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Bayesian Reliability Modeling Using Monte Carlo Integration 
 

Vincent A. R. Camara            Chris P. Tsokos 
Department of Mathematics 
University of South Florida 

 
 
The aim of this article is to introduce the concept of Monte Carlo Integration in Bayesian estimation and 
Bayesian reliability analysis. Using the subject concept, approximate estimates of parameters and 
reliability functions are obtained for the three-parameter Weibull and the gamma failure models. Four 
different loss functions are used: square error, Higgins-Tsokos, Harris, and a logarithmic loss function 
proposed in this article. Relative efficiency is used to compare results obtained under the above 
mentioned loss functions. 
 
Key words: Estimation, loss functions, Monte Carlo Integration, Monte Carlo Simulation, reliability  
                   functions, relative efficiency. 
 
 

Introduction 
 
In this article, the concept of Monte Carlo 
Integration (Berger, 1985) is used to obtain 
approximate estimates of the Bayes rule that is 
ultimately used to derive estimates of the 
reliability function. Monte Carlo Integration is 
used to first obtain approximate Bayesian 
estimates of the parameter inherent in the failure 
model, and using this estimate directly, obtain 
approximate Bayesian estimates of the reliability 
function. Secondly, the subject concept is used 
to directly obtain Bayesian estimates of the 
reliability function. 
 In the present modeling effort, the three-
parameter Weibull and the gamma failure 
models are considered, that are respectively 
defined as follows: 
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where  a, b and c are respectively the location, 
scale and shape parameters;  
 
and                                                                                             
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where α  and β  are respectively the shape and 
scale parameters.  

For these two failure models, consider 
the scale parameters b and β  to behave as 
random variables that follow the lognormal 
distribution which is given by 
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For each of the above underlying failure 

models, approximate Bayesian estimates will be 
obtained for the subject parameter and the 
reliability function with the squared error, the 
Higgins-Tsokos, the Harris, and a proposed 
logarithmic loss functions. The loss functions 
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along with a statement of their key 
characteristics are given below. 

  
Square error loss function 

The popular square error loss function 
places a small weight on estimates near the true 
value and proportionately more weight on 
extreme deviation from the true value of the 
parameter. Its popularity is due to its analytical 
tractability in Bayesian reliability modeling. The 
squared error loss is defined as follows: 
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Higgins-Tsokos loss function 

The Higgins-Tsokos loss function places 
a heavy penalty on extreme over-or 
underestimation. That is, it places an exponential 
weight on extreme errors. The Higgins-Tsokos 
loss function is defined as follows: 
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Harris loss function 

The Harris loss function is defined as 
follows:  
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To our knowledge, the properties of the Harris 
loss function have not been fully investigated. 
However it is based on the premises that if the 
system is 0.99 reliable then on the average it 
should fail one time in 100, whereas if the 
reliability is 0.999 it should fail one time in 
1000. Thus, it is ten times as good.  
 
Logarithmic loss function 

The logarithmic loss function 
characterizes the strength of the loss 
logarithmically, and offers useful analytical 
tractability. This loss function is defined as:  
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It places a small weight on estimates whose 
ratios to the true value are close to one, and 
proportionately more weight on estimates whose 
ratios to the true value are significantly different 

from one. R t( )  and R t
Λ

( ) represent respectively 
the true reliability function and its estimate. 
 

Methodology 
 
Considering the fact that the reliability of a 
system at a given time t is the probability that 
the system fails at a time greater or equal to t, 
the reliability function corresponding to the 
three-parameter Weibull failure model is given 
by 
 

                
( )

( )
ct a

bR t e
−−

=  ,                      (8)                     
and for the gamma failure model 
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where γ ( , )l l1 2  denotes the incomplete gamma 
function. When α  is an integer, equation (9) 
becomes 
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and in particular when α = 1 
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Consider the situation where there are m 
independent random variables  X X X m1 2, ,...,  
with the same probability density function  
dF x( | )θ , and each of them having n 
realizations, that is, 
 X x x xn1 11 21 1: , , ..., ;    

X x x xn2 12 22 2: , , ..., ; …….  ; 

X x x xm m m nm: , , ...,1 2  
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The minimum variance unbiased estimate, 

