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Regular Articles
Testing the Goodness of Fit of Multivariate Multiplicative-intercept Risk Models
Based on Case-control Data

Biao Zhang
Department of Mathematics
The University of Toledo

The validity of the multivariate multiplicative-intercept risk model with | +1 categories based on case-
control data is tested. After reparametrization, the assumed risk model is equivalent to an (I +1) -sample
semiparametric model in which thel ratios of two unspecified density functions have known parametric
forms. By identifying this (I +1) -sample semiparametric model, which is of intrinsic interest in general
(I +2) -sample problems, with an (I +1) -sample semiparametric selection bias model, we propose a
weighted Kolmogorov-Smirnov-type statistic to test the validity of the multivariate multiplicative-
intercept risk model. Established are some asymptotic results associated with the proposed test statistic,
also established is an optimal property for the maximum semiparametric likelihood estimator of the
parameters in the (I +1) -sample semiparametric selection bias moddl. In addition, a bootstrap procedure
along with some results on analysis of two real data setsis proposed.

Key words: Biased sampling problem, bootstrap, Kolmogorov-Smirnov two-sample statistic, logistic
regression, mixturesampling, multivariate Gaussian process, semiparametric selection bias
model, strong consistency, weak convergence

Introduction where €, ,...,6, are positive scale parameters,

Let Y bea multicategory response variable with ool are for fixed x, known functions
| +1 categories and X be the associated px1 from R® to R", and B =(f',...,8°)" is
covariate vector. When the possible values of a px1 vector parameter for i=1,...1 . The
the response variable Y are denoted by class of multivariate multiplicative-intercept risk
y=01...,I and the first category (0) is the models includes the multivariate logistic
basdine category, Hsieh, Manski, and regression models and the multivariate odds-
McFadden (1985) introduced the following liner models discussed by Weinberg and
multivariate multiplicative-intercept risk model: Sandler (1991) and Wacholder and Weinberg
(1994). By genealizing earlier works of

P(Y=i|X =X) —or(xB), i=1...1, (1) Anderson (1972, 1979), Farewell (1979), and
P(Y=0|X=x) ' "77% e Prentice and Pyke (1979) in the context of the

logistic regression models, Weinberg and

Wacholder (1993) and Scott and Wild (1997)
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12 MULTIPLICATIVE-INTERCEPT RISK BASED ON CASE-CONTROL DATA

Let Xi,ens Xy
P(x|Y =i) for i=0,1,...,1 and assume that
{(Xip-- X)) 1=0L...1} ae jointly
independent. Le 7z =P(Y=i) and
g.(X) = f(x]|Y =i) be the conditional density
or frequency function of X given Y =i for
i=02L...1 . If f(x) is the marginal

distribution of X , then applying Bayes' rule
yields

be a random sample from

f(x|Y =i)

_PO=iX=x o

i=01...1.
It is seen that

f(x]Y =i) _my P(Y=i|X=Xx)
f(x]Y=0) 7z P(Y=0|X=x)

_ o pre e -
—;@ri(xﬁi), i=1,...,1.

Consequently,

6.09=f(xIY=0)=2267(x5) T (x]Y =0)

=exp[f +s (X% B)]19,(x), i=1...1,

whered =logé +log(r,/ z;)and

s(x;B)=logr.(x;8) fori=1...,1 . As a
result, the following (I +1) -sample
semiparametric modd is obtained:

iid.
X01!“'!X0n0 - go(x)’
iid.

Xigreens Xin ~ 6;(X) = exp[6, +5 (X B)]19,(X),
i=1...,1. )

Throughout this article, let
9:(91""’9|)T1 ,3=(,3f,~--,,3f)7,

and G (x) be the corresponding cumulative

distribution function of g.(x) for i =0,1,...1 .

Note that model (2) is equivalent to an (I +1)-
sample semiparametric model in which the i ™
(i1=1...,1) ratio of a pair of unspecified
density functions g, and g, has a known
parametric form, and thus is of intrinsic interest
in general (I +1) -sample problems. Model (2)
is equivalent to model (1); it is an (I +1) -
sample semiparametric selection bias model
with weight functions w,(x, 8, f) =1 and

W (X, 8, B) =exp[6, + s(x; B)]

for i=1...,1 depending on the unknown

paameters @ and B . The s -sample
semiparametric selection bias model  was
proposed by Vardi (1985) and was further
developed by Gilbert, Lele, and Vardi (1999).
Vardi (1982, 1985), Gill, Vardi, and Wellner
(1988), and Qin (1993) discussed estimating
distribution functions in biased sampling models
with known weight functions. Weinberg and
Wacholder (1990) considered more flexible
design and analysis of case-control studies with
biased sampling. Qin and Zhang (1997) and
Zhang  (2002) considered  goodness-of-
fit tests for logistic regression models based on
case-control data, whereas Zhang (2000)
considered testing the validity of mode (2)
when| =1.

The focus in this article is to test the

validity of model (1.2) forl >1. Let {T,,..., T }
denote the pooled sample
{Xopseeos Xon s X Xigseers X }

Oony?

X

pareees Ky reees

with n= Z::OQ . Furthermore, let

Gt)=n"> r;i:1|[Xii <t]
and

n

C_;o t)= n_lz k=1 | [Te<t]
be, respectively, the empirical distribution
functions based on the sample X,,..., X, from
thei™ (i=0,1,...,1) category and the pooled
sampleT,,..., T . In the special case of testing
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the equality of G, and G, for which | =1 and
S (X 4,)=0 in mode (2), as argued by (van
der Vaart & Wedlner, 1996, p. 361; Qin & Zhang,
1997), the Kolmogorov-Smirnov two-sample

statistic is equivalent to a statistic based on the
discrepancy between the empirical distribution

function é; and the pooled empirical
distribution function G,. This fact, along with

the fact that G, and G, are, respectively, the
nonparametric maximum likelihood estimators
of G, without and with the assumption of

G,(t)=G,(t) , motivates us to employ a
weighted average of the | +1 discrepancies
between é\, and gl (i=01,...,1) to assess

the validity of mode (2), where G is the
maximum semiparametric likelihood estimator
of G under model (2) and is derived by
employing the empirical likelihood method
developed by Owen (1988, 1990). For a more
complete survey of developments in empirical
likelihood, see Hall and La Scala (1990) and
Owen (1991).

This article is structured as follows: in
the method section proposed is a test statistic by
deriving the maximum  semiparametric
likelihood estimator of G under mode (2).

