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Regular Articles 
Testing the Goodness of Fit of Multivariate Multiplicative-intercept Risk Models 

Based on Case-control Data 
 

Biao Zhang  
Department of Mathematics 

The University of Toledo 
 
 
The validity of the multivariate multiplicative-intercept risk model with 1I +  categories based on case-
control data is tested. After reparametrization, the assumed risk model is equivalent to an ( 1)I + -sample 

semiparametric model in which the I ratios of two unspecified density functions have known parametric 
forms. By identifying this ( 1)I + -sample semiparametric model, which is of intrinsic interest in general 

( 1)I + -sample problems, with an ( 1)I + -sample semiparametric selection bias model, we propose a 
weighted Kolmogorov-Smirnov-type statistic to test the validity of the multivariate multiplicative-
intercept risk model. Established are some asymptotic results associated with the proposed test statistic, 
also established is an optimal property for the maximum semiparametric likelihood estimator of the 
parameters in the ( 1)I + -sample semiparametric selection bias model. In addition, a bootstrap procedure 
along with some results on analysis of two real data sets is proposed. 
 
Key words: Biased  sampling  problem,  bootstrap,    Kolmogorov-Smirnov  two-sample statistic,  logistic  
                    regression,  mixture sampling,   multivariate Gaussian process, semiparametric selection bias 
                    model, strong consistency, weak convergence 
 
 

Introduction 
 
Let Y  be a multicategory response variable with 

1I +  categories and X  be the associated 1p×  
covariate vector. When the possible values of 
the response variable Y  are denoted by 

0,1, ,y I= …  and the first category (0) is the 
baseline category, Hsieh, Manski, and 
McFadden (1985) introduced the following 
multivariate multiplicative-intercept risk model: 
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where * *
1 , , Iθ θ…  are positive scale parameters, 

1, , Ir r…  are, for fixed x , known functions 

from pR  to R+ , and 1( , , )p
i i i

τβ β β= …  is 

a 1p×  vector parameter for 1,i I= … . The 
class of multivariate multiplicative-intercept risk 
models includes the multivariate logistic 
regression models and the multivariate odds-
linear models discussed by Weinberg and 
Sandler (1991) and Wacholder and Weinberg 
(1994). By generalizing earlier works of 
Anderson (1972, 1979), Farewell (1979), and 
Prentice and Pyke (1979) in the context of the 
logistic regression models, Weinberg and 
Wacholder (1993) and Scott and Wild (1997) 
showed that under model (1.1), a prospectively 
derived analysis, including parameter estimates 

and standard errors for 1 , , ,Iβ β…  is 

asymptotically correct in case-control studies. In 
this article, testing the validity of model (1) 
based on case-control data as specified below is 
considered. 
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Let 1, ,
ii inX X…  be a random sample from 

( | )P x Y i=  for 0,1, ,i I= …  and assume that 

1{( , , ) :    0,1, }
ii inX X i I=… …  are jointly 

independent. Let ( )i P Y iπ = =  and 

( ) ( | )ig x f x Y i= =  be the conditional density 

or frequency function of X given Y i=  for 
0,1,i I= … . If ( )f x is the marginal 

distribution of X , then applying Bayes’ rule 
yields  

 
( | )

( | ) ( ),

0,1, .
i

P Y i X x
f x Y i f x

i I

π
= == =

= …

 

 
It is seen that 
 

0

*0

( | ) ( | )
( | 0) ( 0 | )

( ; ), 1, , .

i

i i i
i

f x Y i P Y i X x
f x Y P Y X x

r x i I

π
π

π θ β
π

= = ==
= = =

= = …

 

 
Consequently, 
 

*0

0

( ) ( | ) ( ; ) ( | 0)

exp[ ( ; )] ( ), 1, , ,

i i i i
i

i i i

g x f x Y i r x f x Y

s x g x i I

π θ β
π

θ β

= = = =

= + = …

 

where *
0log log( / )i i iθ θ π π= + and 

 
( ; ) log ( ; )i i i is x r xβ β=  for 1, ,i I= … . As a 

result, the following ( 1)I + -sample 
semiparametric model is obtained: 
 

0

. . .

01 0 0

. . .

1 0

, , ( ),

, , ( ) exp[ ( ; )] ( ),

                                   1, , .                   (2)
i

i i d

n

i i d

i in i i i i

X X g x

X X g x s x g x

i I

θ β= +

=

… ∼

… ∼

…

  Throughout this article, let 

1( , , ) ,I
τθ θ θ= … 1( , , ) ,I

τ τ τβ β β= …  

and ( )iG x be the corresponding cumulative 

distribution function of ( )ig x  for 0,1,i I= … . 

Note that model (2) is equivalent to an ( 1)I + -
sample semiparametric model in which the i th 
( 1, , )i I= …  ratio of a pair of unspecified 

density functions ig  and 0g  has a known 

parametric form, and thus is of intrinsic interest 
in general ( 1)I + -sample problems. Model (2) 

is equivalent to model (1); it is an ( 1)I +  -
sample semiparametric selection bias model 
with weight functions 0 ( , , ) 1w x θ β =  and  

 
( , , ) exp[ ( ; )]i i iw x s xθ β θ β= +  

 
for 1, ,i I= … depending on the unknown 

parameters θ  and β . The s -sample 
semiparametric selection bias model was 
proposed by Vardi (1985) and was further 
developed by Gilbert, Lele, and Vardi (1999). 
Vardi (1982, 1985), Gill, Vardi, and Wellner 
(1988), and Qin (1993) discussed estimating 
distribution functions in biased sampling models 
with known weight functions. Weinberg and 
Wacholder (1990) considered more flexible 
design and analysis of case-control studies with 
biased sampling. Qin and Zhang (1997) and 
Zhang (2002) considered goodness-of- 
fit tests for logistic regression models based on 
case-control data, whereas Zhang (2000) 
considered testing the validity of model (2) 
when 1I = . 

