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Right-tailed Testing of Variance for Non-Normal Distributions

Michael C. Long

Florida State Department of Health

Ping Sa
Mathematics and Statistics
University of North Florida

A new test of variance for non-normal distribution with fewer restrictions than the current tests is
proposed. Simulation study shows that the new test controls the Type | error rate well, and has power
performance comparable to the competitors. In addition, it can be used without restrictions.

Key words: Edgeworth expansion, Type | error rate, power performance

Introduction

Testing the variance is crucial for many real
world applications. Frequently, companies are
interested in controlling the variation of their
products and services because a large variation
in a product or service indicates poor quality.
Therefore, a desired maximum variance is
frequently established for some measurable
characteristic of the products of a company.

In the past, most of the research in
statistics concentrated on the mean, and the
variance has drawn less attention. This article is
about testing the hypothesis that the variance is

equa to a hypothesized value of versus the

aternative that the variance is larger than the
hypothesized value. This statistical test will be
referred to as a right-tailed test in further
discussion.

The chi-square test is the most
commonly used procedure to test a single
variance of a population. Once a random sample

of sizenis taken, theindividual values X, , the
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sample mean X , the sample variance S?, and
specified (of) are used to compute the chi-

squared test statistic ¥* = (n—1)S?/ o, which
is distributed y;,_,, under H,. The y? statistic

is used for hypothesis tests concerning o® when
a normal population is assumed. It is well
known that the chi-square test statistic is not
robust against departures from normality such as
when skewness and kurtosis are present. This
can lead to rgjecting H, much more frequently
than indicated by the nominal alpha level, where
apha is the probability of regecting H, when
H, istrue.

Practical alternatives to the y” test are

needed for testing the variance of non-normal
distributions. There are nonparametric methods
such as bootstrap and jackknife (see Efron &
Tibshirani, 1993). The bootstrap requires
extensive computer calculations and some
programming ability by the practitioner making
the method infeasible for some people. Although
the jackknife method is easier to implement, it is
a linear approximation to the bootstrap method
and can give poor results when the statistic
estimateis nonlinear.

Another alternative is presented in
Kendall (1994) and Lee and Sa (1998). The

robust chi-square statistic x> which has the
form  (n—1)ds?/o? chi-square
distributed with (n—1)d degrees of freedom,

and is
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~

-1
where d:[1+gj and 77 is the sample

kurtosis coefficient. The critical value for test
regection is 2, where v is the smallest
integer, which is greater than or equal to (n-
1) d . Because d is a function of the sample
kurtosis coefficient 77 alone, this could create

performance problems for y? test with skewed

distributions.

Lee and Sa (1996) derived a new
method for a right-tailed variance test of
symmetric heavy-tailed distributions using an
Edgeworth expansion (see Bickel & Doksum,
1977), and an inversion type of Edgeworth
expansion provided by Hall (1983),

P((6-0)/ o(d) < x+ B,(x* ~1)16)
= ®(X)+0o(L/v/n), 1)
where @ is any statistic, and @, O'(é) and S,
are the mean, standard deviation and coefficient
of skewness of @, respectively. ®(X) is the
standard normal distribution function.

They considered the variable S*/ o7,
and the variable admitted the inversion of the
Edgeworth expansion above as follows:

SZ
-
P ﬁs X+ B,(x*-1)/6
no Tt
= ®(X)+o(L/v/n), )

where K, = E(X —u)* —3(E(X — )?)? and
_ E(SZ _0.2)3

L (ES* o))

skewness of S?, provided all the referred

moments exist. The population coefficient of

skewness equals K,/+/(c6%)°® = 0 unde

symmetric and heavy-tailed assumptions, and
the population coefficient of kurtosis equals

K,/o"> 0, where K, is the i cumulant (see

the coefficient of

Kendall & Stuart, 1969). This yielded a decision
rule:

Reject H,: 0°=0; versus H, :0° > 0( if
Z>z,+p,(22-1)/6, ©)

where z, isthe upper o percentage point of the
standard normal distribution,

2
s
z=__9% and
K, 2
no,t n-1
1|3n 1 8n?
— | =k, S*— ks + ~(S%)°
. n?| 2 2 (n-1)

3 i)
ki, 2S%)°
n n-1
where k, isthe i"™ sample cumulant.

They approximated their decision rule
even further using a Taylor series expansion of

f1(Z) a —a wherea= f3,/6. The new test
became:

Reject H, if
Z,=2-a(Z*-D)+2a*(2°-2)>z,. (4

After a simulation study, their study found their
test provided a “controlled Type | error rate as
well as good power performance when sample
Sizeis moderate or large’ (p. 51).

