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Bayesian Reliability Modeling Using Monte Carlo Integration

Vincent A. R. Camara Chris P. Tsokos
Department of Mathematics
University of South Florida

The aim of this article is to introduce the concept of Monte Carlo Integration in Bayesian estimation and
Bayesian reliability analysis. Using the subject concept, approximate estimates of parameters and
reliability functions are obtained for the three-parameter Weibull and the gamma failure models. Four
different loss functions are used: square error, Higgins-Tsokos, Harris, and a logarithmic loss function
proposed in this article Relative efficiency is used to compare results obtained under the above
mentioned |oss functions.

Key words: Estimation, loss functions, Monte Carlo Integration, Monte Carlo Simulation, reliability
functions, relative efficiency.

Introduction c (x-a)°
f(x;a,b,c):E(x—a)C‘le b

In this article, the concept of Monte Carlo

Integration (Berger, 1985) is used to obtain X>a;b,c>0
approximate estimates of the Bayes rule that is 1)
ultimately used to derive estimates of the
reiability function. Monte Carlo Integration is where a, b and c are respectively the location,
used to first obtain approximate Bayesian scale and shape parameters;
estimates of the parameter inherent in the failure
model, and using this estimate directly, obtain and
approximate Bayesian estimates of the reliability 1 X
function. Secondly, the subject concept is used g(xa, B )=— x*“ e ?, 2
to directly obtain Bayesian estimates of the BT ()
reliability function.

In the present modeling effort, the three- where o and [ are respectively the shape and
parameter  Weibull and the gamma failure scale parameters.
models are considered, that are respectively For these two failure models, consider
defined as follows: the scale parameters b and S to behave as

random variables that follow the lognormal

distribution which is given b
Vincent A. R. Camara earned a Ph.D. in Istripution wnicn Is given oy

Mathematicg/Statistics. His research interests
include the theory and applications of Bayesian 0) = 1
and empirical Bayes analyses with emphasis on m(0) = 90.\/5
the computational aspect of modeling. Chris P.

For each of the above underlying failure

Tsokos is a Distinguished Professor of
models, approximate Bayesian estimates will be

Mathematics and Statistics. His research
interests are in statistical analysis and modeling, obtained for the subject parameter and the
riability function with the squared error, the

operations research, reliability analysis-ordinary
Higgins-Tsokos, the Harris, and a proposed

and Bayesian, time series analysis.
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_YLn@-u]
ez[ “ﬂ, (3).
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aong with a statement of their key
characteristics are given below.

Square error loss function

The popular sgquare error loss function
places a small weight on estimates near the true
value and proportionately more weight on
extreme deviation from the true value of the
parameter. Its popularity is due to its analytical
tractability in Bayesian reliability modeling. The
squared error loss is defined as follows:

L ( I%, R):[ Ig— Rj 4

Higgins-Tsokos loss function

The Higgins-Tsokos loss function places
a heavy pendty on extreme over-or
underestimation. That is, it places an exponential
weight on extreme errors. The Higgins-Tsokos
loss function is defined as follows:

A A
f,(R-R) _f, (R-R)
fe? + fe

A
L (RR)=
HT( ) fl+f2

-1,

f,,f,>0.

Harris loss function
The Harris loss function is defined as
follows:

k

1 1

—

1-R 1-R

L, (RR)= k0. 6)

To our knowledge, the properties of the Harris
loss function have not been fully investigated.
However it is based on the premises that if the
system is 0.99 reliable then on the average it
should fail one time in 100, whereas if the
reiability is 0.999 it should fail one time in
1000. Thus, it is ten times as good.

Logarithmic loss function

The logarithmic  loss  function
characterizes the strength of the loss
logarithmically, and offers useful analytical
tractability. Thisloss function is defined as:

A |

A R
L, (R R)=Ln R = 0. (7

It places a small weight on estimates whose
ratios to the true value are close to one, and
proportionately more weight on estimates whose
ratios to the true value are significantly different

A
fromone. R(t) and R(t) represent respectively
the true rdiability function and its estimate.