The focus in this article is to test the 
validity of model (1.2) for 1I ≥ . Let 1{ , , }nT T…  

denote the pooled sample 

0 101 0 11 1 1{ , , ; , , ; ; , , }
In n I InX X X X X X… … … …  

with 
0

I

ii
n n

=
=∑ . Furthermore, let  

�
1

[ ]1
( ) i

ij

n

i i X tj
G t n I−

≤=
= ∑  

and  
1

0 [ ]1
( )

k

n

T tk
G t n I−

≤=
= ∑  

be, respectively, the empirical distribution 
functions based on the sample 1, ,

ii inX X…  from 

the i th ( 0,1, , )i I= …  category and the pooled 

sample 1, , nT T… . In the special case of testing 
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the equality of 0G  and 1G  for which 1I =  and 

1 1( ; ) 0s x β ≡  in model (2), as argued by (van 

der Vaart & Wellner, 1996, p. 361; Qin & Zhang,  
1997), the Kolmogorov-Smirnov two-sample 
statistic is equivalent to a statistic based on the 
discrepancy between the empirical distribution 

function �

0G and the pooled empirical 

distribution function 0G . This fact, along with 

the fact that �0G  and 0G are, respectively, the 

nonparametric maximum likelihood estimators 
of 0G  without and with the assumption of 

0 1( ) ( )G t G t= , motivates us to employ a 

weighted average of the 1I +  discrepancies 

between �iG  and �iG  ( 0,1, , )i I= …  to assess 

the validity of model (2), where �iG is the 

maximum semiparametric likelihood estimator 
of iG  under model (2) and is derived by 

employing the empirical likelihood method 
developed by Owen (1988, 1990). For a more 
complete survey of developments in empirical 
likelihood, see Hall and La Scala (1990) and 
Owen (1991). 

This article is structured as follows:  in 
the method section proposed is a test statistic by 
deriving the maximum semiparametric 
likelihood estimator of iG  under model (2). 

Some asymptotic results are then presented 
along with an optimal property for the maximum 
semiparametric likelihood estimator of ( , )θ β . 
This is followed by a bootstrap procedure which 
allows one to find P -values of the proposed 
test. Also reported are some results on analysis 
of two real data problems. Finally, proofs of the 
main theoretical results are offered. 

 
Methodology 

 
Based on the observed data in (2), the likelihood 
function can be written  as 

0 0
0 1

1 11

( , , ) exp[ ( ; )] ( )

exp [ ( ; )] ,

i

i

nI

i i ij i ij
i j

nn I

k i i ij i
i jk

L G s X dG X

p s X

θ β θ β

θ β

= =

= ==

= +

⎡ ⎤⎛ ⎞⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠ ⎢ ⎥⎝ ⎠⎣ ⎦

∏∏

∑∑∏
 
where 0 0,θ = 0 0( ; ) 0,s β ≡i  and 0 ( ),k kp dG T=  

1, , ,k n= …  are (nonnegative) jumps with total 
mass unity. Similar to the approach of Owen 
(1988, 1990) and Qin and Lawless (1994), it can 
be shown by using the method of Lagrange 
multipliers that for fixed ( , )θ β , the maximum 

value of L , subject to constraints 
1

1
n

kk
p

=
=∑ , 

0kp ≥ and  

1
{exp[ ( ; )] 1} 0

n

k i i k ik
p s Tθ β

=
+ − =∑  

 for 1, ,i I= … , is attained at 
 

0 1

1 1
,

1 exp[ ( ; )]

1, , ,

k I

i i i k ii

p
n s T

k n

ρ θ β
=

=
+ +

=
∑

…

 

where 0/i in nρ =  for 0,1, ,i I= … . Therefore, 

the (profile) semiparametric log-likelihood 
function of ( , )θ β  is given by 

 

0

1 1

1 1

( , ) log

log 1 exp[ ( ; )]

[ ( ; )].
i

n I

i i i k i
k i

nI

i i ij i
i j

n n

s T

s X

θ β

ρ θ β

θ β

= =

= =

= −

⎡ ⎤− + +⎢ ⎥
⎣ ⎦

+ +

∑ ∑

∑∑

�

 

Next, maximize �  over ( , )θ β . Let � �( , )θ β  with 

� � �

1( , )I
τθ θ θ= …  and � � �

1( , )I

ττ τβ β β= …  be the 

solution to the following system of score 
equations: 
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1
1

1

1
1

exp[ ( ; )]( , )

1 exp[ ( ; )]

0, 1, , ,

( , )
( ; )

exp[ ( ; )]
( ; )

1 exp[ ( ; )]

0, 1, , ,                            

u

n
u u u k u

u I
ku i i i k ii

n

u uj u
ju

n
u u u k u

u k uI
k m m m k mm

s T
n

s T

u I

d X

s T
d T

s T

u I

ρ θ βθ β
θ ρ θ β

θ β β
β

ρ θ β β
ρ θ β

=
=

=

=
=

+∂ = −
∂ + +

= =

∂ =
∂

+−
+ +

= =

∑
∑

∑

∑
∑

�

…

�

…             (3)
 

where 
( , )

( ; ) u u
u k u

u

s
d T

θ ββ
β

∂=
∂

 for 1, ,u I= … .  

That produces the following, 
 

� �

0 1

1 1
,

1 exp[ ( ; )]

1, , .                                            (4)

k I

i i i k ii

p
n s T

k n

ρ θ β
=

=
+ +

=
∑

�

…

 

 
On the basis of the kp�  in (4), it can be  

proposed to estimate ( )iG t , under model (2), by 

 

� � �

� �

� �

[ ]
1

[ ]
10

1

( ) exp[ ( ; )]

exp[ ( ; )]1
,

1 exp[ ( ; )]

0, , ,                                                    (5)

k

k

n

i k i i k i T t
k

n
i i k i

T tI
k m m m k mm

G t p s T I

s T
I

n s T

i I

θ β

θ β
ρ θ β

≤
=

≤
=

=

= +

+
=

+ +

=

∑

∑
∑

�

…

 
 

where �0 0θ = and �

0 0( ; ) 0s β ≡i . Throughout this 

article, a b≤  and a−∞ ≤ ≤ ∞ with 

1( , , )pa a a τ= … and 1( , , )pb b b τ= … stand for, 

respectively, i ia b≤ and ia−∞ ≤ ≤ ∞ for 

0,1, ,i p= … . Note that �iG  is the maximum 

semiparametric likelihood estimator of iG  under 

model (2) for 0,1, ,i I= … . Let 

�
1

[ ]1
( ) i

ij

n

i i X tj
G t n I−

≤=
= ∑  be the empirical 

distribution function based on the sample 

1, ,
ii inX X…  from the i th ( 0,1, , )i I= …  

category. Moreover, let 

 
� �( )( ) ( ) ( ) , sup ( ) ,

0,1, , .