MVUE, θ j

Λ

 of the parameter θ j  is obtained 

from the n realizations x x xj j nj1 2, ,... ,  where j 

= 1,...m. 
 Repeating this independent procedure k 
times, a sequence of  MVUE is obtained for the 

θ j s' , that is,  θ θ θ1 2

Λ Λ Λ

, ,..., m . Using the θ
Λ

j s'  

and their common probability density function, 
approximate Bayesian reliability estimates are 
obtained. 
 Let  );( θxL , g( )θ , π θ( )  and h( )θ  
represent respectively the likelihood function, a 
function of θ , a prior distribution of θ  and a 
probability density function of θ   called the 
importance function. Using the strong law of 
large numbers, [7], write 
  

        ⎥⎦

⎤
⎢⎣

⎡
=∫

Θ )(

)();()(
)();()(

θ

θπθθ
θθπθθ

h

xLgh
EdxLg  

           ∑
=

ΛΛΛ

∞→
=

m

i
ih

iixLig

m 1
)

^
(

)();()(
lim

θ

θπθθ
            (10).                                       

 

Note that hE  represents the expectation with 
respect to the probability density function h, and 
g( )θ  is any function of θ   which assures 

convergence of the integral; also, h( )θ  mimics 
the posterior density function. 
 For the special case where 1)( =θg , 
equation (10) yields 
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Equations (10) and (11) imply that the posterior 
expected value of g( )θ  is given by 
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This approach is used to obtain 

approximate Bayesian estimates of g( )θ , for 
the different loss functions under study. 
Approximate Bayesian estimates of the 
parameter θ   and the reliability are then 
obtained by replacing g( )θ   by θ  and R(t) 
respectively in the derived expressions 
corresponding to the approximate Bayesian 
estimates of g( )θ .  

The Bayesian estimates used to obtain 
approximate Bayesian estimates of the function 
g( )θ are the following when the squared error, 
the Higgins-Tsokos, the Harris and the proposed 
logarithmic loss functions are used:   
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Using equation (12) and the above 

Bayesian decision rules, approximate Bayesian 
estimates of g( )θ corresponding respectively to 
the squared error, the Higgins-Tsokos, the Harris 
and the proposed logarithmic loss functions are 
respectively given by the following expressions 
when m replicates are considered. 
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First, use the above general functional forms of 
the Bayesian estimates of g( )θ  to obtain 
approximate Bayesian estimates of the random 
parameter inherent in the underlying failure 
model. Furthermore, these estimates are used to 
obtain approximate Bayesian reliability 
estimates. Second, use the above functional 
forms to directly obtain approximate Bayesian 
estimates of the reliability function. 
   
Three-parameter Weibull underlying failure 
model 

In this case the parameterθ , discussed 
above, will correspond to the scale parameter b. 
The location and shape parameters a and c  are 
considered fixed. The likelihood function 
corresponding to n independent random 
variables following the three-parameter Weibull 
failure model is given by 
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Furthermore, it can be shown that nS  is a 

sufficient statistic for the parameter b, and a 
minimum variance unbiased estimator of b is 
given by 
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The probability density function of  

Y X a c= −( ) , where X   follows the Weibull 
probability density function, is  
 

             ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
−

=
1

1
1

111

)|( cy
c

y
be

c

cy
b

c
byp       

              =    0,0,
1 1

>>
−

bye
b

y
b  .        (19)                                                          

                                                                                                                                  
The moment generating function of Y is 

given by 
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Using equation (20) and the fact that the Xi ’s 
are independent, the moment generating 
function of the minimum variance unbiased 
estimator of the parameter b is 
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Equation (21) corresponds to the 

moment generating function of the gamma 

distribution G n
b

n
( , ) . Thus, the conditional 

probability density function of the MVUE of b is 
given by 
 

0,0,

1

)(
)|,,(1 >>

Λ
Λ

−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛Λ

Γ
=

Λ
bb

b
b
n

e

n

bnbn

nn
bcabh

.                                                                      (22) 
                           
Approximate Bayesian estimates for the scale 
parameter b and the reliability function R t( ) are 
obtained, with the use of equations (18) and 
(22), by replacing respectively g b( )  by b and 

R t( ) in equations (14), (15), (16) and (17). The 

b si

Λ
'  that are minimum variance unbiased 

estimates of the scale parameter b will play the 

role of the si '
Λ

θ . 