Methodol ogy

Considering the fact that the rdiability of a
system at a given time t is the probability that
the system fails at a time greater or equal to t,
the reliability function corresponding to the
three-parameter Weibull failure model is given

by

_(t-a)°

Rt) = e ° | )
and for the gamma failure model
t
7(er,—)
R(t)=1 — A t>0,0,>0 . 9
I(a)

where ¥(l,,l,) denotes the incomplete gamma

function. When ¢ is an integer, equation (9)
becomes

o = (S

and in particular when o =1
t

Rt) = e’ , t>0
Consider the situation where there are m
independent random variables X, X,,..., X,
with the same probability density function
dF(x|#), and each of them having n
realizations, that is,
X1 T Xy Xogyeeny X
Xyl Xpy Xopyoeey Xppi eeees
X o X, X , X

m 1m?

2m? """ nm
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The minimum variance unbiased estimate,

A
MVUE, 6, of the parameter @, is obtained
from the n realizations X;;, X;;,...X;, Where]

K s
=1,..m
Repeating this independent procedure k
times, a sequence of MVUE is obtained for the
A

A A A
9j's, that is, 6,,0,,...,0,,.Usingthe @;'s
and their common probability density function,
approximate Bayesian rdiability estimates are
obtained.

Le L(x0), g(6), n(6) and h(6)
represent respectively the likelihood function, a
function of @, a prior distribution of @ and a
probability density function of @ called the
importance function. Using the strong law of
large numbers, [7], write

h| 9(@)L(x;8)x ()
({)g(a)L(x;a)n(a)do:E tintib bt

h()
A A A
di)L(x; 6i 0i
—  im gg( i) (XA i)7(6i) (10).
M—eoi=1
h(&i)

Note that E" represents the expectation with
respect to the probability density function h, and
g(@) is any function of & which assures
convergence of the integral; also, h(@) mimics
the posterior density function.

For the special case where g(@) =1,

equation (10) yields
A A
L(x; @i A
[L(x0)7(8)do= lim gw (12)
[e) M—ooj=1
h(6i)

Equations (10) and (11) imply that the posterior
expected value of g(6) isgiven by
[9(@)L(x6)x(8)de
E(g(6)|x)=©

[L(x;80)7(6)do
S

A A
m g(6;)L(x 8i)z(6i)
2z A
= h(8i)
", A A
%1 L(x;0i)x(0i)
i=1 A
h(8i)

(12)

This approach is used to obtain
approximate Bayesian estimates of g(6), for
the different loss functions under study.
Approximate Bayesian estimates of the
parameter ¢  and the reliability are then
obtained by replacing g(6) by € and R(t)
respectively in the deived expressions
corresponding to the approximate Bayesian
estimates of g(6) .

The Bayesian estimates used to obtain
approximate Bayesian estimates of the function
g(6) are the following when the squared error,
the Higgins-Tsokos, the Harris and the proposed
logarithmic loss functions are used:

A [9(0)L(x;6)x(6)d6
2)
9(0)B(sE)=

[L(x;@)z(6)do
S

A
9(0)B(HT) = o,

Jﬂwhuwmwme

o
(¢ 9@
(S

f,, f,>0.

Ln

L(x;0)z(0)do

96) | (x
A J = L(x6)m(6)do
mmer@12W)

él— 9(6)

L(x;68)x(6)do
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fLn(g(@))L(x:0)x(6)do
Q

A [L(x0)z(6)do
9@pn=e © (13).

Using equation (12) and the above
Bayesian decision rules, approximate Bayesian
estimates of g(&) corresponding respectively to
the squared error, the Higgins-Tsokos, the Harris
and the proposed logarithmic loss functions are
respectively given by the following expressions
when m replicates are considered.