ni i i ni ni
t

t n G t G t t

i I
−∞≤ ≤∞

∆ = − ∆ = ∆

= …

 
Then, ni∆ is the discrepancy between the two 

estimators �( )iG t and �( ),iG t and thus measures 

the departure from the assumption of the 
multivariate multiplicative-intercept risk model 
(1) within the i th ( 1, , )i I= …  pair of category 
i  and the baseline category (0). Since 

� �

0 0
( ) [ ( ) ( )] 0,

I I

i ni i i ii i
t n G t G tρ ρ

= =
∆ = − =∑ ∑  

there exists a motivation to employ the weighted 
average of the ni∆ defined by  

 

                
0

1
                      (6)

1

I

n i ni
iI

ρ
=

∆ = ∆
+ ∑

 

 
to assess the validity of model (2). Clearly, the 
proposed test statistic n∆  measures the global 

departure from the assumption of the 
multivariate multiplicative-intercept risk model 
(1). Because the same value of n∆ occurs no 

matter which category is the baseline category, 
there is a symmetry among the 1I +  category 
designations for such a global test. Thus, the 
choice of the baseline category in model (1) is 
arbitrary for testing the validity of model (1) or 
model (2) based on n∆ . Note that the test 

statistic n∆ reduces to that of Zhang (2000) 

when 1I =  in model (1) since 
1

0 1 1 02 ( )n n n nρ−∆ = ∆ + ∆ = ∆  for 1I = . 

Remark 1: The test statistic n∆  can also 

be applied to mixture sampling data in which a 

sample of 
0

I

ii
n n

=
=∑ members is randomly 

selected from the whole population with 

0 1, , , In n n…  being random (Day & Kerridge, 

1967). Let ( , )k kX Y , 1, ,k n= … , be a random 

sample from the joint distribution of 
( , ),X Y then the likelihood has the form of 
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1

0 1

( | ) ( )

[ ( | )],
i

n

k k k
k

nI

i ij
i j

L P Y X f X

f X Y iπ

=

= =

=

= =

∏

∏∏
 

 
where ( )i P Y iπ = =  for 1, ,i I= … . The first 

expression is a prospective decomposition and 
the second one is a retrospective decomposition. 

Remark 2: In light of Anderson (1972, 
1979), the case-control data may be treated as 
the prospective data to compute the maximum 

likelihood estimate of *( , )θ β  under model (1), 

where * * *
1( , , )I

τθ θ θ= … . Suppose that the 

sample data in model (2) are collected 
prospectively, then the (prospective) likelihood 
function is, by (1), 
 

*
*

*
0 1 0 1

1

( ; )
( , ) ( | ) .

1 ( ; )

i in nI I
i i ij i

ij I
i j i j m m ij mm

r X
L P Y i X X

r X

θ β
θ β

θ β= = = =
=

⎡ ⎤
⎢ ⎥= = = =
⎢ ⎥+⎣ ⎦

∏∏ ∏∏
∑

 

 
The log-likelihood function is 

* *

0 1

*

1 1

( , ) [log ( ; )]

log 1 exp[ ( ; )] .

jnI

i i ij i
i j

n I

m m k m
k m

s X

s T

θ β θ β

θ β

= =

= =

= +

⎡ ⎤− +⎢ ⎥
⎣ ⎦

∑∑

∑ ∑

�

 

 
The system of score equations is given by 
 

*

*

*

* *
1

1

*

1

*

*
1

1

( , )

exp[ ( ; )]1

1 exp[ ( ; )]

0, 1, , ,

( , )
( ; )

exp[ ( ; )]
( ; ) 0,

1 exp[ ( ; )]

1, , .                    

u

u

n
u u k u

u I
ku m m k mm

n

u uj u
ju

n
u u k u

u k uI
k m m k mm

s T
n

s T

u I

d X

s T
d T

s T

u I

θ β
θ

θ β
θ θ β

θ β β
β

θ β β
θ β

=
=

=

=
=

∂
∂

⎡ ⎤
⎢ ⎥= −
⎢ ⎥+⎣ ⎦

= =

∂ =
∂

− =
+

=

∑
∑

∑

∑
∑

�

…

�

…                          (7)
 

 

Let �
�

*( , )θ β with � � �* * *
1( , , )I

τθ θ θ= …  and 

� � �

1( , , )I

τ τ
τβ β β= …  denote the solution to the 

system of score equations in (7). Then 
comparing (7) with (3) implies that 
�

�*
0log log( / )u u un nθ θ= +  and � �

u uβ β=  for 

1, ,u I= … . Thus, the maximum likelihood 
estimates of are identical under the retrospective 
sampling scheme and the prospective sampling 
scheme. In addition, the two estimated 

asymptotic variance-covariance matrices for �β  

and �β  based on the observed information 
matrices coincide. See also Remarks 3 and 4 
below. 
 
Asymptotic results 

In this section, the asymptotic properties 

of the proposed estimator �( )iG t  ( 0,1, , )i I= …  

in (5) and the proposed test statistic n∆  in (6) 

are studied. To this end, let (0) (0)( , )θ β  be the 

true value of ( , )θ β  under model (2) with  
 

(0) 10 0( , , )p
τθ θ θ= …  

 
and 

 (0) 10 0( , , )p
τ τ τβ β β= … . 

Throughout this article, it is assumed 
that 0/i in nρ =  ( 0,1, , )i I= …  is positive and 

finite and remains fixed as 
0

I

ii
n n

=
= → ∞∑ . 

Write 
0

I

ii
ρ ρ

=
=∑ and 

 

2

( ; )
( ; ) ,

( ; ) ( ; )
( ; )

1, , ,

i i
i i

i

i i i i
i i

i i i

s t
d t

d t s t
D t

i I

τ τ

ββ
β

β ββ
β β β

∂=
∂

∂ ∂= =
∂ ∂ ∂

= …
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exp ( ; ) exp ( ; )0 0 ( )01 exp[ ( ; )]0 01

,

                                     0,1, , ,

uv

s y s yu u u uo v v vo dG y
I s yi i i ii

s

u v I

ρ

ρ θ β ρ θ βν
ρ θ β
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uv

t s y s yu u u uo v v vo
dG yI s ym m m mm

B t

u v I

⎡ ⎤ ⎡ ⎤+ +⎣ ⎦ ⎣ ⎦

+ +∑−∞ =

=

=

∫
…

ρ θ β ρ θ βν
ρ θ β

[ ]
[ ]

0

0

( ; , ) exp ( ; )

exp ( ; ) , 0,1, , ,

uv u u u uo

v v vo

a t s y

s y u v Iν

θ β ρ θ β
ρ θ β

= + ×

+ ≠ = …

 