Some asymptotic results are then presented
along with an optimal property for the maximum
semiparametric likelihood estimator of (€, ) .
Thisis followed by a bootstrap procedure which
allows one to find P -values of the proposed
test. Also reported are some results on analysis
of two real data problems. Finally, proofs of the
main theoretical results are offered.

Methodol ogy

Based on the observed data in (2), the likelihood
function can be written as

L

L(H,ﬁ, Go) =HHe>(p[9| +S(Xij ;/Bi)]dGo(Xij)

:[H pkj{expo(éil[e +s(><ij;ﬁi)]ﬂ,

where 6, =0, (% 5,) =0, and p, = dG,(T,),
k=1...,n, are (nonnegative) jumps with total
mass unity. Similar to the approach of Owen
(1988, 1990) and Qin and Lawless (1994), it can
be shown by using the method of Lagrange
multipliers that for fixed (€, ), the maximum

value of L, subject to constraints Y, p, =1,
p, =0and

> pdexpld+s (T B)]-3=0

fori=1,...,1 ,isattained at
P _i 1
C 1Y pexpld +5(T:A)]
k=1...,n,
where p. =n/n, for i=0,1,...,1 . Therefore,

the (profile) semiparametric log-likelihood
function of (0, B) is given by

6.9)=-nlogn,
3 iog 1+ p expld +5 (T )|

SYSUG+5 (X, A))

i=1 j=1
Next, maximize ¢ over (8, ). Let (8, ) with
0=(6,...6) and B=(B ,...5, )° be the
solution to the following system of score
equations:
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86(9,,5) . pu exp[eu—i_ﬁj(-rk!ﬁu)]

9(6.5) _~
9B, JZl:d( g )

_i pu eXp[eu +§J(Tk’ﬁu)]
A1+ pnexpll, +5,(T: B,)]
=O, U=l,...,|, (3)

du (Tk ; ﬁu)

where du(Tk;,Bu)=aS“§Lﬂ”‘%) foru=1,...,1I

u

That produces the following,
1 1

1+ pexpld +5 (T A
k=1...,n. (4)

On the basis of the P, in (4), it can be
proposed to estimateG, (t) , under model (2), by

G(t) =Zi: P, exp[é +5 (—rk;E)]l[Tkst]

I S - CRETURY )
AT P eXplO,+5, (T B,
i=0,..,1, ®)

[Test]?

where 6, = 0and s,(+; 3,) = 0. Throughout this
aticlee, as<b and —co<a<oe with
a=(a,...,a,)" and b=(b,...,b))" stand for,
respectively, 8 <P and —eo<g <o for
i=01...
semiparametric likelihood estimator of G. under
moded (2 for 1=01...,1 . Le
GM=n"2" lix be the
distribution function based on the sample
Xigyeon Xin from the i th (i=01...,1)

in
category. Moreover, let

, P . Note that gl is the maximum

empirical

] a1+ pexpld +5(T; B)]

A =Vn(GO-GO). A= sup|a,),
1=01...,1

Then, A, is the discrepancy between the two

estimators 5, (t) and CAEI (t), and thus measures

the departure from the assumption of the
multivariate multiplicative-intercept risk model
(1) within theith (i =1,...,1) pair of category
i and the basdine category (0). Since
Y oA =YY pIG 1 -G O] =0,
there exists a motivation to employ the weighted
average of the A ; defined by

n | +1Zp| ni (6)

to assess the validity of model (2). Clearly, the
proposed test statistic A, measures the global

departure from the assumption of the
multivariate multiplicative-intercept risk model

(1). Because the same value of A occurs no

matter which category is the baseline category,
there is a symmetry among the | +1 category
designations for such a global test. Thus, the
choice of the basdine category in modd (1) is
arbitrary for testing the validity of model (1) or

model (2) based on A, . Note that the test
statistic A, reduces to that of Zhang (2000)
when =1 in modd @ since
A, =2 A+ A=A, forl =1

Remark 1: The test statistic A, can also
be applied to mixture sampling data in which a
sample of n=zi|:0r\ members is randomly
selected from the whole population with
n,,N,...,N, being random (Day & Kaerridge,
1967). Let (X,,Y,), k=1...,n, be a random

sample from the joint distribution of
(X,Y), then the likelihood has the form of
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L= HP(Y | X)f(X,)

STIITim £ (%, 1Y =il

i=0 j=1

where 7. =P(Y =i) fori=1...,1 . The first

expression is a prospective decomposition and
the second one is a retrospective decomposition.

Remark 2: In light of Anderson (1972,
1979), the case-control data may be treated as
the prospective data to compute the maximum

likelihood estimate of (&', ) under model (1),
where 6 =(6,,...,6))" . Suppose that the
sample data in model (2) are collected

prospectively, then the (prospective) likelihood
functionis, by (1),

L@ B) = HHP(Y X =X;)= HH{

=0 j4 0 j=1

61,(X,:8)
EDICARCHYD

Thelog-likelihood function is

16 A=Y S Tlogd +5(X,: 5)]

_Zi:log{l+zl:9:n exp[sm(Tk;ﬂm)]}

The system of score equations is given by

n - D 6, expls, (T; 8,)]
. A1+> 6, expls, (T B,)]

aE.p) _~
9B, ,Z_ld (X3 B)

3 0, expls, (T A
k1 1+ Z:nﬂ@; exp[s,(Tq; 5]
u=1...,1. (7)

du(Tk;IBu) :0!

Le (6,B) with & =(@,..,6) ad

E = (Er,...,ﬁl\r)’ denote the solution to the
system of score equations in (7). Then
comparing (7) with (3) implies that
g, =logd, +log(n,/n,) and B =p. for
u=1...,1 . Thus, the maximum likelihood

estimates of are identical under the retrospective
sampling scheme and the prospective sampling
scheme. In addition, the two estimated

asymptotic variance-covariance matrices for

and ﬁ based on the observed information

matrices coincide. See also Remarks 3 and 4
below.

Asymptotic results
In this section, the asymptatic properties

of the proposed estimator gi(t) i=01...,1)
in (5) and the proposed test statistic A, in (6)
are studied. To this end, let (6, B,,) be the
truevalue of (&, ) under modd (2) with

(0) (‘910’ pO)T
and
:B(o) = (ﬁlOT""’ﬁpOT)T'
Throughout this article, it is assumed
that p=n/n, (i= ., I) is positive and

finite and remains fixed as n=z::on — .