Considering the lognormal prior, 
equations (14), (15), (16) and (17) yield the 
following approximate Bayesian estimates of the 
scale parameter b corresponding respectively to 
the squared error, the Higgins-Tsokos, the Harris 
and our proposed lognormal loss functions, after 

replacing bi by bi

Λ
in the expression of h bi1( )
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The approximate Bayesian estimates of the 
reliability corresponding to the first method are 
therefore given by   
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approximate Bayesian estimates of the scale 
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Approximate Bayesian reliability 
estimates corresponding to the second method 
are also derived by replacing )(θg by R(t) in 
equations (14), (15), (16) and (17). The obtained 
estimates corresponding respectively to the 
squared error, the Higgins-Tsokos, the Harris 
and the proposed logarithmic loss functions are 
respectively given by the following expressions, 
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Gamma underlying failure model 

The likelihood function corresponding 
to n independent random variables following the 
two-parameter gamma underlying failure model 
can be written under the following form:  
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Note that Sn
'  is a sufficient statistic for the scale 

parameter β . Furthermore,  
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is a minimum variance unbiased estimator of β , 
and its moment generating function is given by 
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which is the moment generating function of the 

gamma distribution G n
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( , )α β
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. Thus, the 

conditional density function of the MVUE of β  
is given by 
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Approximate Bayesian estimates for the 
scale parameter β  and the reliability function 
R(t) are obtained, with the use of equations (32) 
and (34)  by replacing respectively g( )θ  by β  
and R t( ) in equations (14), (15), (16) and (17). 

The β
Λ

i ’s that are the minimum variance 

unbiased estimates of the scale parameter β  will 

play the role of the si '
Λ
θ . 

Considering the lognormal prior, 
equation (14), (15), (16) and (17) yield the 
following approximate Bayesian estimates of the 
scale parameter β  corresponding respectively to 
the squared error, the Higgins-Tsokos, the Harris 
and the proposed lognormal loss functions, after 

replacing βi  by β
Λ

i  in the expression of 

h i2 ( )β
Λ
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Approximate Bayesian estimates of the 
reliability corresponding to the first method are 
therefore given by   
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where  β
Λ

E   is the approximate Bayesian 

estimate of the scale parameter β . 
 The approximate Bayesian reliability 
estimates corresponding to the second method 
are obtained by replacing )(θg  by R t( )  in 
equations(14), (15), (16) and (17). The obtained 
estimates corresponding respectively to the 
squared error, the Higgins-Tsokos, the Harris 
and the proposed logarithmic loss functions are 
given by the following expressions, after 

replacing βi  by β
Λ

i  in the expression of 

h i2 ( )β
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Relative Efficiency with Respect to the Squared 
Error Loss 

To compare our results, the criterion of 
integrated mean square error, IMSE, of the 
approximate Bayesian reliability estimate 

R tE

~

( )  is used. That is, 
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Define the relative efficiency as the ratio 

of the IMSE of the approximate Bayesian 
reliability estimates using a challenging loss 
function to that of the popular squared error loss. 
The relative efficiencies of the Higgins-Tsokos, 
the Harris and the proposed logarithmic loss are 
respectively defined as follows: 
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 If the relative efficiency is smaller than 
one, the Bayesian estimate corresponding to the 
squared error loss is less efficient. The squared 
error will be more efficient if the relative 
efficiency is greater than one. If the relative 
efficiency is approximately equal to one, the 
Bayesian reliability estimates are equally 
efficient. 
 
Numerical Simulations 

In the numerical simulations, Bayesian 
and approximate Bayesian estimates of the scale 
parameter β  for the gamma failure model and 
the lognormal prior will be compared, when the 
squared error loss is used and the shape 
parameter α  is considered fixed. Second, the 
new approach will be implemented, and 
approximate Bayesian reliability estimates will 
be obtained for the three-parameter Weibull and 
the gamma failure model under the squared 
error, the Higgins-Tsokos (with 1,1 21 == ff ), 
the Harris, and the logarithmic loss functions, 
respectively.     
 