Lee and Sa (1998) performed another
study on a right-tailed test of variance for
skewed distributions. A method similar to the
previously proposed study was employed with
the primary difference being in the estimated

coefficient of skewness, ,31 . The population

coefficient of skewness, K,/4/(c%)° , was

assumed zero in the heavy-tailed distribution
study and estimated for the skewed distribution
study. Their study performed a preiminary
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simulation study for the best form of Z and
found

to bethe Z with controllable Type| error rates as
well as good power performance.

Hence, the mativation for this study isto
develop an improved method for right-tailed
tests of variance for non-normal distributions. A
test is desired which works for both skewed and
heavy-tailed distributions and also has fewer
restrictions from assumptions. This test should
work well for multiple sample sizes and
significance levels. The test proposed uses a
general Edgeworth expansion to adjust for the
non-normality of the distribution and considers

the variable S? that admits an inversion of the
general Edgeworth expansion.

A detailed explanation of the new
method is provided in the next section. In the
“Simulation Study” Section, the simulation
study is introduced for determining whether the
previously proposed tests or the new test has the
best true level of significance or power. The
results of the simulation are discussed in the
section of Simulation Results. Conclusions of
the study are rendered at the end.

Methodol ogy

Let & be an estimate of an unknown quantity
o,.If \/ﬁ(é—é?o) is asymptotically normally
distributed with zero mean and variance o2, the
distribution function of \/ﬁ(é—ﬁo) may be

expanded as a power series in \/ﬁ (see Hall,
1983),

1 i

@(x)+n 2p (X)p(X)+---+n 2p, (X)p(x)+---,
()

where ¢(x)=(27)"?e 2 is the Standard

Normal density function and

CI>(X)=I_X #(u)du is the Standard Normal

distribution function. The functions p; are

polynomials with coefficients depending on

cumulants of 6 — 0,.

From Hal (1992), the Edgeworth
expansion for the sample varianceis

T

:CI>(X)+n_%pl(x)¢(x)+---+n_%pj (X)@(X)+-,

(6)
where
_ x? -1 _ ¥
p,=- Bl+BZ 6 181__(‘/4_) 2,
B, = (r,-1)72(v,-3v,-6v2+2)
v, =E{(X -y},

and 1'=\/E(X—,u)4—0"1 .

The variable S? admits the inversion of
the Edgeworth expansion as follows:

P{M< x+n_21(Bl+ B, Xz_lj}

T 6

=®(x)+o(n™"?)
)

H,:0°=0’ vesus

To test

H,:0?>0’, one can adapt the inversion
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formula of the Edgeworth expansion, and the
result is an intuitive decision rule as follows:

P |
RejectHoifZ>z,l+n2[Bl+B2 ”’6 j

)
where z, isthe upper o percentage point of the
standard normal distribution,

S-0F - SR
Z:—1 = — ,
7\/_ % (k4 +284j
n
+12k,S* + 4k +8(S%)°
__ 4 3 _
(k, +25%)2

>

Simulation Study

Details for the simulation study are provided in
this section. The study is used to compare Type
eror rates and the associated power
performance of the different right-tail tests for
variance.

Distributions Examined

Distributions were chosen to achieve a
range of skewness (0.58 to 9.49) or kurtosis
(-1.00 to 75.1) for comparing the test
procedures. The skewed distributions considered
in the study included Weibull with scale
parameter A = 1.0 and shape parameters = 0.5,
0.8, 2.0 (see Kendall, 1994),
Lognormal( i = 0,0 =1), (see Evans, Hastings,
& Peacock, 2000), Gamma with scale parameter
1.0 and shape parameters = 0.15,1.2,4.0 (see
Evans, Hastings, & Peacock, 2000), 10 Inverse
Guassian distributions with 4 =10 , scale

parameters A= 0.1 to 25.0 with skewness
ranging from 0.6 to 9.49 (see Chhikara & Folks,
1989 and Evans, Hastings, & Peacock, 2000),
Exponential with £ =10 and A= 1.0 (see
Evans, Hastings, & Peacock, 2000), Chi-square
with v degrees of freedom (v =1, 2, 3, 4, 8, 12,
16, 24), and a polynomial function of the
standard normal distribution Barnes2 (see
Fleishman 1978).

The heavy-tailed distributions
considered included Student’s T
(v =5,6,8,16,32,40), 10 JTB(«, 7) distributions
with (1 =0,0=1) and various &, 7 values
including Laplace( & =2.0, 7 =1.0) , (see
Johnson, Tietjen, & Beckman, 1980), and
special  designed distributions  which are
polynomial functions of the standard normal
distribution: Barnesl and Barnes3 having
kurtosis 6.0 and 75.1 respectively (see
Fleishman 1978). All the heavy-tailed
distributions are symmetric with the exception
of Barnes3. Barnes3 has skewness of .374 which
is negligible in comparison to the kurtosis of
75.1. Therefore, Barnes3 was considered very
closeto symmetric.