Write p = Z::Opi and

o5(tA)
dt;B)=
(t5)= Y
gy 0di(tB) _d°s(tS)
Di(t4)= B pop
i=1...,1,
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uv __ 1
Sy = T
Ipu eXp[equrSu(y;ﬁuo)JpveXp[evoJrsv(y;ﬁvo)JdG (y)
Lzl o explG gt (vihio)] 0
uzv=01L1...,1,
|
Si=—> s, u=01...1,
v=0,vu
w
S_’l = (%.’l )u,v:l,._,l,
uv 1
Sy =T

Ipuex’)[guoﬁu(y:ﬁuo)]pvex’)[gvoﬁv(y:ﬁvo)]d (v.3.)dG (y)
utPu/Tmo

W0 e0lGg+s (Vo)

uzv=01...,I
|
$i=- 2 S
v=0,v£u
u= 0,l..., I , Szl = (SZU\ll)u,vﬂ,u.,l,

J' Py exp[equr% (y;ﬂuo)Jpv e(p[@vOJrsV (y;ﬂvo)J

X
1) _yp eplb g+ (13 o)

d, (v Ad, (v, 8, ey,  U#V=01...,1,
|

Sp=— Y. Sy, u=01..,1I,
" S S
%2 (%z)u,v:].,...,, [%1 gzj

D+J O
=S'-@1
2=3 (+p)( 0 oj’

B, (1) =

It Py exp[eqursu (y;ﬂuo)Jpv eXp[evoJrsl/ (y;ﬂvo)J
s 5] 1 P& PLOmg+5im (Y Bmo)]

uv=01...,1,
a, (t;:6,8) = p, exp[6,,+5,(Y: B.,) ¥

dGq (v),

pve)(p[ev0+sv(y;ﬂvo)]’ U¢V=O’]’""I’

a,)=-> a,t6,h), u=01...1,

v=0,v£U

G (6:60.5) = (@, (16, B)...a, (.6, B))",
h=01...,1,

b, (t;6,8) = p,exp[6,,+5.(Y; Bo)] ¥
£, eXp[6,0+5,(Y: B)] 0, (6 4,

uzv=01...,1,
|
ho®=-3 b,(t6,8), u=0L..,1,
V:0,V¢U
C,.(;6,5)=(,(t;6,5).....b, (.6, B)),
h=01...,1,

A(h(t):
. . Cal¥:b0: fo) dG,(y),
LY P P60+ S (Y: Bro)]

k=12, h=01...,1, (8)

where J is an | x| matrix of 1 dements and
D =Diag(p, ..., p,") is the 1 x| diagonal

matrix having dements {p,*,..., p,”'} on the

main diagonal. In order to formulate the results,
the following assumptions are stated.

(A1) There exists a neighborhood ©,, of
the true parameter point ,8(0) such that for all t
the function r(t;4) (i=1...,1) admits all

3 .
third derivatives 21 CA)_ o 1 ge o,

0B 9B 08"
(A2) For i =1,...,1 , there exists a function Q,
such that w <Q,(t) foral fe ©, and

k=1...,p, whee

Chj
= [ Q! (V){1+ p expl, +5 (: B,)}AG,(y) < e,
=123

(A3) For i =1,...,I , there exists a function Q,
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9°s(t; )
a/)’ika/}i'
and k,1 =1,..., p, where

such that <Q,(t) for al Be 0O,

Q2j =
[ QL1+ o, expl6, +5 (¥; BHG(¥) <=,
j=12.

(Ad) For i =1,...,1 , thereexists a function Q,
s (tA)
0B 0B 08"

and k,I,m=1,..., p, where

such that <Q,(t) foral e ©,

q3 =
QUL+ py expl6y +5 (¥: B)IHAG(y) <o

First, study the asymptotic behavior of
the maximum semiparametric likelihood

estimate (8, 3) defined in (3). Theorem 8
concerns the strong consistency and the
asymptotic distribution of (8, E)

Theorem 1: Suppose that model (2) and

Assumptions (Al)— (A4) hold. Suppose further

that S is positive definite,
(@ As N — oo, with probability 1 there exists a

seguence (é,ﬁ) of roots of the system of score
equations (2.1) such that (8,/) is strongly
consistent for estimating (9(0),,8(0)), i.e,

(é,ﬁ) _) (0(0)!ﬂ(0))'
(b) As N — oo, it may be written

6-6 9610y (o)
O | _1.4—%%

n 9(90)#0))

p-5 (0) n 2B
+0, (n"?), 9)

where af(e(o),ﬂ(o)):ag(g,ﬂ)‘ and
2 9 10.5)=(010) h0))
9% #(0))_a(0.5)| As a result,
% P Y0500y Ho))
é—e(o) ;
'\/ﬁ E ﬂ — N(p+1)| (O,Z) (10)
)

Remark 3: A consistent estimate of the
covariance matrix 2. isgiven by

i—é_l—(]ﬁ ) D+J O
- Pl o o

where S is obtained from S with (6, B)
replaced by (é,ﬁ) and G, replaced by C?O .
Remark 4: Because S is the
prospectively derived asymptotic variance-
covariance matrix of (é: ,,3) on the basis of the

prospective  likelihood  function given
in Remark 2, it is seen from the expression for
the asymptotic variance-covariance matrix 2. of

(é,ﬁ) that the asymptotic variance-covariance

matrices for S and [ coincide under the
retrospective  sampling scheme and the
prospective sampling scheme. Consequently,
a prospectively derived analysis under model
(1.2) on parameter estimates and standard errors

for [ is asymptotically correct in case-control
studies. These results match those of Weinberg
and Wacholder (1993) and Scott and Wild
(1997).

The two-step profile maximization
procedure, by which the maximum
semiparametric likelihood estimator (6, E,GO) is
derived, relies on first maximizing the
nonparametric part G, with (8, 5) fixed and
then maximizing £(6,5) with respect to
(6,5) . The estimator (é,,ﬁ,go) can aso be

derived by employing the following “method
of moments” . Mativated by the work of Gill,
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Vardi, and Wellner (1988), lee F=>"' "G

be the “average distribution function”, then by
)

GM)=—
Ny

[ expl6 +5 (v Al g I (),
D pexpll+s(y: )]
i=01,...,1.

Lt F,0)=1>"1;, be the
empirical distribution function of the pooled
sample {T,,...,T.} . Then G can be estimated
for fixed (6, ) by

[ expld +s(Y: 5)] |y dF(Y)

> oo explE +5(v; )]
_ 13 explg+5(T;8)

n & Z::o/’i exp[8 +5(T; 5)]
for i=01,...,|. L&t éi(t)=r\_lz?:ll[x”sr]

be the empirical distribution function based on
the sample X,,..., X, from the i th response

category. Let ; (t; 0, 5) bearea function from
R° to R™ for i=1...., and I
y(t:6,5) =, (t:6,5),...y7 (1.6, 5))".