Comparison between Bayesian estimates and 
approximate Bayesian estimates  of the scale 
parameter β   
 Using the square error loss function, the 
gamma underlying failure model and the 
lognormal prior, Table 1 gives estimates of the 
scale parameter β  when the shape parameter α  
is fixed and equal to one.  
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Table 1. 

 
Lognormal 

prior  
 

True value 
of  β  

Bayesian 
estimate of  β  

Approximate 
Bayesian 

estimates of  
β  

Number of 
replicates 

m 
 

µ σ= =1 05, .      1 
 
 
 
 
 
 

1.1688 0.9795                
0.9883                
1.0796                
1.0625                
1.0385                
1.0899                
1.0779                
 

1 
2 
3 
4 
5 
6 
7 

µ σ= =4 9,  
 
 
 

1 1.0561 0.9795                
0.9880                
1.0351                
0.9943                
0.9665                
0.9945                
1.0017                

1 
2 
3 
4 
5 
6 
7 

µ σ= =3 08, .  
 
 
 
 

2 2.2808 1.9591                
1.9766                
2.1555                
2.1162                
2.0658                
2.1679                
2.1467 

1 
2 
3 
4 
5 
6 
7 

µ σ= =8 12,  
 
 

2 2.0376 1.9591                
1.9761                
2.0704                
1.9886                
1.9331                
1.9892                
2.0034                

1 
2 
3 
4 
5 
6 
7  
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The above results show that the obtained 
approximate Bayesian estimates of the 
parameter β   are as good if not better than the 
corresponding Bayesian estimates, because they 
are in general closer to the true state of nature. 

 
Approximate Bayesian Reliability Estimates of 
the Three-parameter Weibull and the Gamma 
Failure Models for the different Loss Functions 

Using Monte Carlo simulation, 
information has been respectively generated 
from the three-parameter Weibull W(a=1, b=1, 
c=2) and the two-parameter gamma 
G( , )α β= =1 1 . For each of the above 
underlying failure models, three different 
samples are generated of thirty failure times, and 
three minimum variance unbiased estimates of 
the scale parameter are obtained. 

 
Three-parameter Weibull W(a=1,b=1,c=2) 

A typical sample of thirty failure times 
that are randomly generated from 
W(a=1,b=1,c=2) is given below: 
 

 

1.9772260        2.6416950        2.1241180 
1.5575370        2.7714080        1.7158910 
1.3109790        2.2144780        2.2674890 
2.2136030        1.3422820        1.4691720 
1.3017910        1.7534080        1.9712720 
1.6897900        1.9609470        2.9533880 
1.5448060        1.4516050        1.1704900 
1.9409150        2.5030900        1.4788690 
2.1088060        1.7306430        1.8829980 
 1.8939380        1.8181710        2.7016010 

 
The obtained minimum variance unbiased 
estimates of the scale parameter b are given 
below 
 

b
Λ

1 11408084120= .  

b
Λ

2 10091278197= .  

b3 0 9991267092
Λ

= .  
 
These minimum variance unbiased estimates 
will be used along with likelihood function and 
the lognormal prior f b( ; . , . )µ σ= =0 34 0115  

to obtain approximate Bayesian reliability 
estimates. 
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( ) ( ) ( )
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Eb SE Eb SE Eb HT

Eb HT Eb H Eb H
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R t R t R t
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, 

                  )(, )( tR LnEb

≈

 and R tEb Ln

Λ

( ) ( )   
 
represent, respectively, the approximate 
Bayesian reliability estimates obtained with the 
approximate Bayesian reliability estimates of the 
scale parameter b, and the ones obtained by 
direct computation, when the squared error, the 
Higgins-Tsokos, the Harris and the proposed 
logarithmic loss functions are used. These 
estimates are given below in Table 2. Table 3 
gives the approximate Bayesian reliability 
estimates obtained directly using equations 
(28), (29), (30) and (31).  
 
Gamma failure model G( , )α β= =1 1   
 A typical sample of thirty failure times 
that are randomly generated from 
G( , )α β= =1 1  is given below. 
 