Simulation Description

Simulations were run using Fortran 90
for Windows on an emachines etower 400i PC
computer. All the Type | eror and power
comparisons for the test procedures used a
simulation size of 100,000 in order to reduce
experimental noise. Fortran 90 IMSL library was
used to generate random numbers from these
distributions: Weibull, Lognormal, Gamma,
Exponential, Chi-square, Normal and Student’s
T. In addition, the Inverse Gaussian, JTB,
Barnesl, Barnes2, and Barnes3 random variates
were created with Fortran 90 program
subroutines using the IMSL library’s random
number generator for normal, gamma, and
uniform in various parts of the program.

The following tests were compared in
the simulation study:

1) y*=(n-1)S?/0?; the decision rule is

Reject H, if y°> Zf_m.

2) 2 = (n—-1)dS?/o? ; the decision rule is
Reect H, if y2 > x’,, where v is the
smallest integer that is greater than or equal to
(n-l)a.
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from Lee and Sa

K, 2
74_7
nS’c; n-1
(1998); the decision rule is Regect H, if
Zs—a(Zs* -1)+2a*(zs* - Zs) > z, .

2
s,
o
4) zh = 0 from Lee and Sa
k, 2
T —
no, n-1

(1996); the decision rule is Regect H, if
Zh—a(zZh?* —1) + 2a*(zZh® - zh) > z, .

S*—o?
5) The proposed test is Z = ———2 , where
Jn
7/+/n can be estimated by different forms to
create different test statistics, the decision rule
is
Reject H, if Z >
-1 2
—la ~z-1
z,l+n2[Bl+B2 “6 j .

Six different test statistics were investigated:

S*-o?
N =,
ﬁ+280'0
n n-1
2 2
22:8—0-04,
ﬁ+20'0
n n-1
2 2
Z3:l,
Kk, 254
—~+
n n-1

2 2
S*-o;

\/(n—l)k4 25

nn+1) n+1

Z4=

S’ -0}
Z5= = 0 =
k,o, N 20,
nS* n-1
2 2
and Z6= S~
k0% N 20,
nS* n-1
n-1)k 4
The equation (n=Dk, + 25 inZ4is

nn+1) n+1

the unbiased estimator for V(SZ) = 7/n. Sample

sizes of 20 and 40 were investigated for Type |
error rates along with the nominal alpha levels
0.01, 0.02, 0.05, and 0.10 for each sample size.

Furthermore, any test that used z, also used
(z,+t,,,)/2and t

sample size and nominal level for further
flexibility in determining the best test. For each
sample size and nomina level, 100,000
simulations were generated from each
distribution. All the tests investigated were
applied to each sample. The proportion of
samples rgected from the 100,000 was then
recorded based on the sample size, nominal
level, and test procedure.

The steps for conducting the simulation
were as follows:

separately with each

-1, n-l,o

1. Generate a sample of size n from one parent
distribution under H .

2. Cdculate: X, S2, k,, k,, ks, 3., B, B,.

3. Calculate all the test statistics: y*, 7, Zs,
Zh, Zn, 72, 73, 74, Z5, and Z6.

4. Find the critica value for each test
considered.
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5. Determine for each test whether rgection is
warranted for the current sample and if so,
increment the respective counter.

6. Repesat 1 through 5 for the remaining 99,999
samples.

7. Calculate the proportion of 100,000 rejected.

A power study was performed using five
skewed distributions and five heavy-tailed
distributions with varying degrees of skewness
and kurtosis respectively. For each distribution
considered, sample sizes of 20 and 40 were
examined with nominal levels of 0.10 and 0.01,
and k = 1,2,3,4,5,6, where K is a constant such

that the \/E is multiplied to each variate.
The traditional power studies were
performed by multiplying the distribution

observations by \/E to create a new set of
observations yielding a variance k times larger
than the H, value. Steps 1 through 6 above

would then be implemented for the desired
values of k, sample sizes, and significance
levels. The power would then be the proportion
of 100,000 rejected for the referenced value of
k , sample size, and significance level.

This method has been criticized by
many researchers since tests with high Type |
eror rates frequently have high power also.
Tests with high Type | error rates usually have
fixed lower critical points rative to other tests
and therefore reject more easily when the true
variance is increased. Hence, these tests tend to
have higher power.

Some researchers are using a method to
correct this problem. With k =1, the critical
point for each test under investigation is
adjusted till the proportion reected out of
100,000 is the same as the desired nominal level.
The concept is that the tests can be compared
better for power afterward since all the tests
have critical points adjusted to approximately
the same Type | eror rate. Once this is
accomplished, steps 1 through 7 above are
performed for each k under consideration to get
a better power comparison between the different
tests at that level of K.

The traditional power study and the new
power study were used to provide a complete
picture of the power performance by each test.