Then, for a particular choice of w(t;8,/) ,
(6,5) can be estimated by matching the

expectation of Ny (t;0, B) under G; with that
under éi fori=1,...,1 :

[Test]

Es [nwi (T;6, B)]
= [Ny (66, B)AG (1)
= [Ny (6,6, B)dGi (1) = B [nwi (T;6, B)]

for i=1,...,1 . In other words, (@, /) can be

estimated by seeking a root to the following
system of equations:

L (6, 5) =
i P expl6 +s(T;B)]
k=1 Z:nzopm exp[9m + Sm(Tk ; IBm)]

_il//i(xij,g,ﬂ)=0i =1...,1. (11)

It is easy to see that the above system of
equations reduces to the system of score

equations in (3) if w;(t;0,8) =@ d"(t; B))" is
taken for i=1...,1. Let (8,6) with
0=(6,...,6))° and B=(B,,....,)" be a
solution to the system of equations in (11). Note
that (8,) depends on the choice of
v (t;0,5) for i=1...,1. The following
theorem demonstrates that the choice of
w.(t,0,0)=@Qd (t; 8))" for i=1...,1 is

optimal in the sense that the difference between
the asymptotic variance-covariance matrices of

0,5) and (é,ﬁ) is positive semidefinite for
any set of measurable functions
{w.(t;6,5): i=1...,1}. Qin (1998)
established this optimal property when | =1.

Theorem 2: Under the conditions of
Theorem 1, we have

v, (1., 6, 5)

\/ﬁ[g_e(mj i> N(p+1)| (O!Zy/)!

~ 70
where ¥, =V™B,(V*)™ with V and B,

defined in (18) of the proof section. Moreover,
the maximum semiparametric  likelihood

estimator (6, B) is optimal in the sense that

2, —2 is positive semidefinite for any set of

measurable functions {y; (t;0, 5) :i =1,...,1} .
In the following case, p=1 is

considered, although the results can be naturally
generalized to the case of p>1. The weak

convergence of \/ﬁ(éo—@o,...,@ —CAE|)’ is
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now established to a multivariate Gaussian
process by representing Gi -G i=01%...,1)

as the mean of a sequence of independent and
identically distributed stochastic processes with

aremainder term of order o, (n"?).
Theorem 3: Suppose that model (2) and

Assumptions (A1) — (A4) hold. Suppose further

that S is positive definite. For i =0,1,...,1 ,
one can write

Gi(t)=Gi(t) = Hy () =Gi(t) = H, () + R, (1),

(12)
where
H, (1)
iy eplorsMifl

B Mo k=1 1+ Z:nzlpm eXp[emO + Sm(Tk ) :Bmo)]

9(90) (0))

H2i (t) = nipl(ﬁzj- (1), Agi ®)s™ 21(9 ae

©#0) |’
B
(13)
and the remainder tem R (t) satisfies
sup |R,(t)] =0, (n™?). (14)
—oco<t<oo
As aresult,
éo—éo V\/0
\/ﬁ él—él D VV1
G -G W
in D'"*—co, 0] (15)

where D'*[—o0, 0] is the product space defined
by D[—oo,00] X+ +X D[—e0, 00] and
Wy WY

W) is a multivariate Gaussian

process with continuous sample path and
satisfies, for —co < s<t < oo,

EW()=0, i=01...,1,

EW (W (1) =[G (5) - B, (5]

Ai

1 L A (t)J .
N POYAOE . i=01..
p? {AZi ©

EW (W, (1)

- 1P g (91 (A9, A (9)S
PP PP

A0
Ay )

Theorem 3 forms the basis for testing
the validity of model (2) on the basis of the test
statistic A, in (6). Let w, denote the « -
quantile of the distribution of

| .
%Zizopi{wp—ooStSoo |\/\/I (t) |}’ I'e" Wa
satisfies

PGL Yo ALSIP e WO S W,) = 0

According to Theorem 3 and the continuous
Mapping Theorem (Billingsley, 1968, p. 30):

i#j=01..,1. (16)

limP(A, >w,_)

_ L@P(ﬁiﬂ{ sup Vn|GH)-G O =w,

—oo<t<oo

- P[I—il;p{ ap W) |}zwl_aj —a

—oo<t<oo

Thus, the proposed goodness of fit test
procedure has the following decision rule: reect

model (2) at level o if A, >w,_,. In order for
this proposed test procedure to be useful in
practice, the distribution of

2o PASUP_ e W (@)} must be found
and the (1-o) -quantile w,_, calculated.

J
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Unfortunately, no analytic expressions appear to
be available for the distribution function of
PSP IW () } and the quantile

function thereof. A way out is to employ a
bootstrap procedure as described in the next
section.

A Bootstrap Procedure
In this section is presented a bootstrap
procedure which can be employed to

approximate the quantile w,_, defined at the
end of the last section. If modd (1) is valid,
since 8 =(6,,...,6,)" is not estimable in
general on the basis of the case-control data
T,...,T,, only generated data, respectively,
from éo,él,...,él , Where Gi (i=01...,1)
is given by (5). Specifically, let Xj,..., X;, be
a random sample from Gi for i =01...,1 ad
assume that {(Xi*l,...,Xi*n): i=01...,1} ae

jointly independent. Let {T, ,...,T_} denote the
combined bootstrap sample
{XGgree s Ko i Kigyeers X Xl*l,...,Xl*nl}

Oony?

and (6,8) with & =(&,...6) and

1nl;...;

F:(Er,...,ﬁfr)’ be the solution to the
system of score equations in (3) with the T, in

place of the T, . Moreover, similar to (4)— (6),
~* 1 n; .
let Gi m‘nTZ,’;ﬂ[xﬁg] for i=0,1,...,1 and

~ 1 1

P =— —,
C 1Y pexpld+5 (T B
k=1...,n.

Gi(t)=> P, expld +s(T BN,
k=1

n exp[éi* +5(T,; E, ! [Tt

1
Mk 1+ Z:n:lpm exp[étn +5,(Ty s Em)] |
i=0,...,1,

where éB:O and SO(-;;B;)EO . Then the
corresponding bootstrap version of the test
statistic A,, in (6) is given by

* 1 ! *
A== S pA
n I + 1; p| ni

AL ) =/n(Gi (t)-Gi (t)) for i=01,...,1 .
To see the validity of the proposed bootstrap
procedure, the proofs of Theorems 1 and 3 can
be mimicked with slight modification to show
the following theorem. The details are omitted
here.