A A A
m g(@i)L(x;0i)x(8i)
2 A
A = h(6i)
90 E(sE)= A A (14)
m L(x;0i)x(6i)
=

A
h(€i)

g gi) A A
ge L(x; 0i)7(8i)

h(6i) (15)

g 9(9|) L(x 9|)ﬂ(9|)

A 1= : A

IOEH)= o) Tg') 61
M1 L)

= A A
o) e

(16)

and

A A A
g Ln(g(@i))L(x;0i)x(61)

=1 h(fs\»i)
m L(x; 49| }7[(9| )
A = h(0i)

9(0)E(Ln)=e :
(17)

First, use the above general functional forms of
the Bayesian estimates of g(6) to obtain
approximate Bayesian estimates of the random
parameter inherent in the underlying failure
model. Furthermore, these estimates are used to
obtain  approximate Bayesian  reiability
estimates. Second, use the above functional
forms to directly obtain approximate Bayesian
estimates of therdiability function.

Three-parameter  Weibull underlying failure
model

In this case the parameter @, discussed
above, will correspond to the scale parameter b.
The location and shape parameters a and C are
considered fixed. The likelihood function
corresponding to n  independent random
variables following the three-parameter Weibull
failure model is given by

~1s —nLn(
L (xachb)=e p L )0

(c—l)_g Ln(>ﬁ—a)+nLn(c)
e IH (18)

where S, =Y (x —a)°.
i=1

Furthermore, it can be shown that S, is a

sufficient statistic for the parameter b, and a
minimum variance unbiased estimator of b is
given by

> (% -a)°

n

o>
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The  probability  density  function  of
Y=(X-a)°, whee X follows the Weibull
probability density function, is

c 1 - —ly 1 1,
p(y|b)_—[ycj eP [—yC j
b c
1 -y
= Beb ,y>0,b>0. (19)

The moment generating function of Yis
given by

E(e"y)— I y( /l)dy

0

(1- ub)™ (20)

Using equation (20) and the fact that the X, 's

are independent, the moment generating
function of the minimum variance unbiased
estimator of the parameter bis

E(e" )—HE{ 'U(X‘ a)cj-

: [Hz%j (21)

Equation (21) corresponds to the
moment generating function of the gamma

distribution G(n,E). Thus, the conditional
n

probability density function of the MVUE of b is
given by

MO —Bjt} A
hl(b a,c|b)= Wﬁ{bj eb b

(22)

Approximate Bayesian estimates for the scale
parameter b and the rdiability function R(t) are
obtained, with the use of equations (18) and
(22), by replacing respectively g(b) by b and

>0,b>0

R(t) in equations (14), (15), (16) and (17). The

A
bi's that are minimum variance unbiased
estimates of the scale parameter b will play the

A
role of the 6,'s.

Considering the lognormal  prior,
equations (14), (15), (16) and (17) yield the
following approximate Bayesian estimates of the
scale parameter b corresponding respectively to
the squared error, the Higgins-Tsokos, the Harris
and our proposed lognormal loss functions, after

A

A
replacing b by bjin the expression of h,(bi):

b E(SE)
‘S*n—”L”(bJH(C l)z Ln(x —a)- 1 M
m A bj o
Y bje
_ =t
_ fn nLn(bj)+(C 1)2 Ln(x -a)- 1{Ln(t;1)ﬂ
m bj
> e
i=1
(23)
o 1
bewmr) = Ln
f,+ f,
2
m flg. ?— nLn(b,)+(c 1)2 Ln(x —a)- 1[|_n(bgl)/,J
> e "
j=1
2
m —le;l—?——nLn(b,)Jr(c 1)2 Ln(x-a)- l[m(bgl)#J
e 7
j=1
f,, f, >0
(24)
A
bE(H)
2
m 6 —?——nLn(b,)+(c 1)2 Ln(x-a)— 1[%#}
i b
2 —e’
i11-b;

- 2
m —f——nLn(b,)+(c 1)2 Ln(x-a)— 1[%#}
2w

=11 — bJ
bj:tl

(25)
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and
A 1 L (/b\ ) ’
Sn . 1| Ln(bj)-u
_>n _ b . i —a)——
" R g ntn(bj)+(c l)ém(x' a) 2{ p J
ZLﬂ(bj)e !
i=1
2
Sn nLn(/l;‘)+(c—1) ; Lr|(><‘—a)—1 7“1(@])_#
A de !
j=1
bewny =€ !