0,

1 1

( ) ( ; , ),   0,1, , ,

( ; , ) ( ( ; , ), , ( ; , )) ,

                                            0,1, , ,

I

uu uv
v v u

h h hI

a t a t u I

C t a t a t

h I

τ

θ β

θ β θ β θ β
= ≠

= − =

=
=

∑ …

…

…

[ ]
[ ]

0

0

0,

2 1

( ; , ) exp ( ; )

exp ( ; ) ( ; ),

0,1, , ,

( ) ( ; , ), 0,1, , ,

( ; , ) ( ( ; , ), , ( ; , )) ,

                                                0,1,

uv u u u uo

v v vo u u

I

uu uv
v v u

h h hI

b t s y

s y d t

u v I

b t b t u I

C t b t b t

h

ν

τ

θ β ρ θ β
ρ θ β β

θ β

θ β θ β θ β
= ≠

= + ×

+
≠ =

= − =

=
=

∑

…

…

…

…, ,I

(0) (0)
0

0 01

( )

( ; , )
( ),

1 exp[ ( ; )]

1,2, 0,1, , ,                                     (8)

kh

t kh

I

m m m mm

A t

C y
dG y

s y

k h I

θ β
ρ θ β−∞

=

=

+ +

= =

∫
∑

…

 
where J  is an I I×  matrix of 1 elements and 

1 1
1Diag( , , )ID ρ ρ− −= …  is the I I×  diagonal 

matrix having elements 1 1
1{ , , }Iρ ρ− −
… on the 

main diagonal. In order to formulate the results, 
the following assumptions are stated. 

(A1) There exists a neighborhood 0Θ  of 

the true parameter point (0)β  such that for all t  

the function ( ; )i ir t β ( 1, , )i I= …  admits all 

third derivatives 
3 ( ; )i i
k l m
i i i

r t β
β β β
∂

∂ ∂ ∂
 for all 0β ∈Θ  

(A2) For 1, ,i I= … , there exists a function 1Q  

such that 1

( ; )
( )i i

k
i

s t
Q t

β
β

∂ ≤
∂

 for all 0β ∈Θ  and 

1, ,k p= … ,    where 
 

1

1 0 0( ){1 exp[ ( ; )]} ( ) ,

1, 2,3.

j

j
i i i io

q

Q y s y dG y

j

ρ θ β= + + < ∞

=
∫

 
(A3) For 1, ,i I= … , there exists a function 2Q  
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such that 
2

2

( ; )
( )i i

k l
i i

s t
Q t

β
β β

∂ ≤
∂ ∂

 for all 0β ∈Θ  

and , 1, , ,k l p= … where 
 

2

2 0 0( ){1 exp[ ( ; )]} ( ) ,

1, 2.

j

j
i i i io

q

Q y s y dG y

j

ρ θ β

=

+ + < ∞

=
∫

 
(A4) For 1, ,i I= … , there exists a function 3Q  

such that 
3

3

( ; )
( )i i

k l m
i i i

s t
Q t

β
β β β
∂ ≤

∂ ∂ ∂
 for all 0β ∈Θ  

and , , 1, , ,k l m p= … where 
 

3

3 0 0( ){1 exp[ ( ; )]} ( )i i i io

q

Q y s y dG yρ θ β

=

+ + < ∞∫
 

First, study the asymptotic behavior of 
the maximum semiparametric likelihood 

estimate � �( , )θ β  defined in (3). Theorem 8 
concerns the strong consistency and the 

asymptotic distribution of � �( , )θ β  
 

Theorem 1: Suppose that model (2) and 

Assumptions (A1) (A4) hold. Suppose further 

that S is positive definite. 
(a) As n → ∞ , with probability 1 there exists a 

sequence � �( , )θ β  of roots of the system of score 

equations (2.1) such that � �( , )θ β  is strongly 

consistent for estimating (0) (0)( , ),θ β i.e.,  

� �

. .

(0) (0)( , )  ( , )
a s

θ β θ β→ . 

 
(b) As n → ∞  , it may be written 
 

�

�

( , )(0) (0)
1

( , )(0) (0)

1/ 2

(0) 1

(0)

( ),                                        (9)p

S
n

o n

θ β

θ
θ β

β

θ θ

β β

⎛ ⎞∂
⎜ ⎟
⎜ ⎟− ∂
⎜ ⎟

∂⎜ ⎟
⎜ ⎟⎜ ⎟∂⎝ ⎠

−

⎛ ⎞−
⎜ ⎟ =⎜ ⎟−⎜ ⎟
⎝ ⎠

+

�

�  

 

where 
( , ) ( , )(0) (0)

( , ) ( , )(0) (0)

θ β θ β
θ θ θ β θ β

∂ ∂=
∂ ∂ =

�
�  and 

( , ) ( , )(0) (0)

( , ) ( , )(0) (0)

θ β θ β
β β θ β θ β

∂ ∂=
∂ ∂ =

�
� .As a result, 

�

�

( 1)

(0)
  (0, ).              (10)

(0)

d

p In N
θ θ

β β +

⎛ ⎞−
⎜ ⎟ → ∑⎜ ⎟−⎜ ⎟
⎝ ⎠

 
 

Remark 3: A consistent estimate of the 
covariance matrix ∑  is given by 

� �

1 0
(1 )

0 0

D J
S ρ

− +⎛ ⎞
∑ = − + ⎜ ⎟

⎝ ⎠
 

where �S  is obtained from S  with (0) (0)( , )θ β  

replaced by � �( , )θ β  and 0G  replaced by �0G . 

Remark 4: Because 1S −  is the 
prospectively derived asymptotic variance-

covariance matrix of � �
*( , )θ β  on the basis of the 

prospective likelihood function given                    
in Remark 2, it is seen from the expression for 
the asymptotic variance-covariance matrix ∑ of  
� �( , )θ β  that the asymptotic variance-covariance 

matrices for �β  and �β  coincide under the 
retrospective sampling scheme and the 
prospective sampling scheme. Consequently, 
a prospectively derived analysis under model 
(1.1) on parameter estimates and standard errors 
for β  is asymptotically correct in case-control 
studies. These results match those of Weinberg 
and Wacholder (1993) and Scott and Wild 
(1997). 