Theorem 4: Suppose that model (2) and

Assumptions (A1) — (A4) hold. Suppose further
that S is positive definite and

I Qf(y)Qz(y){Hpi explé o+ (¥i/5, g1} dGq (y) < ©°

fori=1...,1.

(@ Along amost al sample sequences
T,T,,..., given (T,,....,T.), as Nn—>oo, we
have

o -0 «
\/ﬁ - N(p+1)| (0! z)

~*
B -p
(b) Along amost all sample segquences
T]_aTza---; glVen (Tl""’Tn)1 as N—oo, we
have
k ax
Go —Go W,
k ax
Jn| G =G| D b in D'*[—co,o0]
ok k \/\/I
G -G

where W,,W,,...,WW)" is the multivariate

Gaussian process defined in Theorem 3.
Theorem 3 and part (b) of Theorem 4
indicate that the Ilimit process of

kL PR
\/H(Go -Go,...,GI =G )" agrees with that



BIAO ZHANG 21

of \/ﬁ(éo —60,...,él _G )" . It follows
from the Continuous Mapping Theorem that

*

|
A= pA, has the same limiting
=0

n

|
behavior as does A, =D pA, . Thus, the
i=0
quantiles of the distribution of A  can be
approximated by those of A, . Foraze (0,1), let
w,, =inf{t; P"(A <t)>1-0a} , where P
stands for the bootstrap probability under
gi (i=0,4...,1). Then there is the following
bootstrap decision rule: reject moddl (2) at level
o if A, >wW .
Two real data sets are next considered.
Note that the multivariate logistic regression
model is a special case of the multivariate
multiplicative-intercept risk modd (1) with
g =exp(e;) and r(x4)=exp(f'x) for
i=1...,1 . In this case, we have
0= +Iog(%) and s(x; ) = 7xin model

(2 fori=1...,1.

Example 1: Agresti (1990) analyzed, by
employing the continuation-ratio logit model,
the relationship between the concentration level
of an industrial solvent and the outcome for
pregnant mice in a developmental toxicity study.
The complete dataset is listed on page 320 in his
book. Let X denote “concentration level (in
mg/kg per day)” and Y represent “pregnancy
outcome”, in which Y=0,1, and 2 stand for

three possible outcomes: Normal, Malformation,
and Non-live. Here this data set is analyzed on
the basis of the multivariate logistic regression

model. Because the sample data (X)Y)) ,
i =1,...,1435, can be thought as being drawn
independently and identically from the joint
distribution of (X,Y), Remark 1 implies that
the test statistic A, in (6) can be used to test the

validity of the multivariate logistic regression
model. Under model (2),

6., 5..6,. B,) = (-3.33834, 0.01401,
252553, 0.01191)
and A, =0.49439 with the observed P -value
equal to O based on 1000 bootstrap replications
of A, . Because n,=1000, n =199 , and
n,=236, a, =logd, and o, =logd, can be
estimated by
on= —3.33834 + log(199/1000) = —4.95279

and o= — 2.52553
+ 10g(236/1000)= —3.96945, respectively.

Figure 1 shows the curves of Go and
Go (left panel), the curves of Gy and Gy (middle

pand), and the curves of G, and G (right
pand) based on this data set. The middle and
right panels indicate strong evidence of the lack
of fit of the multivariate logistic regression
model to these data within the categories for
Malformation and Non-live.
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Figure 1. Example 1: Developmental toxicity study with pregnant mice. Left panel: estimated cumulative
distribution functions G (solid curve) and G (dashed curve). Middle pand: estimated cumulative

distribution functions G (solid curve) and G (dashed curve). Right pand: estimated cumulative
distribution functions G (solid curve) and G (dashed curve).
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Example 2: Table 9.12 in Agresti (1990,
p. 339) contains data for the 63 alligators caught
in Lake George. Here the rdationship between
the aligator length and the primary food choice
of alligators is analyzed by employing the
multivariate logistic regression model. Let X
denote “length of alligator (in meters)” and Y
represent “primary food choic€’ in which
Y =0,1, and 2 stand for three categories: Other,
Fish, and Invertebrate. Since the sample data
(X.,Y),1=1...,63, can be thought as being
drawn independently and identically from the
joint distribution of (X,Y), Remark 1 implies
that the test statisticA,, in (6) can be used to test

the validity of the multivariate logistic
regression model.
For the mae data, we find

(6,,5.6,,3,) = (0.41781, —0.17678, 4.83809,
—2.60093) and A, = 1.33460 with the observed
P -value identical to 0.389 based on 1000
bootstrap replications of A . For the female
data, we find (6,5,.6,,5,) = (- 558723,
2.57174, 2.70962, —1.50304) and A = 1.63346
with the observed P -value equal to 0.249 based
on 1000 bootstrap replications of A, . For the
combined male  and female  data,
(6,,5.6,,3,) = (—0.19542, 0.08481, 4.48780,
—2.38837) and A, = 1.73676 is found with the
observed P -value identical to 0.225 based on
1000 bootstrap replications of A, , indicating
that we can ignore the gender effect on primary
food choice. Because n, = 10, n,= 33, and n,=
20, o, =logd, and «,=logd, can be
estimated by o1 = — 0.19542 + log(33/10) =
0.99850 and &> = 4.48780 + log(20/10) =
5.18094, respectively.

Figures 2-4 display the curves of Go
and éo (left panel), the curves of G, and
61 (middle panel), and the curves of G and

@2 (right panel) based, respectively, on the
male, female, and combined data set. For the

combined data, the curve of Gi(G.) bears a
resemblance to that of él(éz) , Whereas the

dissimilarity between the curves of Go and Go
indicates some evidence of lack of fit of the
multivariate logistic regression
model to these data within the basdine category
for Other.

Proofs

First presented are four lemmas, which will be
used in the proof of the main results. The proofs
of Lemmas 1, 2, and 3 are lengthy yet
straightforward and are therefore omitted here.