(26)

The approximate Bayesian estimates of the
reliability corresponding to the first method are
therefore given by

: R -y
Ren(t,a,clog) = e ™ t>a,

(27)

A
where be stands respectively for the above
approximate Bayesian estimates of the scale
parameter b.

Approximate  Bayesian  reliability
estimates corresponding to the second method
are also derived by replacing g(8)by R(t) in
equations (14), (15), (16) and (17). The obtained
estimates corresponding respectively to the
squared error, the Higgins-Tsokos, the Harris
and the proposed logarithmic loss functions are
respectively given by the following expressions,

A
after replacing b by biin the expression of

h(b):

A
Re(se) (t)
A 2
(t-a)° S, b 3 1) Ln(by)-u
m - f.; —ﬁ——nLn(b,)+(c—1)§Ln(x,—a)—§[fJ (28)
Ze i j
=

A 2 L
- %—nLn(/ﬁ, )+(c—1)§ Ln(x —a)—%[MJ

Seb "

j=1

177
A 1
Remm)(t) = Ln
f,+ f,
RGN 2
b s A u 1 Ln(b;)-u
m fie ) —A—"—nLn(b,)+(c—1)z Ln(><,—a)—5 70_'
Z e bj -1
i=1
(t-a)® 2
f b S, Ln(b DY L 1 7""(6')_”
m - f,e —-nLn(b;)+(c— )z n(><|—a)—5 ~
Z e b] i=1
i=1
f,, f, =0,
(29)
A
Rem)(t) =
_(t-a) N N A 2
b, -3 nin(bi)+ (-1 Ln(x,—a)—%[l‘n(bU#J
i=1

m
Y e
< _(t-a)°

m
oo toe®
- _(t-a)¢

A 2
- ‘S—“—nLn(‘k;, )+ (e-1)Y Ln(x,—a)—%[il‘n(b i )’/‘J
i=1

o

j=1 A
1-e ™
(30)
and
Sn A . 1 L"(gj)*ll
m R —A——nLn(bJ)+(c—1)Z Ln(xi—a)—a r—
Zi("*a) e b =
j=1 Gj
s A 4 o tn(h j)-u ’
m —A—"—nLn(bj )+(c—1)z Ln(xi—a)—a r—
A Ze b i=1
Reum(t) =€ 7
(31)

Gamma underlying failure model

The likelihood function corresponding
to n independent random variables following the
two-parameter gamma underlying failure model
can be written under the following form:

L,(x.2; )

n

_%s'ﬂ_nam(ﬂ) (@D Ln(x)-nLn(I (@) ’

= e e =

5

(32)
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Notethat S, isasufficient statistic for the scale Ig
parameter /3. Furthermore, =59 ,
N iXi m oA —%’%—naLn(,?iQﬂa—l)é Ln(xi)—;[l‘n(ﬂoj)_’u}
_ i Z Bie "
B = =
no =

