100
-03 -03 -02 005 -D3 000 -03 054 1000
-03 -4 -4 -02 000 -05 007 041 276 1.00
-04 065 038 094 008 072 -09 030 (262 234 L1.00
- -03 -03 O0I6 -05 -03 025 049 293 283 234 100
018 -05 -0 -06 -02 -03 077 -05 (228 244 149 253 1.00
o61 001 037 -04 -02 000 055 -05 (239 (204 (191 (250 302 1.00
000 034 D040 D41 013 023 037 -03 215 207 260 245 260 287 100
.02 -02 -05 -02 D000 -02 -05 .025 (265 (289 (362 (246 319 (193 (180 1.00
029 00z 01y -02 024 -02 075 -05 -05 -08 -06 -01 D62 057 052 -05 (1.00
09 026 -01 103 -01 .052 -09 .061 .010 .0OO0 .110 .002 -07 -09 000 050 .90 {00
pgs o000 025 -07 -0 010 031 -08 -01 -04 -05 -02 .052 038 006 -03 | 283 [152 1.00
poo 027 000 016 026 011 -08 .031 .01F 020 OY1 -03 -09 -0O7 -05 060|185 (310 (208 1.00
os0 -05 -01 -08 -02 -06 .105 -03 011 014 -132 043 D37 024 003 -05 |.308 (115 [321 164 1.00
04 005 -03 017 000 026 -09 0290 013 019 062 -02 -0F -06 -05 075|.185 338 204 (336 .153 1.00
o1 -0 -04 -07 007 -06 .040 .00E .01 .045 -08 021 .032 015 -04 015 | 262 (180 (230 335 (315 (@53 1.00
-09 019 -0 106 000 .025 057 072 .00 .009 085 .0X7 058 -07 018 020 (319 400 138 (280 (150 305 19 1.00
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Appendix G: Population correlation matrix p:m=4:1 (p = 24, m= 6, g; = .8).

V1l W2 W3 V4 W5 W6 V7 WE VP WI0 V11 W12 VI3 Vi4 VIS5 VI6 WI7 VI8 VI9 W20 Wil WV2I VI3 V24

1.00

662 100

(6E6 688 1.00

1503 650 606 100

-0l -07 -03 -04 | 100

046 D17 054 -05 | 647 100

051 -08 -01 -08 | 713 645 100

020 -09 -4 -04 | 694 617 776 1000

.02 -03 -01 -03 Oi6 012 004 000 1560

046 D012 029 -05 004 060 011 -01 658 1000

030 -03 035 -06 017 053 038 .0l4 675 .685 LD

011 098 D055 046 -09 013 -11 -09 (591 6346 612 1.00

029 -07 D006 -05 074 002 137 105 -02 -02 033 -07 {00

-01 027 001 067 -06 -03 -06 -04 -04 -04 -04 .062 400 1.00

017 000 045 -01 -03 033 -02 -02 012 020 .041 .021 632 665 100

-04 081 034 043 -06 025 -17 -14 016 .015 -01 097 (510 676 676 1.00

005 D46 057 022 -08 038 -10 -08 .000 022 029 091 -06 050 073 .110] §00

oos -07 -01 -06 D64 032 063 050 .052 .030 059 -08 D048 -07 003 -D4 | 617 1.00

.01 D45 003 062 -08 -D4 -06 -03 -04 -03 -04 070 -03 070 004 030|690 572 1000

00§ -02 -02 028 014 -01 002 022 -04 003 -02 006 D004 030 000 -02 | 644 (634 (655 100

06 010 -03 061 -04 -03 -10 -05 023 -02 -03 027 -10 046 016 035 046 -03 028 007 Q00

.06 -02 -06 048 007 -D4 -04 -0 017 -03 -04 -02 -05 027 -0l 024 -02 -01 006 017 06 1U00

007 D000 O0O1 -04 00§ 000 054 034 028 -01 011 -04 035 -05 -02 -05 -05 017 -03 -06 603 617 LOD

.05 003 006 013 -01 015 -09 -07 .043 .005 .019 019 -06 004 033 100 065 .015 -01 -02 .03 668 621 100
Appendix H: Population matrix p: m=4:1 (p = 24, m= 6, &; = .50).

V1 V2 W3 V4 W5 V6 V7 W8 V9 V10 VIl V12 VI3 VI4 W15 WVia VIF VI8 VI VI V21 V22 W23 V24

1.00

181 100

322 67 1.00

248 3236 210 1.00

-04 D069 -06 005|100

.042 -07 037 037|182 1.00

057 -04 077 -06 | 230 354 100

014 -03 -03 061|243 [301 (214 1.00

070 -06 045 005 -03 034 .052 .014 1.00

.49 -07 101 -04 -06 039 074 -03 (295 L.0O

063 -05 D046 -01 -03 031 .054 .023 (314 (297 L1.00

055 -0& D030 011 -05 052 025 046 (295 287 303 100

011 -03 -01 030 000 044 _003 .037 .010 .032 .001 .0300 K00

-0F D83 -10 004 076 -06 -D04 -02 -05 -06 -06 -06 (255 100

-02 -01 073 -06 -03 -01 .029 -07 -03 .08 -02 -02 G23F 231 100

062 -07 077 001 -04 039 056 -01 .054 .084 .043 .037 27¥6 (091 (268 1.00

.03 D044 -01 -04 028 -05 .003 -03 -02 -02 .002 -03 -05 .016 .018 -04 | §00

-0 029 -07 054 04& 000 -07 .D28 -04 -04 -06 -03 033 054 -02 -D4 |23 1.00

.066 -05 061 -04 -05 017 075 -02 .060 .055 .061 .044 -01 -06 .004 .05 |3243 (171 1.00

.035 -4 003 065 -01 037 -02 .044 .042 -01 .025 026 010 -03 -06 030|221 (356 (253 100

043 -03 102 -08 -05 -01I .067F -06 .022 07 042 017 -06 -07 082 034 036 -10 .074 -03 100

026 -04 D040 015 -D02 025 _028 000 .032 .08 024 014 029 -02 023 0467 -02 -01 _0I8 _024 (254 1.00

-03 093 -15 .063 075> -04 -10 .058 -06 -15 -05 -04 -02 090 -10 -10 .032 073 -09 .06 [134 (186 1.00

-05 043 -03 .064 039 -01 -10 .p48 -05 -10 -05 -03 -01 038 -05 -07 010 064 -08 _025 [I¥8 207 335 1.00
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