Throughout this section, the norm of a m, xm,

matrix  A=(a;)nm, IS defined by
m m, 12

Al = (Zzaﬁzj for  m,m,>1.
i=1 j=1

Furthermore, in addition to the notation in (8)
we introduce some further notation. Write

Q|11 = (ﬁl”%lll)ri Qi21 = ((éil)ra"'a(sgl)r)r’

o) e

_ _1 82*6(6’(0) ’18(0))
" n 9606°
_ _1 825(‘9(0) ’15(0))
n2l n 8,8 aeT
:_1826(9(0)’15(0)) _ Snll Srr121
Foon opopt T Sy Se
1
Hy (t) =H

s Cli (Tk : 9(0) 1 13(0) ) I [T <t]
{1+ P explb + 5, (Ti Bro)Y

’

’

i=0,1, -1,
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Figure 2. Example 2: Prlmary food choice for 39 male Florida alligators. Left pand: estimated cumulative
distribution functions G (solid curve) and G (dashed curve). Middle pand: estimated cumulative

distribution functions Gl (solid curve) and Gl (dashed curve). Right panel: estimated cumulative distribution
functions 62 (solid curve) and éz (dashed curve).
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Figure 3. Example 2: Primary food choice for 24 female Florida alligators. Left pand: estimated
cumulative distribution functions G (solid curve) and G (dashed curve). Middle pand: estimated

cumulative distribution functions G (solid curve) and G (dashed curve). Right pand: estimated

cumulative distribution functions G (solid curve) and G (dashed curve).
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Figure 4. Example 2: Primary food choice for 63 male and female Florida alligators. Left panel: estimated
cumulative distribution functions G, (solid curve) and G, (dashed curve). Middle panel: estimated

cumulative distribution functions él (solid curve) and él (dashed curve). Right pand: estimated

cumulative distribution functions 62 (solid curve) and éz (dashed curve).
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1
Hy () ==
()ﬂ

. C, (Tk 1 Y01 :B(O)) I [T <t]

L+ P P60+ 5, (T Bl

i=0 1 -1

Lemma 1: Suppose that model (2) holds
and S is positive definite. Let J be an | x|
matrix of 1 e ements and let

D =Diag(p,*,---,p,”") denote the |xI
diagonal matrix having elements
{p, "+, p, "'} on the main diagonal, then

8£(8(0) ) ﬂ(O)
1 060 L1+ p
B==Var =S-> —
n 9(0), Bo)) .Zo: i
B
D+J O
31531231_(1+p)£ 0 O]:Z.

Lemma 2: Suppose that model (2) holds

and S ispositive definite. For
—0<g<t< oo,

Cov(vn[H, (5) =G ()], Vn[H, (©) =G (©)])
=126, (9)-B,(9)]
P

1+p < g
iz k:(JZk¢| pk

216 (9)-B, (9GO B, ()]

i=0, L -1,

«(S)Bi (1)

Cov(vn[H, (5)-G ()], «f[Hlj ) -G, ®)])

=_1+_/’ Lp B (t
PP, p.p,kzo P (9B 1)
+12 B (96, (1) + -2 G (9B, (1),

il IJ

i#j=01 I

Lemma 3: Suppose that model (2) holds
and S is poditive  definite. For
—o00 < S<t <o, wehave

Cov(v'n[H, () -G ()], VnH,, (1))
= COV(\/HH 2 (9), \/EH 2 (1))

BENNIOW (t»s-l{
P

1+ 1
_ fz_

P k=0k= Pk

/%(S)j
Ay (9)

B (8) By (t)

-2 216 (9- B, (1[G (1)~ B, 1),

i=0,1 -1,

Cov(vn[H; (s) -G, (8)],VnH,; (1))
= Cov(vnH;(s),vnH,; (1))

1 A )
= A_l,' , ATI S‘l !

1+pZ

B« ()B;, (1)
Pi pj k=0 Pk

+P B (96, 1)+ 1L G (98, 1),
pipj pl j

i#j=01 I

Lemma 4: Suppose that model (2) and
Assumption (A2) hold. If S is positive definite
and G, is continuous, then the stochastic process
{Vn[H; () -G ®) - H, O], —oo<t<oo} is
tight in D[—oce,e0] for 1=0,1---,1, where
H, (t) and H,, (t) aredeflnedln(13).

Proof:  Because n=1+—pni
Pi

i=0,1---,1, it can be shown after some
algebrathat

for
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Vn[H; () -G (1)~ H, ()]
:i Z 1+p\/n7kuik(t)

P, k2ok# \ P
21 1%/)\/ﬁu”(t)—\/ﬁHZi(t), (17)

where

Uii(t):i
n

0 Zmzo,m;ti Pm eXp[emO + Sm(xij ’ ﬂmo)] p
-1 1+ Z:mlpm exp[b,,, + Sm(Xij o)l
-G /(t)- B, (V)]

i[x;<t]

1
Uik(t) :n_
K

LY eXp[9i0+§(ij;ﬂi0)]pkl[inSt]

=1 1+Z:n:1pm eXp[emO + S[T‘I(ij !ﬂmo)]

B, (t), k#i=01 -l

Let 3={I_.., :te R} be the collection of all

indicator functions of cels (—eo,t] in R.
According to the classical empirical process
theory, 3 is a P, -Donsker class for

k=0,1---,1, where kal:PoXk‘l1 is the
law of X,, for k=0,1 ---,]. For each
i=0,1--,1, let us define | +1 fixed

functions f,, f,;,---, f, by

i (y) _ pi Z:nzo,mﬂ pm exp[emo + Sr'n(y! ﬂmo)]
i 1+Z:n:1pm e>(p[9m0+srn(y! ﬂmo)] |

PP eXplb, +5 (Y; Lol |
1+ Z'nblpm eXpO,o + S (Vs Bro)]
k#i=0,1 ---,1.

fi (y) =

Thenitisseenthat f,,, f,, -, f;, areuniformly

bounded functions. According to Example

2.10.10 of van der Vaart and Wellner (1996, p.
192), it can be concluded that 3- f, isa P, -

Donsker classfor k=0, 1, ---,1.

Let P, :iZé‘xki be the empirical

N =
Kiar s Ky, for

k=0,1---,1, where &, is the measure with
massoneat X. Then, it can be shown that

measure of

Jn (B, =P (g i)
= /nU, (1), k=011

Asaresult, thereexist | +1zero-mean Gaussian
processes V,,,V,,,--+,V, such that

D
\/erUik - Vik on D[_°°’°°]’_
i,k=0,1---,I

Thus, the stochastic process
{ynU, (t), —c<t<oeo} is tight on
D[—e,0] for i,k=0,1---,1 . Moreover, it

can be shown by using the tightness axiom (Sen
& Singer, 1993, p. 330) that the stochastic

process {v/NH , (t), —co <t < oo} is tight on
D[—0,0] for i=0,1,---,1 . These results,

aong with (17), imply that the stochastic
process

{Vn[H; (t) =G, (t) = Hy ()], —oo <t < o0}
is tight in D[—o0,0] for i=0,1---,1 . The

proof is complete.
Proof of Theorem 1. Fro part (a), let

B, ={(6.8):10-6) I" +1| B~ By I’'< €7}
be the ball with center at the true parameter
point (6, B,) and radius & for some £ >0.