m

is a minimum variance unbiased estimator of /3, Ye B = 7
j=1

A 2 !
—f—”—naLn(,/[\ii )+(a-1)>" Ln(x )—;[Ln(ﬂi)_”}

and its moment generating function is given by

A x (35)
n u
E(e” ):H E(e ") A 1
i=1 Bewr = Ln
(33) f,+ f,
:(1_ ﬂ ﬁ) —no zm flgl_%_nal_n(zl)‘#(a—l)gnl Ln(x,)_;[l‘n(lﬁgl)_'a}
no e :
j=1
which is the moment generating function of the i ——fzz.—s,\"—naLn(%.Ma—l)Iz"lLn(x.)—;[“(i')"‘}
gamma distribution G(no ,ﬁ). Thus, the ;1 ©
no
conditional density function of the MVUE of /3 fi f, - 0
is given by (36)
; b
A na)™ (AN 5 A E(H)
nBalp- 0D 5] e o | o
F(I’IO!),B A - S0 natn(B,)+@-DY Ln(x)-2 Lntgi)-u
(34 $ B bR
- ﬁj
Approximate Bayesian estimates for the = , ) - ol
scale parameter 3 and the réiability function noq —E—"—naLn(%m(a—n; Ln( >—§[“(ﬁoj)”‘}
R(t) are obtained, with the use of equations (32) Z i e
and (34) by replacing respectively g(6) by A3 =1-5
and R(t)in equations (14), (15), (16) and (17). ,2’ 41
]
A
The p,’s that are the minimum variance (37)
unbiased estimates of the scale parameter 3 will and
A
play therole of the €;'s. o
Considering the lognormal  prior, R Ha_l)zn:m(x_)_} n(B))-u
equation (14), (15), (16) and (17) yield the noow e A EE
following approximate Bayesian estimates of the ;L”(ﬁj)e
scale parameter 5 corresponding respectively to ) 2
the squared error, the Higgins-Tsokos, the Harris -3 natn(B; ya-1y . n(x );{ 1 - e J
and the proposed lognormal loss functions, after S i-1
f A 2e
replacing 4 by f in the expression of ﬂE(Ln) =e
(38)

h(B,):



CAMARA & TSOKOS 179
Approximate Bayesian estimates of the & (t) = 1 5
reliability corresponding to the first method are s f,+ f,
therefore given by R ]
i fil1 I‘(f)l _;‘ﬂl—naLn(/Ai])+(a—1)lzn:an(xl)—;[lwo_l)_’u}
a b > e
s
- A _ E 7(0:,,\1—) ‘ A 2
Restalfe) = 1-—p = » 170 I T _zn_w&a.nm_n;"lLn(x,)_;[“@-ﬂ}
(39) Y e
j=1
A
where . is the approximate Bayesian C ot o
estimate of the scale parameter /3. Ve (41)
The approximate Bayesian reliability
estimates corresponding to the second method
are obtained by replacing g(8) by R(t) in A )
E(H) =

equations(14), (15), (16) and (17). The obtained
estimates corresponding respectively to the {

t
squared error, the Higgins-Tsokos, the Harris F(“)_V(“'A)J s,

A 2
—A——naLn(%l )+(@- Ln(x ){L"(’H')”}
i=1

and the proposed logarithmic loss functions are Zm: 4 e’ Lo
given by the following expressions, after i=1 y(a,AL)
A .
replacing A by p. in the expression of A — :
A N f“naLn(ﬁl)+(a1)Zn:Ln(xl)1[Ln(ﬂ')#J
h(B,): > M@ e oA
; t
=1 7(0!,T)
A ﬂj
Recse) (1) = (42)
t A 2
m 7(0{’7 —AS"—naLn(/Ail)+(a—1)Zn:Ln(xl)—i[m(ﬁg’)_#} and
Z 1— IB B =
j=1 ['(a) A
Rewn (t) =
_%—naLn(Qf,H(a—l)Zn: Ln(><,)—E P ’ t ! j/
Zm:eﬁ‘ = 21 Ln(B))—u G, —/%‘—noan(/B\j)+((x—1)£1Ln()q)—;{Ln( "
. i=
=1 o ST S Pi lo B
=1 (o)
(40)
A L (ﬁ ) i
' n n(p i)
~ S _naLn(p; (o). LnGs )-%{GJ”J
m B =
J
e
A

