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On The Power Function Of Bayesian Tests With Application To Design  
Of Clinical Trials: The Fixed-Sample Case 

 
Lyle Broemeling                                                       Dongfeng Wu 

  Department of Biostatistics and Applied Mathematics       Department of Mathematics and Statistics 
    University of Texas MD Anderson Cancer Center                     Mississippi State University 
 
 
Using a Bayesian approach to clinical trial design is becoming more common. For example, at the MD 
Anderson Cancer Center, Bayesian techniques are routinely employed in the design and analysis of Phase 
I and II trials. It is important that the operating characteristics of these procedures be determined as part of 
the process when establishing a stopping rule for a clinical trial. This study determines the power function 
for some common fixed-sample procedures in hypothesis testing, namely the one and two-sample tests 
involving the binomial and normal distributions. Also considered is a Bayesian test for multi-response 
(response and toxicity) in a Phase II trial, where the power function is determined. 
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Introduction 
 
The Bayesian approach to testing hypotheses is 
becoming more common. For example, in a 
recent review volume, see Crowley (2001), 
many contributions where Bayesian 
considerations play a prominent role in the 
design and analysis of clinical trials. Also, in an 
earlier Bayesian review (Berry & Stangl, 1996), 
methods are explained and demonstrated for a 
wide variety of studies in the health sciences, 
including the design and analysis of Phase I and 
II studies. 
 At our institution, the Bayesian 
approach is often used to design such studies. 
See Berry (1985,1987,1988), Berry and Fristed 
(1985), Berry and Stangl (1996), Thall and 
Russell (1998), Thall, Estey, and Sung (1999),  
Thall, Lee, and Tseng (1999), Thall and Chang 
(1999),and Thall et al. (1998), for some recent 
references  where  Bayesian  ideas have been the 
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primary consideration in designing  Phase I and 
II studies. Of related interest in the design of a 
trial is the estimation of sample size based on 
Bayesian principles, where Smeeton and Adcock 
(1997) provided a review of formal decision-
theoretic ideas in choosing the sample size.  
 Typically, the statistician along with the 
investigator will use information from previous 
related studies to formulate the null and 
alternative hypotheses and to determine what 
prior information is to be used for the Bayesian 
analysis. With this information, the Bayesian 
design parameters that determine the critical 
region of the test are given, the power function 
calculated, and lastly the sample size determined 
as part of the design process. In this study, only 
fixed-sample size procedures are used.  

First, one-sample binomial and normal 
tests will be considered, then two-sample tests 
for binomial and normal populations, and lastly 
a test for multinomial parameters of a multi-
response  Phase II will be considered. For each 
test, the null and alternative hypotheses will be 
formulated and the power function determined. 
Each case will be illustrated with an example, 
where the power function is calculated for 
several values of the Bayesian design 
parameters. 
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Methodology 
 

For the design of a typical Phase II trial, the 
investigator and statistician use prior 
information on previous related studies to 
develop a test of hypotheses. If the main 
endpoint is response to therapy, the test can be 
formulated as a sample from a binomial 
population, thus if Bayesian methods are to be 
employed, prior information for a Beta prior 
must be determined. However, if the response is 
continuous, the design can be based on a one-
sample normal population. Information from 
previous related studies and from the 
investigator’s experience will be used to 
determine the null and alternative hypotheses, as 
well as the other design parameters that 
determine the critical region of the test.  

The critical region of a Bayesian test is 
given by the event that the posterior probability 
of the alternative hypothesis will exceed some 
threshold value.  Once a threshold value is used, 
the power function of the test can be calculated. 
The power function of the test is determined by 
the sample size, the null and alternative 
hypotheses, and the above-mentioned threshold 
value.       
  

Results 
Binomial population 

Consider a random sample from a 
Bernoulli population with parameters n and θ , 
where n is the number of patients and θ  is the 
probability of a response. Let X be the number 
of responses among n patients, and suppose the 
null hypotheses is H: 0θθ ≤  versus the 

alternative A: θ > 0θ . From previous related 

studies and the experience of the investigators, 
the prior information for θ  is determined to be 
Beta(a,b), thus the posterioir distribution of θ  is 
Beta (x+a, n-x+b), where x is the observed 
number of responses among n patients. The null 
hypothesis is rejected in favor of the alternative 
when 
 