Results

Type | Error Comparison

Comparisons of Type | error rates for
skewed and heavy-tailed distributions were
made for sample size 40 and 20 with levels of
significance 0.10, 0.05, 0.02, and 0.0l
However, the results are very similar between
the two higher levels of significance (0.10 and
0.05) and the same situation holds for the two
lower levels of significance. Therefore, only
0.05 and 0.01 levels are reported here and they
are summarized into Tables 1 through 4. Also, it
can be observed that the Type | eror
performances are quite similar for the skewed
distributions with similar  coefficient of
skewness or for the heavy-tailed distributions
with similar coefficient of kurtosis. Therefore,
only 11 out of the origina 27 skewed
distributions and 10 out of the 18 heavy-tailed
distributions studied are reported in these tables.
For the complete simulation results, please see
Long and Sa (2003).

Comparisons were made between the

tests %, y? (first and second number in the
first column), and Zs, Zh, Z2, and Z6 with z_,
(z,+t,,,)/2, and t,, , as the first, second,

and third number in the respective column. The
tests Zn, Z3, Z4, and Z5 were left out of the
table since they were dther unstable over
different distributions or had highly inflated
Type | error rates. From Tables 1 through 4, the
following points can be observed:

The traditional ¥ test is more inflated
than the other tests for all the distributions,
sample sizes and significance levels.

The y? test does not maintain the Type
| error rates well for the skewed distribution
cases. The Type | error rates can be more than
300% inflated than the desired level of
significance in some of the distributions. This is
especially true for the distributions with a higher
coefficient of skewness. However, the y7 test
peforms much better in the heavy-tailed

-1, n-l,o
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distributions. Although there are still some
inflated cases, they are not severe. These results

are understandable since the y? test only

adjusts for the kurtosis of the sampled
distribution and not the skewness.

The Z2 test’s Type | error rates reported
in Tables 1 and 2 were extremely conservative
for most of the skewed distributions. It becomes
even more conservative when the coefficient of
skewness gets larger. In fact, the Z2 test is so
conservative it is rardy inflated for any of the
skewed or heavy-tailed distribution cases.

Similar to the Z2 test, test Zh performs
quite conservatively in al the skewed
distributions as wel. However, it performs
differently under heavy-tailed distributions. The
Type | error rates become closer to the nominal
level except for one distribution, and there are
even a few inflated cases. The exception in the
heavy-tailed distributions is the Barnes3. In this
case, test Zh is extremely conservativefor all the
nominal levels.

Under the skewed distribution, the Zs
test performs well for the sample size 40 and the
nominal level 0.05. However, the Type | error
rates become more or less uncontrollable when
either the alpha level gets small or the sample
size is reduced. These results confirmed the
recommendations of Lee and Sa (1998) that Zs
is more suitable for moderate to large sample
sizes and apha levels not too small. Although
Zs was specifically designed for the skewed
distributions, it actually works reasonably well
for the heavy-tailed distributions as long as the
sample size and/or the alpha level are not too
small.

Generally speaking, the proposed test
Z6 controls Type | error rates the best in both
the skewed distribution cases and the heavy-
tailed distribution cases. Only under some
skewed distributions with both small alpha and
small sample size werethere afew inflated Type
| error rates. However, the rates of inflation are
at much more acceptable level than some others.

Power Comparison Results

One of the objectives of the study is to
find one test for non-normal distributions with
an improved Type | error rate and power over
earlier tests. It was suspected that tests with very

conservative Type | error rates might have lower
power than other tests since it is harder to reect
with these tests. Because tests Zh and Z2 were
extremely conservative for the skewed
distributions, exploratory power simulations
were run on a couple of mildly skewed
distributions with Zs, Zh, Z2, and Z6 to further
decrease the potential tests. The preiminary
power comparisons confirmed our suspicion.
Both Zh and Z2 have extremely low power even
when k is as large as 6.0. Therefore, Z2 will not
be looked at further since Z6 is the beiter
performer of the new tests. Also, the Zh test's
power is unacceptable, but it will ill be
compared for the heavy-tailed distributions since
that is what it was originally designed for. The
results of the prdiminary power study are
reported in Long and Sa (2003).

Tables 5 and 6 provide the partial results
from the new type of power comparisons, and
Tables 7 and 8 consist of some results from the
traditional type of power study. Based on the
complete power study in Long and Sa (2003),
the following expected similarities can be found
for the power performance of the tests between
the skewed and heavy-tailed distributions
regardiess of the type of power study. When the
sample size decreases from 40 to 20, the power

decreases. As the k in k-0 increases, the

power increases. When the significance level
decreases from 0.10 to 0.01, the power decreases
more than the decrease experienced with the
sample size decrease. As the skewness of the
skewed distribution decreases, the power
increases. As the kurtosis of the heavy-tailed
distribution decreases, the power increases
overall with a dight decrease from the T(5)
distribution to the Laplace distribution.