For small &£, it can be shown that we can expand
n'(6,B8) on the surface of B, about

(6,) Byo)) tofind
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Le.p-
n

where

1
56(9(0) !,B(O)) =W, +W,, +Wn3’

ag(e(owﬁw))
1 200
n EM(Q(O) ’ﬂ(o)) )
ap

__7(91_91 ﬂ ﬂ )S (9 e(O)J
B B-p

= (91 _9(10)1ﬁ1_ (10))

and W, satisfies |W,, |
constant ¢, >0 and sufficiently large n with

< ¢’ for some

probability 1. Because 19°%0:F0) %5 g and

n 20
1900, f0) 5 g by the strong law of large
n op
numbers, it follows that for any given £ >0,
with  probability 1 |W,| < 2&° for
sufficiently large n . Furthermore, because

S, 2 S again by the strong law of large
numbers, it follows that with probability 1,
IS, -S| < 2¢ for sufficiently large n .
Because S is positive definite, on the surface of
B, thereis,

_i(er_er ﬂ‘r_ﬁr )S 9_9(0)
2 (0)? (0) ﬁ_ﬁ(o)

. XX &£

__21,

2 x0 XX 2

where A, > 0is the smallest eigenvalue of S.
As a result, W, < —c,&” for sufficiently large

A

nwith probability 1 with c, :E—g> 0 for
sufficiently small >0 . Consequently, if

E< , then on the surface of B, ,

2+c3

21(6,8)~= 0y o)

S|V\/n1|+| n2|+| n3 |S 283_C282+C383<0

for sufficiently large n with probability 1. It has
been shown that for any sufficiently small £ >0
and sufficiently large n, with probability 1,

08, 5) < B, B) a al points (8, 5) on
the surface of B,, and hence that ¢(6, 8) has
alocal maximum in the interior of B, . Because

at alocal maximum the score equations (3) must
be satisfied it follows that for any sufficiently
small £>0 and sufficiently large n , with

probability 1, the system of score equations (3)
has a solution (€,/) within B, . Because

£ > 0 is arbitrary, (67, ,E) is strongly consistent

for estimating (6, B, i-€, (é,ﬁ’) :
(9(0)’ﬂ(0))-
For part (b), since (67 ,,E) is strongly

consistent by part (a), expanding w
and %ﬁ a (6, fo) dives
_04(6,5)
00
M( 0 :3(0)) 9% (60 ,3(0))(67_9(0))
00 00 00"
862( )
ae(oe;ﬂ 22 (B=Bo)) +0,(3,),
_a@.p)
af
G Blo) 9 G Bo) (5_g
Y 9B 00"
07 (00y: By ,
+#(ﬁ_ﬁ(0))+op(5n),
where

5n: ||4§—49(0) | + ";B_:B(O) Il =Op(l)'

Thus,
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86(0(0) ' 18(0))

nS, g - — 6 _ 00
,B 15(0) aE(‘s’(O)’IB(O))

9p
Because S, =S+0,(1) by the weak law of
o “’(0) Ao

+0,(d,)-

large numbers and a{(%) By | = O, by
p

the central limit theorem, it follows that

86(9(0) , 18(0))

6 ) _ 1 gt 00
IB_IB(O) n aé( N0 (07 ,3(0))
ap
o4(6 9 \Y0)) Proy/ :3(0))

_1,2) 00
\/_ A 9 \Y0)) Proy/ :5(0))

ap

86(49(0) ’:5(0))

dd +0,(n"?),

+0,(n +0,(n6,)

1
==-g?
n 86(9(0) ) :5(0)

op
thus establishing (9). To prove (10), it sufficesto
show that

() 9G0P/ 18(0))
1o 06 d
\/ﬁ a4(6, 9\ Poy/ 18(0))
ap

N(D+1)| (O’Z)

Because each term in @40 gng *“o #0)
00 op

has mean 0, it follows from the multivariate
central limit theorem that

94(6 9\ M0y P/ 18(0))

1 20 d
ﬁB v (8 ) = Negeay (01 )
9p

where B is defined in Lemma 1. By Slutsky’s
Theorem and Lemma 1,

94(6, 9G0P/ 13(0)

Lo 99
\/ﬁ o4(6 9G0P/ 13(0)
ap

1 8 7
— S—lBl/Z B—1/2

aﬂ’

d d
/
— S_lBlzN(p+l)| (O!I(p+1)| ) (p+1)! (0 Z:)
The proof is complete.

Proof of Theorem 2: Let

J‘p| expl6,+ S (t; ﬁm)]PJ exp[6;, +s; (t; ﬁjo)]
1+ P XP[6,+ 5, (E: Bro)]
W, (66, B0))dGy (1), i# =011,

|
Vii=— D Vi
j=0, j=#i
=011, V11=(V1Jl =L
| l X
12 l+p

& exXplG, +5 (G AP, &Pl +5 G So)]
14+ P ©P[Oy+S,(t: Bro)]
Wi (60,0, B0))A; (t; B,0)dG, (1), 1 =011,
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==Y v,

j=0,j#i

— [\
V12 = (V12 ij=l,-1

i=01--1,
) V:(\/ll’\/lz)!

L(6.5)= (0. 5) . 5 0. )
B, =Va {% L(6)» ,5(0))] (18)

The proof of the asymptotic normality

70 is simi 00 | |

of [B_%J is similar to that of [ﬂ—ﬂ(oJ in
Theorem 1 by noting that

0-6 1

0) - -

_ ==V L(0. Bi)) + 0, (N?).