 

0.95497         0.09670         0.09107 
2.69516         1.47495         0.56762 
1.26364         1.60653         0.94337 
0.54999         0.64000         0.62536 
1.44922         0.78403         1.08172 
0.31084         1.47283         0.47580 
3.13788         0.11715         0.92341 
0.51249         0.22012         3.81572 
0.57911         0.50421         0.14532 

      0.77497         1.07792         1.08156 

 
The obtained minimum variance unbiased 
estimates of the scale parameter β  are given 
below. 

    β 1 1009127916
Λ

= .  

β 2 1140808468
Λ

= .  

β 3 0 9991268436
Λ

= .  
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Table 2. 
 

 R t( )  
)()( tR SEEb

≈

 )()( tR HTEb

≈

 )()( tR HEb

≈

 )()( tR LnEb

≈
 

Approximation  e t− −( )1 2

 
e

t− −
1

1 1251
1 2

.
( )

 e
t− −1

1 1251
1 2

.
( )

 e
t− −1

0 9758
1 2

.
( )

 e
t− −

1

1 1242
1 2

.
( )

 
IMSE 0 4103810.2 −  3106764.3 −  4104820.1 −  3106301.3 −  

Relative 
efficiency  
with respect to 

R tEb SE

≈

( ) ( )  

0 1.0 15.44 0.62 15.25 

 
       The above approximate Bayesian estimates yield good estimates of the true reliability function. 

 
Table 3.  

 
 

Time t 
R t
Λ

( )  )()( tR SEEb

Λ

 )()( tR HTEb

Λ

 )()( tR HEb

Λ

 )()( tR LnEb

Λ

 
   1.00001 
   1.25              
   1.50              
   1.75              
   2.00              
   2.25              
   2.50              
   2.75              
   3.00              
   3.25              
   3.50              
   3.75              
   4.00 
 
 

1.0000        
0.9394 
0.7788 
0.5698 
0.3679 
0.2096 
0.1054 
0.0468 
0.0183 
0.0063 
0.0019 
0.0005 
0.0001 

1.0000 
0.9459 
0.8005 
0.6062 
0.4108 
0.2492 
0.1354 
0.0659 
0.0287 
0.0112 
0.0039 
0.0012 
0.0003 

1.0000 
0.9459 
0.8005 
0.6062 
0.4108 
0.2492 
0.1354 
0.0659 
0.0287 
0.0112 
0.0039 
0.0012 
0.0003 

1.0000 
0.9459 
0.8008 
0.6066 
0.4112 
0.2495 
0.1355 
0.0659 
0.0287 
0.0112 
0.0039 
0.0012 
0.0003 

1.0000 
0.9459 
0.8005 
0.6061 
0.4105 
0.2488 
0.1349 
0.0655 
0.0284 
0.0110 
0.0038 
0.0012 
0.0003 
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These minimum variance unbiased 
estimates will be used along with the likelihood 
function and the lognormal 
prior f x( ; . , . )µ σ= =0 0137 01054  to obtain 
approximate Bayesian reliability estimates.  

Let        
( ) ( ) ( )

( ) ( )

( ) , ( ) , ( ) ,

( ) , ( )

E SE E SE E HT

E HT E H

R t R t R t

R t R t

β β β

β β

≈ Λ ≈

Λ ≈
, 

              )(,)( )()( tRtR LnEHE ββ

≈Λ

 

and   R tE Ln

Λ

β ( ) ( )  represent respectively the 
approximate Bayesian reliability estimates 
obtained with the approximate Bayesian 
estimate of β , and the ones obtained by direct 
computation, when the squared error, the 

 
 
 
 
 

Higgins-Tsokos, the Harris and the proposed 
logarithmic loss functions are used. These 
estimates are given in Table 5 and Table 6. 

For computational convenience, the 
results presented in Table 3 are used to obtain 
approximate estimates of the analytical forms of 
the various approximate Bayesian reliability 
expressions under study. The results are given in 
Table 4. Table 6 gives the approximate Bayesian 
reliability estimates obtained directly by using 
equations (40), (41), (42) and (43).  

For computational convenience, the 
results presented in Table 6 are used to obtain 
approximate estimates of the analytical forms of 
the various approximate Bayesian reliability 
expressions under study. The results are given in 
Table 7. 
 
 
 
 

 

Table 4. 
 