The two-step profile maximization 
procedure, by which the maximum 

semiparametric likelihood estimator � � �

0( , , )Gθ β is 

derived, relies on first maximizing the 
nonparametric part 0G  with ( , )θ β  fixed and 

then maximizing ( , )θ β�  with respect to 

( , )θ β . The estimator � � �

0( , , )Gθ β can also be 

derived by employing the following “method 
of moments”. Motivated by the work of Gill, 
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Vardi, and Wellner (1988), let 
0

I ni
ini

F G
=

=∑  

be the “average distribution function”, then by 
(2) 

0

[ ]

0

( )

exp[ ( ; )]
( ),

exp[ ( ; )]

0,1, , .

i

i i i
y tI

i i i ii

n
G t

n

s y
I dF y

s y

i I

≤

=

=

+
+

=

∫
∑

…

θ β
ρ θ β

 

 Let 1
[ ]1

( )
i

n

n T tn i
F t I ≤=

= ∑  be the 

empirical distribution function of the pooled 
sample 1{ , , }nT T… . Then iG  can be estimated 

for fixed ( , )θ β  by 
 

0

[ ]

0

[ ]
10 0

( )

exp[ ( ; )]
( )

exp[ ( ; )]

exp[ ( ; )]1

exp[ ( ; )] k

i

i i i
y t nI

i i i ii

n
i i k i

T tI
k i i i k ii

n
G t

n

s y
I dF y

s y

s T
I

n s T

≤

=

≤
=

=

=

+
+

+=
+

∫
∑

∑
∑

θ β
ρ θ β

θ β
ρ θ β

 

for 0,1, ,i I= … . Let  � 1
[ ]1

( ) i

ij

n
i i X tj

G t n I−
≤=

= ∑  

be the empirical distribution function based on 
the sample 1, ,i inX X…  from the i th response 

category. Let ( ; , )i tψ θ β  be a real function from 
pR  to 1pR +  for 1, ,i I= …  and let 

1( ; , ) ( ( ; , ), , ( ; , )) .It t t= …

τ τ τψ θ β ψ θ β ψ θ β  

Then, for a particular choice of ( ; , )tψ θ β , 

( , )θ β can be estimated by matching the 

expectation of ( ; , )i in tψ θ β  under iG  with that 

under � iG  for 1, ,i I= …  : 
 

  

�

�

[ ( ; , )]

( ; , ) ( )

( ; , ) ( ) [ ( ; , )]

i

i

i iG

ii i

ii i i iG

E n T

n t dG t

n t dG t E n T

ψ θ β

ψ θ β

ψ θ β ψ θ β

=

= =

∫

∫

  

 

for 1, ,i I= … . In other words,  ( , )θ β  can be 
estimated by seeking a root to the following 
system of equations: 

1
0

1

( , )

exp[ ( ; )]
( , , )

exp[ ( ; )]

( , , ) 0 1, , .               (11)  
i

i

n
i i i k i

i kI
k m m m k mm

n

i ij
j

L

s T
T

s T

X i I

θ β
ρ θ β ψ θ β

ρ θ β

ψ θ β

=
=

=

=
+

+

− = =

∑
∑

∑ …

 It is easy to see that the above system of 
equations reduces to the system of score 

equations in (3) if ( ; , ) (1, ( ; ))i i it d tτ τψ θ β β=  is 

taken for 1, , .i I= … Let ( , )θ β  with 

1( , , )I
τθ θ θ= …  and 1( , , )I

τβ β β= …  be a 
solution to the system of equations in (11). Note 

that ( , )θ β  depends on the choice of 

( ; , )i tψ θ β  for 1, , .i I= …  The following 

theorem demonstrates that the choice of 

( ; , ) (1, ( ; ))i i it d tτ τψ θ β β=  for 1, ,i I= …  is 

optimal in the sense that the difference between 
the asymptotic variance-covariance matrices of 

( , )θ β  and � �( , )θ β  is positive semidefinite for 
any set of measurable functions 
{ ( ; , ) :   1, , }.i t i Iψ θ β = … Qin (1998) 

established this optimal property when 1I = . 
Theorem 2: Under the conditions of 

Theorem 1, we have 
 

(0)
( 1)

(0)

  (0, ),
d

p In N ψ

θ θ
β β +

⎛ ⎞−
⎜ ⎟ → ∑
⎜ ⎟−⎝ ⎠

  

where 1 1( )V B V τ
ψ ψ

− −
∑ =  with V  and Bψ  

defined in (18) of the proof section. Moreover, 
the maximum semiparametric likelihood 

estimator � �( , )θ β  is optimal in the sense that 

ψ∑ −∑  is positive semidefinite for any set of 

measurable functions { ( ; , ) : 1, , }i t i Iψ θ β = … . 

In the following case, 1p =  is 
considered, although the results can be naturally 
generalized to the case of 1p > . The weak 

convergence of � � � �

0 0( , , )I In G G G G τ− −…  is 
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now established to a multivariate Gaussian 

process by representing � �  ( 0,1, , )i iG G i I− = …  
as the mean of a sequence of independent and 
identically distributed stochastic processes with 

a remainder term of order 1/ 2( )po n− . 

Theorem 3: Suppose that model (2) and 

Assumptions (A1) (A4) hold. Suppose further 

that S  is positive definite. For 0,1, ,i I= … , 
one can write 
 
� � �

1 2( ) ( ) ( ) ( ) ( ) ( ),

                                                                (12)

i i ii i inG t G t H t G t H t R t− = − − +

 
where 
 

1

0 0
[ ]

10 0 01

( )

exp[ ( ; )]1
,

1 exp[ ( ; )] k

i

n
i i k i

T tI
k m m m k mm

H t

s T
I

n s T

θ β
ρ θ β

≤
=

=

+=
+ +

∑
∑

 
 

( , )(0) (0)
1

( , )(0) (0)

1
( ) ( ( ), ( )) ,

2 1 2

                                                             (13)

i

H t A t A t S
i i in

θ β

θ
θ β

β

τ τ
ρ

⎛ ⎞∂
⎜ ⎟
⎜ ⎟− ∂
⎜ ⎟

∂⎜ ⎟
⎜ ⎟⎜ ⎟∂⎝ ⎠

=
�

�  

 
and the remainder term ( )inR t satisfies    

1/ 2sup ( ) ( ).                         (14)in p
t

R t o n−

−∞≤ ≤∞
=  

 
As a result, 

� �

� �

� �

0 0 0

1 1 1

1[ , ]                          (15)

D

II I

I

G G W

WG G
n

WG G

in D +

⎛ ⎞− ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟− ⎜ ⎟⎯⎯→⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎝ ⎠−⎝ ⎠