B-Bg) N

To prove the second part of Theorem 2, notice
9-4(q) 9-00) | [-40)

that [5‘%)} and [ﬁ‘ﬂw)} [ﬂ‘ﬁw)} xe

asymptotically independent because it can be

shown after very extensive algebra that

Cov| s
%0)A0)

B

%0)4(0)
B

Consequently, thereis

0 #0)
1.1 28 | 1,- —
B
This completes the proof of Theorem 2.
Proof of Theorem 3:  Since

EH oi (t) = pi_l'% (t) and EH 3i (t) = pi_lAzi (t)
for i=01---,1 and (67,,5) is strongly

consistent, applying a first-order Taylor
expansion and Theorem 1 gives, uniformly in t,

(% 0)-A0)) (%) A 0))
Yoo | V0 o) ST ane gy =0.

i 0 P eXp[é +§ (Tk;ﬁi)]I[TkSt]
NE1+Y | Pn PG, +5,(T B,)]
=H;(t)-Hyg (t)(é_e(O))_ H3 (t)(ﬁ_ﬁw)) +0p(5n)

( (0)) }
(ﬁ ﬁ(O) )

aﬁ( I\Y0)1 P/ ﬁ(O) )

éi (t) =

= H, (1) - (EHg (1), EH5 (1)

_rin (t) + Op (5n)

h0- L Aws %
=H;(t) p (A, Ay (t)S™ (0. o)
9p
+o, (%) —r, (t)+0,(5,)
=H;O-H;O+R,®), =011,
(19)

where § = ||0-
i =01:L“'1|1

9(0) " + ||ﬂ~_ﬁ(o) " and for

fa(t) = (He () — EHG (1), H;(t)—EH;(t))[’j}‘_’jg(OgJ,

Rin (t) = 0p (n_llz) — I (t) + 0p (5n)

It follows from part (b) of Theorem 3 that
8, =0, (n™*?). Furthermore, it can be shown

that S"Ip—ooStSoo I r.in (t) IZ 0p (n_l/2

SUP_«.. | R, (t) E 0, (n""7), which along with

(19) establishes (12) and (14). To prove (15),
according to (12) and (14), it suffices to show
that

). As aresult,
-1/2

Hlo_Go_Hzo Wo
\/ﬁ H11_G1_H21 N Vvl in D|+1[ oooo]
H1| G|_H2| VV'
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Under the assumption that the underlying
distribution function G, is continuous (20) is

proven. According to (16) and Lemmas 2 and 3,
wehavefor —co < s <t <eo,

E{V/n[H, (t) - G (1) - H,, ()]} = 0= EW (1),
i=01---,1,

Cov(v/n[H, () -G ()] —VnH,, (s),
Jn[H, (1) -G ()] —nH,, (1))

= Cov(¥n[H, (8) -G (s)],v/n[H, (1) - G, (t)])
—Cov(v/NH,, (s), VnH, (1))

M P16(9-8,(9)
p.

o s Lg 9B

P k=0k= P

PG (9)-

B, (S[G (1) - B, (1)]

&m}
A )
ST i t

i2 k=OZk¢| P ( )
+2 216 (9)- B, (9)I[G ()~ B, ()]

—%(Ai(s),A;(s))s{

~1*P16(9-B,(9)

—%(Aﬂ(s),A;(s»s-l[
Pi

i=01--,1,

Ai(t)
Ay (1)

Cov(~/n[H, () =G, (s)] -~/nH,, (5),
Jn[H,; (1) =G, (1] —vnH,,; (1))

= Cov(~/n[H, () -G, (].Vn[H,; ) - G, (1)])
—Cov(vnH,(s), VnH,, (1))

j= EW (W (1),

- Yrg9-ttrylg 98,0
plpj plpj k=0 Pk
+1PB (96, (t)+p P G (9B, 1)

i J i M

AL
(A es Y
i pj AZ (t)

1+p

I
r —B (98B, (1)
PP K= Opk |k jk

]
HPg (96, 1)-1L G (98, 1)

it i i
1+p

= (S)——(AM(S) A (s)S™ [
p. P, p. P,

=EW(s)W(t), i#j=0,1, -,

It then follows from the multivariate central
limit theorem for sample means and the Cramer-
Wold device that the finite-dimensional
distributions of

\/E(Hlo_Go_Hzo”"’Hu -G, _Hz|)T
converge weakly to those of (W,---,W,)".

Thus, in order to prove (20), it is enough to
show that the process

{\/H(Hlo(t)_Go(t)_Hzo(t)a""
Hy (-G () - H, O)",
is tight in D'*[—o0,c0]. But this has been
established by Lemma 4 for continuous G,.
Thus, (20) has been proven when G, is

continuous.
Suppose now that G,

distribution function over [—eo, o] . Define the

— o0 <t < oo}

is an arbitrary

inverse of Gy, or quantile function associated
with G, by G, (x) = inf{t: G,(t) > X},

xe (0. Let &y,--+,&, be independent
random variables having the same density
function  h, (x) = exp[ 6, + s, (G4 (x); 8]
on (0) for i=01---,1 and assume that

A; (1)

Ay (t)j
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{(5]1;"',§ini):i=O,:L"',I} are JO|nt|y
independent. Thus, we have the following
(I +1) -sample semiparametric model analogous
to (2):

501”"150% ilijho(x) =100 (X),

£ = () = expld +5 (G5 (0 A (%),

=01 (21)

Then, it is easy to see that (X;,--+, X, ) and
(Go'(£) Gy (§,)) have the same
distribution, i.e.,

d
(Xil""axini): (Go_l(fil)""’Go_l(fini)) for
i=01--,I. Let {y,,~--,,} denote the
pooled random variables

{501"“!50%;é:ll!“"é:lnl;“';é:ll!“"é:ln,}7 then

d
(T T)= (G, .Gy (w,).  For
ue (01 and m=04%---,1, let
H, (u),H,. (U, ad G (u) be the
corresponding counterparts of H,_(t), H,_(t),

and ém (t) under modd (21). Now define
¢ D|+l[—oo’oo] N D|+l[—00,oo] by
(#K)(t) = K(G,(t)), then it can be shown that

JA(HLo[Go ()]~ Gol G ()] ~ o [Go (0], -+
H, [Go ()] = G [G, (1)] - H, [G, (1)])°

2 VN (Hyp ()~ Got)— Han(®), - Hy (0~ 6, (1]
—H,, (1))° and

‘/ﬁ(Hlo_Go_Hzoﬂ"'fHu_éﬁ_H2|)T

D . -

— W,,---W)*

in D01, whee W,,--W,)" is a
multivariate  Gaussian  process  satisfying

AW, ---W,)7] : W,,---W)". If K converges to
K in the Skorohod topology and

K € C'"[—0,0], then the convergence is

uniform, so that @K, converges to ¢K

uniformly and hence in the Skorohod topology.
As a result, Theorem 5.1 of Billingsley (1968,
page 30) implies that

\/H(Hlo_Go_Hzo""’ H1| _G| - Hz| )T

A

~ ~ ~

d - N ~
:¢[\/H(H10_Go_ Hzo”"’ H1| _G| _H2| )T]

D - - d

— JW,,--W)] = W,,---W)".

Therefore, (20) holds for general G,, and this
compl etes the proof of Theorem 3.
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