 
)(tR  )()( tR SEEb

Λ

 )()( tR HTEb

Λ

 )()( tR HEb

Λ

 )()( tR LnEb

Λ

 
Approximation 2)1( −− te  2)1(

1251.1

1 −− t
e  

2)1(
1251.1

1 −− t
e  

2)1(
1251.1

1 −− t
e  

2)1(
1251.1

1 −− t
e  

IMSE 0 3103813.2 −  3103813.2 −  3103813.2 −  3103813.2 −  
Relative 
efficiency with 
respect to 

R tEb SE

Λ

( ) ( )  

0     1         1        1         1 

 

Table 5.  
 

)(tR  )()( tR SEEβ

≈

 )()( tR HTEβ

≈

 )()( tR HEβ

≈

 
 

)()( tR LnEβ
≈

 
 

Approximation e t−  
e

t−
1 0311.  e

t−
11250.  e

t−
0 9758.  e

t−
1 1242.  

IMSE 0.0 410381008.2 −  310676471.3 −  410482034.1 −  310630931.3 −  
 

Relative 
efficiency with 
respect to  

R tE SE

≈

β ( ) ( )  

0.0 1.0 15.44 0.62 15.25 
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Table 6. 

 
Time t 

R t
Λ

( )  )()( tR SEEβ

Λ

 )()( tR HTEβ

Λ

 )()( tR HEβ

Λ

 )(LnER β

Λ

 

10 100−               
  1.00              
  2.00               
  3.00               
  4.00               
  5.00               
  6.00               
  7.00               
  8.00               
  9.00               
 10.00 

1.0000            
0.3679           
0.1353           
0.9498            
0.0183           
0.0067           
0.0025           
0.0009           
0.0003           
0.0001           
0.0000 

1.0000            
0.3786            
0.1437            
0.0547            
0.0209            
0.0080            
0.0031             
0.0012            
0.0005            
0.0002             
0.0001 
  

1.0000            
0.4108            
0.1690            
0.0696             
0.0287            
0.0118            
0.0049            
0.0020            
0.0008            
0.0003            
0.0001 

1.0000            
0.4112           
0.1692           
0.0697            
0.0287           
0.0118           
0.0049           
0.0020           
0.0008           
0.0003           
0.0001 

1.0000  
0.4105 
0.1685 
0.0692  
0.0284 
0.0117 
0.0048 
0.0020 
0.0008 
0.0003 
0.0001 

 
Table 7. 

 
 

)()( tR SEEβ

Λ

 )()( tR HTEβ

Λ

 
 

)()( tR HEβ

Λ

 )()( tR LnEβ

Λ

 

Approximation 
0311.1

t

e
−

 1250.1

t

e
−

 1250.1

t

e
−

 1242.1

t

e
−

 
IMSE 410381008.2 −  310676471.3 −  310676471.3 −  310630931.3 −  
Relative 
efficiency 
 with respect to    

)()( tR SEEβ

Λ

 

1.0 15.44 15.44 15.25 

 
     The above approximate Bayesian estimates yield good estimates of the true reliability function. 
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Conclusion 
 

Using the concept of Monte Carlo Integration, 
approximate Bayesian estimates of the scale 
parameter b were analytically obtained for the 
three-parameter Weibull failure model under 
different loss functions.  Using these estimates, 
approximate Bayesian estimates of the reliability 
function may be obtained. Furthermore, the 
concept of Monte Carlo Integration may be used 
to directly approximate estimates of the 
Bayesian reliability function. 
 Second, similar results were obtained 
for the gamma failure model. Finally, numerical 
simulations of the analytical formulations 
indicate:  
 
(1) Approximate Bayesian reliability estimates 
are in general good estimates of the true 
reliability function. 
 
(2) When the number of replicates m increases, 
the approximate Bayesian reliability estimates 
obtained directly converge for each loss function 
to their corresponding Bayesian reliability 
estimates. 
 
(3) Approximate Bayesian  reliability estimates 
corresponding to the squared loss function do 
not always yield the best approximations to the 
true reliability function. In fact the Higgins-
Tsokos, the Harris and the proposed logarithmic 
loss functions are sometimes equally efficient if 
not better. 
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