(43)
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Relative Efficiency with Respect to the Squared
Error Loss

To compare our results, the criterion of
integrated mean square error, IMSE, of the
approximate Bayesian rdiability estimate

Re () is used. That is,

IMSE(Re (1)) = T[hE(t)—R(t)]Zdt
(44)

Definetherelative efficiency astheratio
of the IMSE of the approximate Bayesian
riability estimates using a challenging loss
function to that of the popular squared error loss.
The relative efficiencies of the Higgins-Tsokas,
the Harris and the proposed logarithmic loss are
respectively defined as follows:

||V|SE(|52E(HT) ®)
IMSE(REe(se) (1))

Eff (HT) =

[éE(HT) (t) - R(t)jzdt

’

[Eeag)(t) - R(t)]zdt

I
I

IMSE(Re ) (1))
IMSE(Recss) (1))

[éE(H) (t)— R(t)jzdt

Eff (H) =

|
J[Rem 0RO o

and

IMSE( ~RE(Ln) ®)
IMSE(REe(ss) (1))

Eff (Ln)=

(Rewn (- RO)) et

!
I[éE(SE) (t) - R(t)]zdt |

If the relative efficiency is smaller than
one, the Bayesian estimate corresponding to the
squared error loss is less efficient. The squared
eror will be more efficient if the relative
efficiency is greater than one. If the relative
efficiency is approximately equal to one, the
Bayesian rdiability estimates are equally
efficient.

Numerical Simulations

In the numerical simulations, Bayesian
and approximate Bayesian estimates of the scale
parameter S for the gamma failure model and
the lognormal prior will be compared, when the
squared error loss is used and the shape
parameter « is considered fixed. Second, the
new approach will be implemented, and
approximate Bayesian reliability estimates will
be obtained for the three-parameter Weibull and
the gamma failure model under the squared
error, the Higgins-Tsokos (with f, =1, f, =1),
the Harris, and the logarithmic loss functions,
respectively.

Comparison between Bayesian estimates and
approximate Bayesian estimates of the scale
parameter 3

Using the sgquare error loss function, the
gamma underlying failure moded and the
lognormal prior, Table 1 gives estimates of the
scale parameter # when the shape parameter «
is fixed and equal to one.



Lognormal
prior

True value

of S
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Table 1.

Bayesian
estimate of f

Approximate
Bayesian
estimates of
B

Number of

u=10=05

u=4,0=9 1

u=30=08 2

u=80c=12 2

1.1688

1.0561

2.2808

2.0376

0.9795
0.9883
1.0796
1.0625
1.0385
1.0899
1.0779

0.9795
0.9880
1.0351
0.9943
0.9665
0.9945
1.0017
1.9591
1.9766
2.1555
2.1162
2.0658
2.1679
2.1467
1.9591
1.9761
2.0704
1.9886
1.9331
1.9892
2.0034

~No ok, WwWwN R

~NOoO O~ WNEPE~NOUOPRAWNEP~NOOPMWNE
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The above results show that the obtained
approximate Bayesian estimates of the
parameter [ are as good if not better than the
corresponding Bayesian estimates, because they
arein genera closer to the true state of nature.

Approximate Bayesian Reliability Estimates of
the Three-parameter Weibull and the Gamma
Failure Modd s for the different L oss Functions

Using Monte Carlo simulation,
information has been respectively generated
from the three-parameter Weibull W(a=1, b=1,
c=2) and the two-paramger gamma
G(a=1,p4=1). For each of the above
underlying failure models, three different
samples are generated of thirty failure times, and
three minimum variance unbiased estimates of
the scale parameter are obtained.

Three-parameter Weibull W(a=1,b=1,c=2)
A typical sample of thirty failure times

to obtain approximate Bayesian reliability
estimates.