The primary difference overall between
the skewed and heavy-tailed distributions is that
the power is better for the heavy-tailed
distributions when comparing the same sample
size, significance level, and k . In fact, the
power increases more quickly over the levels of
k for the heavy-tailed distributions versus the
skewed distributions, with a more noticeable
difference at the higher levels of kurtosis and
skewness respectively.

Some  specific  observations  are
summarized as follows:
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It can be observed that the y° test
performed worst overall with its power lower
than the other tests power based on the new
power study. There are several cases where the
7 test's power is lower than the other tests
powers by 10% or more. As can be expected, the
;(2 test has very good power performance under
the traditional power study, which provides the
true reection power under the specific
aternative hypothesis. However, since the test
had uncontrollable and unstable Type | error
rates, this test should not be used with
confidence.

The y° tet has a better power
performance than the y*test in the new power

study, and it performs as well as the y°test in
the traditional power study. But similar to
the y 2, the test is not recommended due to the
unstable Type| error rates.

Differences  between the  power
performances of the Z6 and Zs tests are very
minor, and they are dlightly better than the y”
test in the new power study. More than 50% of
the cases studied have differences in power
within 2% between any two tests. In the
traditional power study, the Z6 and Zs tests are
not as powerful as ether the y*test or the y”
test for the skewed distributions studied.
However, they perform quite well also. On the
heavy-tailed distributions studied, the Z6 and Zs
tests have very good power performance which
is constantly as high as the power of the ;(,2
test, and sometimes almost as high as the power
of the y*test. To further differentiatethetwoin
the traditional power study, the Z6 test
performed better than Zs when o = 0.10 and
worse when o, = 0.01.

The Zh test is studied only for
the heavy-tailed distributions. With the adjusted
critical values on the new power study, Zh has
the most power among the five tests. However,
as far asthetrue regjection power is concerned, it
has the lowest power in amost all of the cases
studied.

More Comparisons of Type | Error Rates
Between Zs and Z6

After reviewing the results from the
Type | eror rate comparison study and the
power study, the tests Zs and Z6 are the best.
Therefore, the two tests were examined for a
Type | error rate comparison study of sample
size 30. Looking at the skewed distributions and
heavy-tailed distributions in Table 9, both tests
held the Type | error rates well at oo =0.10 and o
=0.05. For the skewed distributions, the Zs test’s
Type | eror rates were much more inflated
overal for the lower alpha levels of 0.02 and
0.01. In fact, the number of inflated cases for Zs
compared to Z6 was more than double. Breadth
of the inflation was also larger with the Zs test
having 22% of the cases greater than a 50%
inflation rate (i.e. 50% higher than the desired
nominal level), while the Z6 test had none.
Similar results can be observed for the heavy-
tailed distributions as well. Clearly, the Z6 test
controls Type | error rates better than the Zs test
for sample sizes of 30 also.

Although most of the Type | error rates
for the Z6 test are stable, there was some
inflation. However, the inflation is still within a
reasonable amount of the nominal level. It
should be noted that the Z6 test's Type | error

rates for apha 0.01 are in control if t , , is
used in the critical values. Therefore, if the
practitioner is very concerned with Type | error,
it is recommended that the Z6 test with t
should be used for small aphas. In addition,
since the method involves higher moments such
as kg and has (n-5) in the denominator of Ky, it
is recommended that sample sizes of 30 or more
be used. Even so, the simulation study found the

Typel error rates for the Z6 test to be reasonable
for sample sizes of 20.
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Table 1. Comparison of Typel Error Rates when n=40, Skewed Distributions

Distribution o =0.01
(skewness) 227 Zs zh Z2 Z6
16 (1.0,0.1) Jolo .0259 .0004 .0001 .01Z1
(9.49) .0429 .0250 .0003 .0000 .0110
.0237 .0003 .0000 .0100
Weibull(1.0,0.5) 1522 .0198 .0012 .0001 .0090
(6.62) .0349 .0188 .0011 .0001 .0082
.0177 .0010 .0001 .0074
LN(0,2) 1325 0156 .0012 .0001 .0073
(6.18) 0274 0148 0011 .0001 .0065
.0141 .0009 .0000 .0057
1G(1.0,0.25) 1671 .0192 .0014 .0002 .0093
(6.00) .0349 .0179 .0013 .0001 .0082
.0168 .0011 .0001 .0074
Gamma(1.0,0.15) 1704 .0166 .0025 .0003 .0092
(5.16) .0322 .0154 .0024 .0003 .0081
.0144 .0022 .0003 .0073
| G%l. 0,0.5) 1538 .0135 .0032 .0005 .0077
(4.249) .0271 .0126 .0029 .0004 .0069
.0117 .0028 .0004 .0061
Chi (g.) 1282 .0113 .0073 .0019 .0094
(2.83) .0194 .0102 .0069 .0017 .0085
.0094 .0065 .0015 .0077
Exp(1.0) 0949 0119 .0115 .0045 .0116
2.00) 0159 0110 .0109 .0041 .0104
.0100 .0103 .0037 .0097
Chi(2) 0922 0114 .0114 .0045 .0109
(2.00) .0150 .0103 .0107 .0041 .0099
.0095 .0100 .0038 .0091
Barnes2 0716 .0141 .0154 .0079 .0150
(1.75) .0127 .0127 .0146 .0072 .0137
.0116 .0138 .0065 .0124
1G(1.0,25.0) .0217 .0102 .0113 .0089 .0107
(0.60) .0092 .0090 .0104 .0078 .0095