−∞ ∞

��  

where 1[ , ]ID + −∞ ∞  is the product space defined 

by [ , ] [ , ]D D−∞ ∞ × × −∞ ∞�  and 

0 1( , , , )IW W W τ
…  is a multivariate Gaussian 

process with continuous sample path and 
satisfies, for s t−∞ ≤ ≤ ≤ ∞ ,  
 

( ) 0, 0,1, , ,iEW t i I= = …  

1
1 2

1
( ) ( ) [ ( ) ( )]

2

( )1 1( ( ), ( )) , 0,1, , ,
2 ( )

2

i i i ii

i i

EW s W t G s B s

i
A t

iA s A s S i I
A t

ii

τ τ

ρ
ρ

ρ
−

+= −

⎛ ⎞
⎜ ⎟− =
⎜ ⎟
⎝ ⎠

…

 

1
1 2

( ) ( )

1 1
( ) ( ( ), ( ))

( )
1

, 0,1, , .                (16)
( )

2

i j

ij i i

EW s W t

B s A s A s S
i j i j

A t
j

i j I
A t

j

τ τρ
ρ ρ ρ ρ

−+= − −

⎛ ⎞
⎜ ⎟ ≠ =
⎜ ⎟
⎝ ⎠

…

 

Theorem 3 forms the basis for testing 
the validity of model (2) on the basis of the test 
statistic n∆  in (6). Let wα  denote the α -

quantile of the distribution of 
1

1 0
{sup | ( ) |},

I

i t iI i
W tρ −∞≤ ≤∞+ =∑  i.e., wα  

satisfies 
1

1 0
( {sup | ( ) |} ) .

I

i t iI i
P W t w−∞≤ ≤∞+ =

≤ =∑ αρ α  

According to Theorem 3 and the continuous 
Mapping Theorem (Billingsley, 1968, p. 30): 

 

� �

{ }

1

1
0

1
0

lim ( )

1
lim { sup | ( ) ( ) |}

1

1
     sup | ( ) |

1

n
n

I

ii i
n ti

I

i i
ti

P w

P n G t G t w
I

P W t w
I

α

α

α

ρ

ρ α

−→∞

−→∞ −∞≤ ≤∞=

−
−∞≤ ≤∞=

∆ ≥

⎛ ⎞= − ≥⎜ ⎟+⎝ ⎠

⎛ ⎞= ≥ =⎜ ⎟+⎝ ⎠

∑

∑

 
Thus, the proposed goodness of fit test 
procedure has the following decision rule: reject 
model (2) at level α  if 1n w α−∆ > . In order for 

this proposed test procedure to be useful in 
practice, the distribution of 

1

1 0
{sup | ( ) |}

I

i t iI i
W tρ −∞≤ ≤∞+ =∑ must be found 

and the (1 )α− -quantile 1w α−  calculated. 
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Unfortunately, no analytic expressions appear to 
be available for the distribution function of 

1

1 0
{sup | ( ) |}

I

i t iI i
W tρ −∞≤ ≤∞+ =∑ and the quantile 

function thereof. A way out is to employ a 
bootstrap procedure as described in the next 
section. 
 
A Bootstrap Procedure 

In this section is presented a bootstrap 
procedure which can be employed to 
approximate the quantile 1w α−  defined at the 

end of the last section. If model (1) is valid, 

since * * *
1( , , )I

τθ θ θ= …  is not estimable in 

general on the basis of the case-control data 

1, , nT T… , only generated data, respectively, 

from � � �

0 1, , , IG G G… , where �  ( 0,1, , )iG i I= …  

is given by (5). Specifically, let * *
1, ,

ii inX X…  be 

a random sample from � iG  for 0,1, ,i I= …  and 

assume that * *
1{( , , ) :  0,1, , }

ii inX X i I=… … are 

jointly independent. Let * *
1{ , , }nT T…  denote the 

combined bootstrap sample 

0 1

* * * * * *
01 0 11 1 1{ , , ; , , ; ; , , }

In n I InX X X X X X… … � …  

and � �* *( , )θ β with � � �* * *
1( , , )I

τθ θ θ= …  and 

� � �* * *
1( , , )I

τ τ
τβ β β= …  be the solution to the 

system of score equations in (3) with the *
kT  in 

place of the kT . Moreover, similar to (4) (6), 

let � *

* 1

[ ]1
( ) i

ij

n
i n X tji

G t I
≤=

= ∑  for 0,1, ,i I= …  and 

 

�

� �

� � � �

� �

� �

*

*

*

** *
0

1

* * ** *

[ ]
1

** *

[ ]

** *
10

1

1 1
,

1 exp[ ( ; )]

1, , .

( ) exp[ ( ; )]

exp[ ( ; )]1
,

1 exp[ ( ; )]

0, , ,

k

k

k I
ii i k ii

n

i i i kk i T t
k

n i i k i T t

I
k mm m k mm

p
n s T

k n

G t p s T I

s T I

n s T

i I

ρ θ β

θ β

θ β

ρ θ β

=

≤
=

≤

=
=

=
+ +

=

= +

+
=

+ +

=

∑

∑

∑
∑

…

…

 

 

where �

*
0 0θ =  and �

*

00 ( ; ) 0s β ≡i . Then the 

corresponding bootstrap version of the test 
statistic n∆  in (6) is given by 

                      * *

0

1
,

1

I

n i ni
iI

ρ
=

∆ = ∆
+ ∑

 

where * *sup | ( ) |ni t ni t−∞≤ ≤∞∆ = ∆  with 

� �

*** ( ) ( ( ) ( ))i ini t n G t G t∆ = − for 0,1, ,i I= … . 

To see the validity of the proposed bootstrap 
procedure, the proofs of Theorems 1 and 3 can 
be mimicked with slight modification to show 
the following theorem. The details are omitted 
here. 

Theorem 4: Suppose that model (2) and 

Assumptions (A1) (A4) hold. Suppose further 

that S  is positive definite and  

         2 ( ) ( ){1 exp[ ( ; )]} ( )1 2 0 0 0Q y Q y s y dG yi i i iρ θ β
−∞

+ +
∞

< ∞∫  

for 1, ,i I= … .  
(a) Along almost all sample sequences 

1 2, , ,T T …  given 1( , , )nT T… , as n → ∞ , we 

have 

                    
� �

� �

( 1)

*
  (0, ).