~ A ~
Reb(se) () , Rencse) (t) , Renhmy (1)

Let
A = A
RebHr) (t) , Renery (1) , Renny (t)
= A
, Rep(n) (t) and Ren(in) (t)
represent, respectively, the approximate

Bayesian reliability estimates obtained with the
approximate Bayesian reliability estimates of the
scale parameter b, and the ones aobtained by
direct computation, when the squared error, the
Higgins-Tsokos, the Harris and the proposed
logarithmic loss functions are used. These
estimates are given below in Table 2. Table 3
gives the approximate Bayesian reliability
estimates obtained directly using equations
(28), (29), (30) and (31).

Gamma failuremodd G(a=1,4=1)

A typical sample of thirty failure times
that are randomly  generated  from

G(a=1,4=1) isgiven below.

that are randomly  generated  from

W(a=1,b=1,c=2) is given below:
1.9772260 2.6416950 2.1241180
1.5575370 2.7714080 1.7158910
1.3109790 2.2144780 2.2674890
2.2136030 1.3422820 1.4691720
1.3017910 1.7534080 1.9712720
1.6897900 1.9609470 2.9533880
1.5448060 1.4516050 1.1704900
1.9409150 2.5030900 1.4788690
2.1088060 1.7306430 1.8829980
1.8939380 1.8181710 2.7016010

The obtained minimum variance unbiased

estimates of the scale parameter b are given
below

by = 11408084120
b, = 10091278197
A

b, = 09991267092

These minimum variance unbiased estimates
will be used along with likelihood function and

the lognormal prior f (b; 4 = 0.34,0 = 0115)

0.95497 0.09670 0.09107
2.69516 1.47495 0.56762
1.26364 1.60653 0.94337
0.54999 0.64000 0.62536
1.44922 0.78403 1.08172
0.31084 1.47283 0.47580
3.13788 0.11715 0.92341
0.51249 0.22012 3.81572
0.57911 0.50421 0.14532
0.77497 1.07792 1.08156

The obtained minimum variance unbiased
estimates of the scale parameter § are given
below.

A
B, = 1009127916
A
B, = 1140808468
A
B, = 09991268436
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Table 2.
R(t) - - - -
Rencse) (t) RepHr) (1) RenH) (t) Ren(Ln) (t)
0 2.381010° 3.676410° 1482010 3630107
0 1.0 15.44 0.62 15.25

The above approximate Bayesian estimates yield good estimates of the true riability function.

Table 3.
1 A A A A A
Timet R(t) Rense) (t) Rencnm) (t) Reo) (1) Ren(wn (t)

1.00001 1.0000 1.0000 1.0000 1.0000 1.0000
1.25 0.9394 0.9459 0.9459 0.9459 0.9459
1.50 0.7788 0.8005 0.8005 0.8008 0.8005
1.75 0.5698 0.6062 0.6062 0.6066 0.6061
2.00 0.3679 0.4108 0.4108 0.4112 0.4105
2.25 0.2096 0.2492 0.2492 0.2495 0.2488
2.50 0.1054 0.1354 0.1354 0.1355 0.1349
2.75 0.0468 0.0659 0.0659 0.0659 0.0655
3.00 0.0183 0.0287 0.0287 0.0287 0.0284
3.25 0.0063 0.0112 0.0112 0.0112 0.0110
3.50 0.0019 0.0039 0.0039 0.0039 0.0038
3.75 0.0005 0.0012 0.0012 0.0012 0.0012
4.00 0.0001 0.0003 0.0003 0.0003 0.0003
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These minimum variance unbiased
estimates will be used along with the likelihood
function and the lognormal
prior f (X; £ =00137,0 =01054) to obtain
approximate Bayesian rdiability estimates.

=~ A =~
e Repse) (t) , Repse) (t) , Resnm) (t)

A -
Repnm (t) , Resn) (t)
A -

Res) (1), Resn (1)

A
and Regny (t) represent respectively the
approximate Bayesian reliability estimates
obtained with the approximate Bayesian
estimate of /3, and the ones obtained by direct
computation, when the squared error, the

Higgins-Tsokos, the Harris and the proposed
logarithmic loss functions are used. These
estimates aregivenin Table 5 and Table 6.