.0081 .0093 .0067 .0084

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh,
Z2, and Z6 test using z,, (z, +t,,,)/2, and t, , critical points (first, second, and third numbers in
column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column
x5 X!
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Table 1 (continued). Comparison of Type | Error Rates when n=40, Skewed Distributions

Distribution o =0.05
(skewness) Y2 x? Zs zh Z2 Z6
1G (1.0,0.1) 1859 .0532 .0015 .0007 .0448
(9.49) .0761 .0520 .0015 .0007 .0433
.0509 .0014 .0006 .0419
Weibull(1.0,0.5) 1899 .0467 .0037 .0017 .0402
(6.62) .0683 .0454 .0035 .0016 .0387
.0442 .0033 .0015 .0372
LN(0,2) 1701 0415 .0043 .0022 .0362
(6.18) .0610 .0404 .0040 .0021 .0347
.0392 .0039 .0019 .0331
1G(1.0,0.25) 1992 .0479 .0446 .0022 .0417
(6.00) .0719 .0467 .0437 .0019 .0401
0454 .0418 .0017 .0385
Gamma(1.0,0.15) 2148 .0486 .0078 .0043 .0430
(5.16) .0743 .0469 .0075 .0039 .0412
.0454 .0072 .0035 .0397
| G&l. 0,0.5) 1994 .0442 .0094 .0050 .0395
(4.29) 0672 .0423 .0090 .0046 .0378
.0408 .0087 .0043 .0360
Chi(1) 1906 .0439 .0203 .0136 .0431
(2.83) 0622 .0421 .0197 .0130 .0416
0406 .0191 .0124 .0397
Exp(L.0) 1583 0441 .0299 .0229 .0460
(2.00) .0559 .0424 .0289 .0218 .0442
.0408 .0279 .0209 .0425
Chi (g) 1557 .0430 .0293 .0226 .0453
(2.00) 0545 0414 .0285 .0214 0434
.0399 .0278 .0204 .0415
Barnes2 1414 .0485 .0388 .0340 .0531
(1.75) .0549 .0466 .0376 .0324 .0511
.0451 .0364 .0309 .0493
1G(1.0,25.0) 0732 .0429 .0407 .0429 .0498
(0.60) ‘0442 0413 0390 .0410 .0477

.0397 .0376 .0389 .0454

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs,
Zh, Z2, and Z6 test usng z,, (z, +t,,,)/2, and t,, critical points (first, second, and third
numbers in column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on
the column y?, y2.



Table 2. Comparison of Typel Error Rates when n=20, Skewed Distributions

LONG & SA

Distribution o =0.01
(skewness) Y2 x?  Zs zh Z2 Z6
16 (1.0,0.1) A215  .054Z2  .000s .000s .0149
(9.49) 0443 .0321 .0003 .0003 .0122
.0302 .0003 .0002 .0104
Weibull(1.0,0.5) 1227 .0294 .0012 .0012 .0139
(6.62) 0386 .0270 0011 .0011 .0115
.0249 .0009 .0009 .0098
LN(0,1) 1082 .0246 .0013 .0014 .0119
(6.18) .0316 .0226 .0012 .0012 .0100
.0209 .0010 .0011 .0083
1G(1.0,0.25) 1295 .0307 .0015 .0015 .0142
(6.00) 0406 0281 0014 .0014 .0120
.0258 .0013 .0012 .0098
Gamma(1.0,0.15) 1408 .0296 .0024 .0025 .0152
(5.16) 0396 .0269 .0021 .0021 .0128
.0243 .0019 .0018 .0108
| G%l. 0,0.5) 1272 .0258 .0029 .0030 .0141
(4.29) .0336 .0231 .0024 .0026 .0119
.0208 .0022 .0023 .0102
Chi(1) 1096 .0228 .0067 .0079 .0185
(2.83) .0265 .0201 .0059 .0070 .0161
.0176 .0051 .0061 .0139
Ex (81.0) .0810 .0203 .0092 .0107 .0191
2.00) 0202 0175 .0079 .0093 0165
.0153 .0067 .0080 .0144
Chi(2) .0825 .0206 .0095 .0111 .0196
(2.00) .0205 .0180 .0083 .0097 .0168
.0156 .0071 .0082 .0145
Barnes2 .0680 .0228 .0127 .0159 .0238
(1.75) 0192 .0108 .0112 .0137 .0206
.0171 .0097 .0119 .0180
| G%l.O,ZS.O) .0213 .0134 .0105 .0098 .0120
(0.60) .0095 .0113 .0087 .0079 .0095
.0095 .0072 .0064 .0076