          Pr[θ > 0θ / x, n] > γ ,                        (1) 

 
where γ is usually some large value as .90, .95, 
or .99. The above equation determines the 

critical region of the test, thus the power 
function of the test is 

g(θ ) =  Pr θ/X
 {Pr[θ > 0θ / x, n] >γ },           (2)                     

 
where the outer probability is with respect to the 
conditional distribution of X given θ . The 
power (2) at a given value of θ  is interpreted as 
a simulation as follows:  
 
(a)  select (n,θ ), and set S=0, 
 
(b) generate a X~Binomial(n, θ ),  
 
(c) generate a θ ~Beta(x+a, n-x+b), 
 
(d) if Pr [θ > 0θ / x, n] > γ ,  let the counter S 

=S+1, otherwise let S=S, 
 
(e) repeat (b)-(d) M times, where M is ‘large’,  
 
and  
 
(f) select another θ  and repeat (b)-(d).  
 

The power of the test is thus S/M and 
can be used to determine a sample size by 
adjusting the threshold γ , the probability of a 

Type I error g( 0θ ), and the desired power at a 

particular value of the alternative. The approach 
taken is fixing the Type I error at α  and finding 
n so that the power is some predetermined value 
at some value of θ  deemed to be important by 
the design team. This will involve adjusting the 
critical region by varying the value of the 
threshold γ . An example of this method is 

provided in the next section. The above 
hypotheses are one-sided, however it is easy to 
adjust the above testing procedure for a sharp 
null hypothesis. 
 
Normal Population 

      Let N(
1, −τθ ) denote a normal 

population with mean θ  and precision τ , 
where both are unknown and suppose we want 

to test the null hypothesis H: 0θθ =  versus A: 

0θθ ≠ , based on a random sample X of size n 
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with sample mean 
_

x  and variance s
2

. Using a 

non-informative prior distribution for θ  and τ ,   
the Bayesian test is to reject the null in favor of 
the alternative if the posterior probability  P of 
the alternative hypothesis satisfies  
 
                  P > γ , where                                (3)   

 

                      P = D
2

/D                                   (4)  

and, D = D
1
+ D

2
. 

It can be shown that  
 

D
1
 =  { Γπ (n/2)}2

2/n
} /{(2π )

2/n
 

[ n( 0θ - 
_

x )
2

+ (n-1) 
2s ]

2/n
}                         (5) 

 
and 

D
2

  = {(1-π )Γ ((n-1)/2) 2
2/)1( −n

} 

/{n
2/1
(2π )

2/)1( −n
[(n-1) s

2
]

2/)1( −n
}             (6) 

 
where π  is the prior probability of the null 
hypothesis.  

The power function of the test is 

g( ),τθ  =  Pr τθ ,/X [ P > γ / n, ,
_

x 2s ],  

R∈θ and τ >0                                              (7) 
 
where P is given by (3) and the outer probability 
is with respect to the conditional distribution of  
X given θ  and τ . 

The above test is for a two-sided 
alternative, but the testing procedure is easily 
revised for one-sided hypotheses. This will be 
used to find the sample size in an example to be 
considered in a following section. 

In the case when the null and alternative 

hypotheses are H: 0θθ ≤   and A: 0θθ >  and 

the prior distribution for the parameters is 
f( τθ , ) τ/1∝  , where H is rejected in favor of  
A whenever  

                Pr[ 0θθ > /n, ,
_

x 2s ] > γ ,  

 

it can be shown that the power (size) of the test 

at 0θ  is 1-γ . Thus in this sense, the Bayesian 

and classical t-test are equivalent. 
 
Two binomial populations 

Comparing two binomial populations is 
a common problem in statistics and involves the 

null hypothesis H: 21 θθ =  versus the 

alternative A: 21 θθ ≠ , where 1θ  and 2θ  are 

parameters from two Bernoulli populations. 
Assuming uniform priors for these two 
populations, it can be shown that the Bayesian 
test is to reject H in favor of A if the posterior 
probability P of the alternative hypothesis 
satisfies    
 
                            P > γ , where                      (8)   

 

                                P = D
2

/D,                        (9)  

 

and  D = D
1
  +   D

2
. It can be shown that  

D
1
 = {π BC(n

1
:x

1
)BC(

22
: xn )  

)()1(
212121

xxnnxx −−+Γ++Γ } 

÷ )2(
21

++Γ nn ,  

 
where BC(n,x) is the binomial coefficient “x 

from n”. Also, D
2

= (1-π )(n
1
+1)

1−
(n

2
+1)

1−
, 

where π  is the prior probability of the null 

hypothesis.  X
1
 and X

2
are the number of 

responses from the two binomial populations 

with parameters (n
1
, 1θ ) and ( 22 ,θn ) 

respectively. The alternative hypothesis is two-
sided, however the testing procedure is easily 
revised for one-sided hypotheses. 