For computational convenience, the
results presented in Table 3 are used to obtain
approximate estimates of the analytical forms of
the various approximate Bayesian rdiability
expressions under study. The results are given in
Table 4. Table 6 gives the approximate Bayesian
reliability estimates obtained directly by using
equations (40), (41), (42) and (43).

For computational convenience, the
results presented in Table 6 are used to obtain
approximate estimates of the analytical forms of
the various approximate Bayesian rdiability
expressions under study. The results are given in
Table7.

Table 4.
A A A A
R(t) Renss) (1) RepHm) (1) RebcH) (t) Reb(Ln) (t)
imati )2 1 ) 1 2 1 2 1 2
Approximation (-9 o 1z o 1Y o T o T
IMSE 0 2.381310°° 2.381310°3 2.381310°3 2.381310°3
Relative 0 1 1 1 1
efficiency with
respect to
A
Rencse) (1)
Tableb.
R(t) Resse) (t) Resnm) (t) Rese) (t) Resn (t)
i i -t t t t t
Approximation ¢ & TEE iz oo o T
IMSE 0.0 2.381008l0* 3.6764710° 1.48203410* 3.6309310°
Relative 0.0 1.0 15.44 0.62 15.25
efficiency with
respect to

Rep(ss) (1)
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Table6.
Timet A A A A A
R(t) Res(s) (1) Resnm) (t) Resn) (t) Res(Ln)
1071® 1.0000 1.0000 1.0000 1.0000 1.0000
1.00 0.3679 0.3786 0.4108 0.4112 0.4105
2.00 0.1353 0.1437 0.1690 0.1692 0.1685
3.00 0.9498 0.0547 0.0696 0.0697 0.0692
4.00 0.0183 0.0209 0.0287 0.0287 0.0284
5.00 0.0067 0.0080 0.0118 0.0118 0.0117
6.00 0.0025 0.0031 0.0049 0.0049 0.0048
7.00 0.0009 0.0012 0.0020 0.0020 0.0020
8.00 0.0003 0.0005 0.0008 0.0008 0.0008
9.00 0.0001 0.0002 0.0003 0.0003 0.0003
10.00 0.0000 0.0001 0.0001 0.0001 0.0001
Table7.
A A A A
Res(s) (1) Resnm) (t) Rese) (t) Res(n) (t)
Approximation _t _t _t _t
e 1.0311 e 1.1250 e 1.1250 e 1.1242
IMSE 2.38100810* 3.6764710°3 3.67647110°3 3.6309310°3
Relative 1.0 15.44 15.44 15.25
efficiency
with respect to
A
Ress) (t)

The above approximate Bayesian estimates yield good estimates of the true rdiability function.
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Conclusion

Using the concept of Monte Carlo Integration,
approximate Bayesian estimates of the scale
parameter b were analytically obtained for the
three-parameter Weibull failure model under
different loss functions. Using these estimates,
approximate Bayesian estimates of the reliability
function may be obtained. Furthermore, the
concept of Monte Carlo Integration may be used
to directly approximate estimates of the
Bayesian reliability function.

Second, similar results were obtained
for the gamma failure model. Finally, numerical
smulations of the analytica formulations
indicate:

(1) Approximate Bayesian reliability estimates
are in general good estimates of the true
rdiability function.

(2) When the number of replicates m increases,
the approximate Bayesian rdiability estimates
obtained directly converge for each loss function
to their corresponding Bayesian rdiability
estimates.

(3) Approximate Bayesian reliability estimates
corresponding to the sguared loss function do
not always yield the best approximations to the
true reliability function. In fact the Higgins-
Tsokos, the Harris and the proposed logarithmic
loss functions are sometimes equally efficient if
not better.
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