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for
Zs, Zh, 72, and Z6 test using 2, (z, +t,,,)/2,and t, , critical points (first, second, and third
numbers in column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second)
onthecolumn 2, y’.

197
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Table 2 (continued). Comparison of Type | Error Rates when n=20, Skewed Distributions

Distribution o =0.05
(skewness) i x: Zs Zh Z2 Z6
G(LU0T) 45T 0566 0014 0015 0459
(9.49) 0736 .0%47 .0013 .0014 .0430
.0530 .0011 .0012 .0399
Weibull(1.0,0.5) 1538 .0534 .0033 .0039 .0444
(6.62) .0706 .0514 .0031 .0035 .0412
.0493 .0028 .0031 .0385
LN(0,1) 1377 0471 .0482 .0057 .0397
(6.18) .0603 .0451 .0435 .0051 .0369
0431 .0406 .0046 .0343
| Ggl. 0,0.25) 1652 .0579 .0046 .0053 .0473
(6.00) 0760 .0552 .0041 .0047 .0437
.0528 .0038 .0043 .0407
Gamma(1.0,0.15) 1805 .0604 .0073 .0079 .0505
(5.16) .0575 .0568 .0069 .0072 .0471
.0549 .0064 .0064 .0438
| G&l.0,0.S) 1686 .0560 .0089 .0104 .0484
(4.29) 0725 .0535 .0083 .0095 .0446
.0509 .0077 .0087 .0416
Chi(1) 1635 0545 0176 .0215 .0523
(2.83) .0669 .0515 .0165 .0200 .0486
.0484 .0155 .0186 .0455
Exp(L0) 1394 0520 .0260 .0313 .0544
(2.00) 0604 .0496 .0241 .0291 .0506
0468 .0226 .0272 .0473
Chi (g) 1406 .0543 .0264 .0317 .0565
(2.00) 0605 0511 .0245 .0293 0524
0482 .0229 .0273 .0489
Barnes2 1307 .0560 .0342 .0416 .0617
(1.75) .0587 .0530 .0321 .0389 .0577
0499 .0302 .0364 .0%42
1G(1.0,25.0) .0687 .0449 .0377 .0433 .0507
(0.60) 0437 .0419 .0349 .0398 .0464

.0388 .0322 .0365 .0424

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for
Zs, Zh,Z2,and Z6 test using z,,, (2, +t,,,)/2,and t,  , critical points (first, second, and third
numbers in column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second)
onthecolumn 2, y’.
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Table 3. Comparison of Typel Error Rates when n=40, Heavy-tailed Distributions

Distribution «=0.01
(kurtosis) Y .y Zs zh 22 Z6
barness 1209 .0lo/  .0001 .0000 .00o0
(75.2) .0280 .0158 .0001 .0000 .0052
.0151 .0001 .0000 .0047
T(E(? .0629 .0075 .0084 .0027 .0058
(6.00) .0111 .0066 .0079 .0024 .0050
.0059 .0074 .0021 .0045
Barnesl 1081 .0118 .0126 .0021 .0089
(6.00) .0188 .0105 .0119 .0019 .0078
.0093 .0111 .0017 .0068
T(6) .0526 .0085 .0108 .0044 .0075
(3.00) .0103 .0076 .0100 .0040 .0067
.0067 .0092 .0034 .0059
Laplace(2.0,1.0) .0608 .0099 .0138 .0043 .0092
(3.00) .0124 .0089 .0130 .0038 .0081
.0080 .0120 .0034 .0072
JTB(4.0,1.0) .0246 .0103 .0127 .0082 .0106
(0.78) .0098 .0092 .0118 .0074 .0095
.0084 .0109 .0067 .0084
T(16) .0198 .0103 .0118 .0088 .0104
(0.50) .0095 .0092 .0107 .0079 .0092
.0083 .0098 .0070 .0083
Jr 851.25,0.5) .0134 .0102 .0112 .0097 .0108
(0.24) .0089 .0091 .0101 .0086 .0095
.0081 .0090 .0075 .0083
T(32) .0139 .0091 .0100 .0084 .0093
(0.21) .0083 .0084 .0093 .0075 .0083
.0076 .0085 .0067 .0074
JIB(2.0,0.5) .0061 .0064 .0068 .0060 .0061
(-0.30) .0055 .0056 .0059 .0051 .0052