In order to choose sample sizes n
1
 and 

n
2

, one must calculate the power function 

 

g( 21,θθ ) = Pr
2121 ,/, θθxx [P > γ / 

2121
,,, nnxx ], ( 21,θθ ) )1,0(∈ x )1,0(  

                                                                       (10) 
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where P is given by  (9) and the outer 
probability is with respect to the conditional 

distribution of  X
1
 and X

2
, given  1θ  and 2θ . 

As given above, (10) can be evaluated by a 
simulation procedure similar to that described in 
3.1. 
 
Two normal populations 
 Consider two normal populations with 

means 1θ  and 2θ  and precisions  1τ  and 2τ  

respectively, and suppose the null and 

alternative hypotheses are H: 21 θθ ≤  and A: 

1θ > 2θ  respectively.  Assuming a non-

informative prior for the parameters, namely 

f( 2121 ,,, ττθθ ) = 1/ 21ττ ,  one can show that 

the posterior distribution of the two means is 

such that  1θ  and 2θ  are independent and iθ  

/data ~ t(n i -1, ix
_

 n i /
2

i
s ), where n i is the 

sample size and 
_

i
x and 

2

i
s are the sample mean 

and variance respectively.  

That is, the posterior distribution of  iθ  

is a t distribution with n i -1 degrees of freedom, 

mean ix
_

, and precision n i /
2

i
s . It is known that 

 ( iθ  - ix
_

)( n i /
2

i
s )

2/1
 has a Student’s t-

distribution with n i -1 degrees of freedom. 

Therefore the null hypothesis is rejected 
if  

                  Pr[ 1θ > 2θ /data]>γ .                   (11) 

 
 
Multinomial Populations 
 Consider a multinomial population with 

k categories and corresponding probabilities iθ , 

i= 1,2,…,k, where ∑
=

=

ki

i
i

1

θ  = 1 and 10 << iθ   

for i=1,2,…,k. Suppose there are n patients and 

that n i  belong to the i-th category.  

The multinomial model is quite relevant 
to the Phase II trial where the k categories 
represent various responses to therapy. Let 

),...,,( 21 kθθθθ = , then if a uniform prior 

distribution is appropriate, the posterior 
distribution is 

f(θ / data) ∝ ∏
=

=

ki

i

n

i
i

1

θ , ∑
=

=

ki

i
i

1

θ = 1, and 

10 << iθ  for i=1,2,…,k.                            (12) 

 
and the distribution is Dirichlet 

( )1,...,1,1 21 +++ knnn . 

A typical hypothesis testing problem, 
see [14], is given by the null hypothesis ( k=4), 
where  

H: 13311221 kork ≥+≤+ θθθθ   

versus the alternative  
 

A: 13311221 kandk <+>+ θθθθ . 

 
The null hypothesis states that the response rate 

21 θθ +  is less than some historical value or 

that the toxicity rate 31 θθ +  is greater than 

some historical value 13k . The null hypothesis 

is rejected if the response rate is larger than the 
historical or the toxicity rate is too low 
compared to the historical.  
 

              Pr[ A /data]>γ                                 (13) 

 
where  γ  is some threshold value.  This 

determines the critical region of the test, thus the 
power function is  

            g(θ )= Pr θ/n { Pr[ A / data] > γ },    (14)   

where the outer probability is with respect to the 
conditional distribution of  
 

                  ),...,,( 21 knnnn =  given  θ .  

     
The power function will be illustrated 

for the multinomial test of hypothesis with a 
Phase I trial, where response to therapy and 
toxicity are considered in designing the trial. 
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Examples 
The above problems in hypothesis 

testing are illustrated by computing the power 
function of some Bayesian tests that might be 
used in the design of a Phase II trial.  
 