*

d

p In N
θ θ

β β
+

⎛ ⎞−⎜ ⎟ → ∑
⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
(b) Along almost all sample sequences 

1 2, , ,T T …  given 1( , , )nT T… , as n → ∞ , we 

have 

� �

� �

� �

0 0
0

1 11 1
 

**

**
 in [ , ],

**

D
I

I

I I

G G W

WG Gn D

W
G G

+
→

⎛ ⎞−⎜ ⎟ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟ −∞ ∞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎜ ⎟
−⎝ ⎠

��

 

where 0 1( , , , )IW W W τ
…  is the multivariate 

Gaussian process defined in Theorem 3. 
 Theorem 3 and part (b) of Theorem 4 
indicate that the limit process of 

� � � �

0 0
* ** *

( , , )I In G G G G τ− −…  agrees with that 
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of � � � �

0 0( , , )I In G G G G τ− −… . It follows 
from the Continuous Mapping Theorem that 

1* *
1

0

I

n i niI
i

ρ+
=

∆ = ∆∑  has the same limiting 

behavior as does 1

1
0

I

n i niI
i

ρ+
=

∆ = ∆∑ . Thus, the 

quantiles of the distribution of n∆  can be 

approximated by those of *
n∆ . For (0,1)α ∈ , let 

* *
1 inf{ ;  ( ) 1 }n

nw t P tα α− = ∆ ≤ ≥ − , where *P  

stands for the bootstrap probability under 
�  ( 0,1, , )iG i I= … . Then there is the following 

bootstrap decision rule: reject model (2) at level 

α  if 1
n

n w α−∆ > . 

Two real data sets are next considered. 
Note that the multivariate logistic regression 
model is a special case of the multivariate 
multiplicative-intercept risk model (1) with 

* *exp( )i iθ α=  and ( ; ) exp( )i i ir x xτβ β=  for 

1, ,i I= … . In this case, we have 
* 0

1
log( )i i

π
πθ α= +  and ( ; )i i is x xτβ β= in model 

(2) for 1, ,i I= … . 
Example 1: Agresti (1990) analyzed, by 

employing the continuation-ratio logit model, 
the relationship between the concentration level 
of an industrial solvent and the outcome for 
pregnant mice in a developmental toxicity study. 
The complete dataset is listed on page 320 in his 
book. Let X denote “concentration level (in 
mg/kg per day)” and Y represent “pregnancy 
outcome”, in  which  0,1,Y =   and 2  stand  for  
 
 
 
 
 
 
 
 
 
 
 
 
 

three possible outcomes: Normal, Malformation, 
and Non-live. Here this data set is analyzed on 
the basis of the multivariate logistic regression 
model. Because the sample data ( , )i iX Y , 

1, ,1435i = … , can be thought as being drawn 
independently and identically from the joint 
distribution of ( , )X Y , Remark 1 implies that  

the test statistic n∆  in (6) can be used to test the 

validity of the multivariate logistic regression 
model. Under model (2), 

� � � �

1 1 2 2( , , , ) ( 3.33834, 0.01401, 

2.52553, 0.01191)

θ β θ β = −
−

 

and 0.49439n∆ =  with the observed P -value 

equal to 0 based on 1000 bootstrap replications 

of *
n∆ . Because 0 1000n = , 1 199n = , and 

2 236n = , * *
1 1logα θ= and * *

2 2logα θ=  can be 

estimated by 
�

*
1 = 3.33834 + log(199/1000) = 4.95279α − −

and �
*
2 = 2.52553  α −  

+ log(236/1000)= 3.96945− , respectively. 

Figure 1 shows the curves of � 0G  and 
�

0G (left panel), the curves of �1G  and �1G (middle 

panel), and the curves of � 2G and � 2G (right 
panel) based on this data set. The middle and 
right panels indicate strong evidence of the lack 
of fit of the multivariate logistic regression 
model to these data within the categories for 
Malformation and Non-live. 
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Figure 1. Example 1: Developmental toxicity study with pregnant mice. Left panel: estimated cumulative 

distribution functions 0

~
G  (solid curve) and 0Ĝ  (dashed curve). Middle panel: estimated cumulative 

distribution functions 1

~
G  (solid curve) and 1Ĝ  (dashed curve). Right panel: estimated cumulative 

distribution functions 2

~
G  (solid curve) and 2Ĝ  (dashed curve). 
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Example 2: Table 9.12 in Agresti (1990, 
p. 339) contains data for the 63 alligators caught 
in Lake George. Here the relationship between 
the alligator length and the primary food choice 
of alligators is analyzed by employing the 
multivariate logistic regression model. Let X  
denote “length of alligator (in meters)” and Y  
represent “primary food choice” in which 

0,1,Y = and 2 stand for three categories: Other, 
Fish, and Invertebrate. Since the sample data 
( , )i iX Y , 1, ,63i = … , can be thought as being 

drawn independently and identically from the 
joint distribution of ( , )X Y , Remark 1 implies 

that the test statistic n∆ in (6) can be used to test 

the validity of the multivariate logistic 
regression model. 

For the male data, we find 
� � � �

1 1 2 2( , , , )θ β θ β = (0.41781, − 0.17678, 4.83809, 

− 2.60093) and n∆  = 1.33460 with the observed 

P -value identical to 0.389 based on 1000 

bootstrap replications of *
n∆  . For the female 

data, we find � � � �

1 1 2 2( , , , )θ β θ β = ( − 5.58723, 

2.57174, 2.70962, − 1.50304) and n∆ = 1.63346 

with the observed P -value equal to 0.249 based 

on 1000 bootstrap replications of *
n∆ . For the 

combined male and female data, 
� � � �

1 1 2 2( , , , )θ β θ β = ( − 0.19542, 0.08481, 4.48780, 

− 2.38837) and n∆ = 1.73676 is found with the 

observed P -value identical to 0.225 based on 

1000 bootstrap replications of *
n∆ , indicating 

that we can ignore the gender effect on primary 
food choice. Because 0n  = 10, 1n = 33, and 2n = 

20, * *
1 1logα θ=  and * *

2 2logα θ=  can be 

estimated by �
*
1α = − 0.19542 + log(33/10) = 

0.99850 and �

*
2α = 4.48780 + log(20/10) = 

5.18094, respectively. 