 One-Sample Binomial 
 No prior information 

Consider a typical Phase II trial, where 
the historical rate for toxicity was determined as 
.20. The trial is to be stopped if this rate exceeds 
the historical value. See Berry (1993) for a good 
account of Bayesian stopping rules in clinical 
trials. Toxicity rates are carefully defined in the 
study protocol and are based on the NCI list of 
toxicities. The null and alternative hypotheses 
are given as 
 
H: 20.≤θ   and A: 20.>θ ,                    (15) 
 
where θ  is the probability of toxicity. The null 
hypothesis is rejected if the posterior probability 
of the alternative hypothesis is greater than the 
threshold value γ . 

The power curve for the following 
scenarios will be computed (see Equation 2), 
with sample sizes n = 125, 205, and 500, 
threshold values γ = .90, .95, .99, M=1000, and 

null value 0θ  = .20. 

It is seen that the power of the test at 
30.=θ  and γ = .95, is .841, .958, and .999 for 

n = 125, 205, and 500, respectively.  
  Note that for a given N and γ , the 

power increases with θ  and for given N and θ , 
the power decreases with γ , and for given γ  

and  θ ,  the power of course increases with N. 
 
 
 
 
 
 
 
 
 
 
  

The Bayesian test behaves in a 
reasonable way. For the conventional type I 
error of .05, a sample size of N=125 would be 
sufficient to detect the difference .3 versus .2 
with a power of .841. It is interesting to note that 
the usual binomial test, with alpha = .05 and 
power .841, requires a sample of size 129 for the 
same alternative value of θ . For the same alpha 
and power, one would expect the Bayesian (with 
a uniform prior for θ ) and the binomial tests to 
behave in the same way in regard to sample size.  
 
With prior information 

Suppose the same problem is considered 
as above, but prior information is available with 
50 patients, 10 of whom have experienced 
toxicity. The null and alternative hypotheses are 
as above, however the null is rejected whenever  
                Pr[θ  > φ / x, n] > γ ,                    (16) 

where θ  is independent of φ  ~ Beta(10,40). 

This can be considered as a one-sample problem 
where a future study is to be compared to a 
historical control. 

As above, compute the power function 
(see Table 2) of this Bayesian test with the same 
sample sizes and threshold values in Table 1. 
The power of the test is .758, .865, and .982 for 
θ = .4 for N= 125, 205, and 500, respectively. 
This illustrates how important is prior 
information in testing hypotheses. If the 
hypothesis is rejected with the critical region 
                   Pr[θ >.2 / x, n] > γ ,                   (17) 
the power (Table 1) will be larger than the 
corresponding power (Table 2) determined by 
the critical region (16), because of the additional 
posterior variability introduced by the historical 
information contained in φ . Thus, larger sample 

sizes are required with (16) to achieve the same 
power as with the test given by (17).  
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Two Binomial Populations   

The case of two binomial populations 
was introduced in section 4.2, where equation 
(10) gives the power function for testing H: 

21 θθ =  versus the alternative A: 21 θθ ≠ .  

In this example, let n
1
= 20 = n

2
be the 

sample sizes of the two groups and suppose the 
prior probability of the null hypotheses is π = 

.5. The power at each point ( ), 21 θθ  is 

calculated via simulation, using equation (10) 
with γ  = .90. Table 3 lists the power function 

for this test. 
 
 

 
When the power is calculated with the 

usual two-sample, two-tailed, binomial test with 

alpha = .013, sample sizes n
1
= 20 = n

2
, and 

( ), 21 θθ = (.3, .9), the power is .922, which is 

almost equivalent to the above Bayesian test. 
This is to be expected, because we are using a 
uniform prior density for both Bernoulli 
parameters. It is not too uncommon to have two 
binomial populations in a Phase II setting, where 

1θ  and 2θ are response rates to therapy. 

 
 
 

 
Table 1. Power function for H versus A, N=125,205,500. 

                                    γ  

θ  .90 .95 .99 

     0 0,0,0  0,0,0 0,0,0 
    .1 0,0,0 0,0,0 0,0,0 
    .2 .107,.099,.08 .047,.051,.05 .013,.013,.008 
   .3 .897,.97,1 .841,.958,.999 .615,.82,.996 
    .4 1,1,1 1,1,1 .996,1,1 
    .5 1,1,1 1,1,1 1,1,1 
    .6 1,1,1 1,1,1 1,1,1 
    .7 1,1,1 1,1,1 1,1,1 
    .8 1,1,1 1,1,1 1,1,1 
    .9 1,1,1 1,1,1 1,1,1 
 1.0 1,1,1 1,1,1 1,1,1 

 
Table 2. Power function for H versus A, N=125,205,500. 