Figures 2-4 display the curves of � 0G  

and � 0G (left panel), the curves of �1G  and 
�

1G (middle panel), and the curves of � 2G  and 
�

2G (right panel) based, respectively, on the 
male, female, and combined data set. For the 

combined data, the curve of � �

1 2( )G G  bears a 

resemblance to that of � �

1 2( )G G , whereas the 

dissimilarity between the curves of � 0G  and � 0G  
indicates some evidence of lack of fit of the 
multivariate logistic regression 
model to these data within the baseline category 
for Other. 
 

Proofs 
 
First presented are four lemmas, which will be 
used in the proof of the main results. The proofs 
of Lemmas 1, 2, and 3 are lengthy yet 
straightforward and are therefore omitted here. 
Throughout this section, the norm of a 21 mm ×  

matrix 
21

)( mmijaA ×= is defined by 
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Figure 2. Example 2: Primary food choice for 39 male Florida alligators. Left panel: estimated cumulative 

distribution functions 0

~
G  (solid curve) and 0Ĝ  (dashed curve). Middle panel: estimated cumulative 

distribution functions 1

~
G  (solid curve) and 1Ĝ  (dashed curve). Right panel: estimated cumulative distribution 

functions 2

~
G  (solid curve) and 2Ĝ  (dashed curve). 
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Figure 3. Example 2: Primary food choice for 24 female Florida alligators. Left panel: estimated 

cumulative distribution functions 0

~
G  (solid curve) and 0Ĝ  (dashed curve). Middle panel: estimated 

cumulative distribution functions 1

~
G  (solid curve) and 1Ĝ  (dashed curve). Right panel: estimated 

cumulative distribution functions 2

~
G  (solid curve) and  2Ĝ  (dashed curve).   
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Figure 4.  Example 2: Primary food choice for 63 male and female Florida alligators. Left panel: estimated 

cumulative distribution functions 0

~
G  (solid curve) and 0Ĝ  (dashed curve). Middle panel: estimated 

cumulative distribution functions 1

~
G  (solid curve) and 1Ĝ  (dashed curve). Right panel: estimated 

cumulative distribution functions 2

~
G  (solid curve) and 2Ĝ  (dashed curve). 
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 Lemma 1: Suppose that model (2) holds 
and S  is positive definite. Let J  be an II ×  
matrix of 1 elements and let 

1 1
1Diag( , , )ID ρ ρ− −= � denote the II ×  

diagonal matrix having elements 
1 1

1{ , , }Iρ ρ− −
� on the main diagonal, then  
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Lemma 2: Suppose that model (2) holds 
and S  is positive definite. For 

∞≤≤≤∞− ts ,  
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Lemma 3: Suppose that model (2) holds 
and S  is positive definite. For 

∞≤≤≤∞− ts , we have  
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Lemma 4: Suppose that model (2) and 

Assumption (A2) hold. If S  is positive definite 
and 0G is continuous, then the stochastic process 

}  )],()(ˆ)([{ 21 ∞≤≤∞−−− ttHtGtHn iii is 

tight in ],[ ∞−∞D for ,, ,1 ,0 Ii �= where 

)(1 tH i  and )(2 tH i  are defined in (13). 

 

Proof: Because i
i

nn
ρ

ρ+= 1
 for 

,, ,1 ,0 Ii �= it can be shown after some 
algebra that  
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Let ℑ }R:{ ],( ∈= −∞ tI t be the collection of all 

indicator functions of cells ],( t−∞ in R. 
According to the classical empirical process 
theory, ℑ is a 

1kXP -Donsker class for 

,, ,1 ,0 Ik �=  where 1
11

−= kX XPP
k

�  is the 

law of 1kX  for  0,  1,  , .k I= � For each 

,, ,1 ,0 Ii �=   let us define 1+I  fixed 

functions iIii fff ,,, 10 �  by  
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Then it is seen that iIii fff ,,, 10 �  are uniformly 

bounded functions. According to Example 

2.10.10 of van der Vaart and Wellner (1996, p. 
192), it can be concluded that ikf⋅ℑ  is a 

1kXP -

Donsker class for  0,  1,  , .k I= �  
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1 δ be the empirical 

measure of 
kknk XX ,,1 �  for 

,, ,1 ,0 Ik �= where xδ  is the measure with 

mass one at x . Then, it can be shown that  
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As a result, there exist 1+I zero-mean Gaussian 
processes iIii VVV ,,, 10 �  such that 

 

      on [ , ],
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D

k ik ikn U V D
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→ −∞ ∞
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Thus, the stochastic process 

}  ),({ ∞≤≤∞− ttUn ikk is tight on 

],[ ∞−∞D  for Iki , ,1 ,0, �= . Moreover, it 
can be shown by using the tightness axiom (Sen 
& Singer, 1993, p. 330) that the stochastic 

process }  ),({ 2 ∞≤≤∞− ttHn i  is tight on 

],[ ∞−∞D  for Ii , ,1 ,0 �= . These results, 
along with (17), imply that the stochastic 
process 

}  )],()(ˆ)([{ 21 ∞≤≤∞−−− ttHtGtHn iii  

is tight in ],[ ∞−∞D for Ii , ,1 ,0 �= . The 
proof is complete. 

Proof of Theorem 1: Fro part (a), let 

}||||||:||),{( 22
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2
)0( εββθθβθε ≤−+−=B

 be the ball with center at the true parameter 
point ),( )0()0( βθ  and radius ε  for some 0>ε . 

For small ε , it can be shown that we can expand 
1 ( , )n θ β−
�  on the surface of εB about 

),( )0()0( βθ  to find  
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where 01 >λ is the smallest eigenvalue of S . 

As a result, 2
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for sufficiently large n  with probability 1. It has 
been shown that for any sufficiently small 0>ε  
and sufficiently large n , with probability 1,  

),(),( )0()0( βθβθ �� <   at all points ),( βθ on 

the surface of εB , and hence that  ),( βθ�   has 

a local maximum in the interior of εB . Because 

at a local maximum the score equations (3) must 
be satisfied it follows that for any sufficiently 
small 0>ε  and sufficiently large n , with 
probability 1, the system of score equations (3) 

has a solution )
~

,
~

( βθ within εB . Because 

0>ε  is arbitrary, )
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( βθ  is strongly consistent 
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where 
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Thus, 
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thus establishing (9). To prove (10), it suffices to 
show that  
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This completes the proof of Theorem 2. 
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Under the assumption that the underlying 
distribution function 0G  is continuous (20) is 
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It then follows from the multivariate central 
limit theorem for sample means and the Cramer-
Wold device that the finite-dimensional 
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Therefore, (20) holds for general 0G , and this 

completes the proof of Theorem 3. 
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