                            γ  

θ  .90 .95 .99 
     0 0,0,0  0,0,0 0,0,0 
    .1 0,0,0 0,0,0 0,0,0 
    .2 .016,.001,.000 .002,.000,.000 .000,.000,.000 
   .3 .629,.712,.850 .362,.374,.437 .004,.026,.011 
    .4 .996,.999,1 .973,.998,1 .758,.865,.982 
    .5 1,1,1 1,1,1 .999,1,1 
    .6 1,1,1 1,1,1 1,1,1 
    .7 1,1,1 1,1,1 1,1,1 
    .8 1,1,1 1,1,1 1,1,1 
    .9 1,1,1 1,1,1 1,1,1 
 1.0 1,1,1 1,1,1 1,1,1 
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A Phase II trial with toxicity and response rates 

With Phase II trials, response to therapy 
is usually taken to be the main endpoint, 
however in reality one is also interested in the 
toxicity rate, thus it is reasonable to consider 
both when designing the study. Most Phase II 
trials are conducted not only to estimate the 
response rate, but to learn more about the 
toxicity. In such a situation, the patients can be 
classified by both endpoints as follows: 
 
Table 4. Number of  and Probability of Patients 
by Response and Toxicity. 
                                             Toxicity 

Response Yes No 
Yes (n 1 , 1θ ) (n

2
, 2θ ) 

No (n 3 , 3θ ) (n
4

, 4θ ) 

 
 

Let the response rate be rθ  = 21 θθ +  

and the rate of toxicity be 31 θθθ +=t , where 

1θ  is the probability a patient will experience 

toxicity and respond to therapy, and n
1
 is the 

number of patients who fall into that category. 
Following Petroni and Conoway (2001), let the 
null hypothesis be  

 

                         H: 0rr θθ ≤  or 0tt θθ ≥   

 
and the alternative hypothesis be 
        

                    A: 0rr θθ >  and 0tt θθ < , 

where 0rθ  and  0tθ  are given and estimated by 

the historical rates in previous trials.  

 
Table 3. Power for Bayesian Binomial Test. 

 

2θ  

1θ  .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

.1 
 

.004 .032 .135 .360 .621 .842 .958 .992 1 1 

.2 
 

.031 .011 .028 .106 .281 .536 .744 .913 .997 1 

.3 
 

.171 .028 .006 .029 .107 .252 .487 .767 .961 1 

.4 
 

.368 .098 .025 .013 .028 .075 .244 .542 .847 .999 

.5 
 

.619 .289 .100 .022 .007 .017 .108 .291 .640 .981 

.6 
 

.827 .527 .237 .086 .035 .005 .027 .116 .357 .882 

.7 
 

.950 .775 .464 .254 .113 .037 .013 .049 .171 .587 

.8 
 

.996 .928 .768 .491 .316 .132 .028 .010 .040 .205 

.9 
 

1 .996 .946 .840 .647 .359 .156 .037 .006 .014 

1 
 

1 1 1 1 .984 .873 .567 .200 .017 .000 
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In this example, let  0rθ  = .40 and  

0tθ = .30. That is, the alternative hypothesis is 

that the response rate exceeds .40 and the 
toxicity rate is less than .30, and the null is 
rejected in favor of the alternative if the latter 
has a posterior probability in excess of γ .  

Table 5 gives the power for n=100 patients and 
threshold γ = .90. 

From above, the power of the test is 

.818 when ( tr θθ , ) = (.7, .2), and the test 

behaves in a reasonable way.  When the 
parameter values are such that the response rate 
is in excess of .40 and the toxicity rate is less 
than or equal to .30, the power is higher, relative 
to those parameter values when the null 
hypothesis is true. 

 
Conclusion 

 
We have provided a way to assess the sampling 
properties of some Bayesian tests of hypotheses 
used in the design and analysis of Phase II 
clinical trials. 

The one-sample binomial scenario is the 
most common in a Phase II trial, where the 
response to therapy is typically binary. We think 
it is important to know the power function of a 
critical region that is determined by Bayesian 
considerations, just as it is with any other test.    

 

 
 
 

The Bayesian approach has one major 
advantage and that is prior information, and 
when this is used in the design of the trial, the 
power of the test will be larger then if prior 
information had not been used. 

We have confined this investigation to 
the fixed-sample case, but will seek to expand 
the results to the more realistic situation where 
Bayesian sequential stopping rules will be used 
to design Phase II studies.  
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