.0049 .0052 .0043 .0044

NOTE: Entries are the estimated proportion of samples rgected in 100,000 simulated samples for Zs, Zh, Z2,
and Z6 test using z,,, (z, +t,.,)/2,and t, , critical points (first, second, and third numbers in column Zs,

Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column y?, y2.
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Table 3 (continued). Comparison of Typel Error Rateswhen
n=40, Heavy-tailed Distributions

Distribution a=0.05
(kurtosis) Y x? Zs zh  Z2 76
Barness 1054 .0590 0011 .000s .0515
(75.1) .0590 .0380 .0011 .0002 .0302
.0371 .0010 .0002 .0290
T(5) 1184 .0362 .0262 .0198 .0369
(6.00) .0456 .0348 .0254 .0188 .0352
.0332 .0247 .0178 .0335
Barnesl 1786 .0492 .0327 .0201 .0484
(6.00) 0655 0472 0317 .0190 .0462
.0453 .0308 .0179 .0444
T(@ 1054 .0376 .0310 .0257 .0400
(3.00) .0449 .0360 .0300 .0243 .0381

.0345 .0290 .0231 .0363

Laplace(2.0,1.0) 1263 .0417 .0359 .0268 .0449
(3.00) 0500 .0400 .0349 .0254 .0431
0385 .0338 .0241 .0413

JTB(4.0,1.0) 0770 .0447 .0428 .0429 .0506
(0.78) 0464 .0429 .0410 .0409 .0487

0414 .0396 .0391 .0466
T(lE(? 0683 .0436 .0419 .0438 .0498
(0.50) 0448 0419 0402 0420 .0479

0402 .0388 .0401 .0457
JTB(1.25,0.5) 0577 .0445 .0431 .0481 .0515
(0.24) 0441 .0428 .0414 .0459 .0493

0411 .0400 .0442 .0474
T(32) 0591 .0444 .0434 .0471 .0510
(0.21) 0444 0425 0419 .0448 .0489

10407 .0402 .0430 .0467
JTB(2.0,0.5) 0381 .0344 .0355 .0396 .0405
(-0.30) 0348 .0327 .0338 .0377 .0385

.0312 .0323 .0359 .0366

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh,
Z2, and Z6 test using z,, (z, +t,,,)/2, and t, , critical points (first, second, and third numbers in

column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column
x5 X!
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Table 4. Comparison of Typel Error Rates when n=20, Heavy-tailed Distributions

Distribution «=0.01
(kurtosis) X2k Zs zh 722 76
Barness 0904  .0Z241 .0001 .000L .00/o
(75.1) 0290 0221 0001 .0001 .0062
.0207 .0001 .0001 .0049
T(5) .0543 .0151 .0072 .0056 .0100
(6.00) .0147 .0125 .0060 .0046 .0082
.0107 .0052 .0037 .0063
Barnesl .0590 .0205 .0084 .0059 .0136
(6.00) (0225 0178 0072 .0048 .0111
.0153 .0062 .0039 .0092
T(6) .0461 .0146 .0088 .0070 .0110
(3.00) .0131 .0122 .0075 .0055 .0088
.0104 .0062 .0044 .0070
Laplace(2.0,1.0) 0053 0165 .0105 .0083 .0139
(3.00) .0153 .0138 .0089 .0068 .0113

.0117 .0077 .0055 .0092

JT B§4.0,1.0) .0238 .0143 .0115 .0100 .0126
(0.78) .0107 .0118 .0096 .0079 .0098
.0098 .0081 .0061 .0076

T(16) 0184 .0128 .0104 .0092 .0108
(0.50) 0093 .0106 .0086 .0073 .0084

0089 .0072 .0058 .0066
JTB(1.25,0.5) 0138 .0138 .0120 .0104 .0115
(0.24) 0094 .0114 .0099 .0079 .0087

0096 .0081 .0062 .0069
T(32) 0134 .0121 .0103 .0087 .0101
(0.21) 0079 .0099 .0084 .0066 .0076

0079 .0066 .0050 .0056
JTB(2.0,0.5) 0059 .0091 .0075 .0054 .0057
(-0.30) 0051 .0076 .0059 .0038 .0040

.0061 .0046 .0026 .0028

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh,
Z2, and Z6 test using z,, (z, +t,,,)/2, and t,  , critical points (first, second, and third numbers in
column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column
x5 X!
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Table 4 (continued). Comparison of Typel Error Rates
when n=20, Heavy-tailed Distributions

Distribution a=0.05
(kurtosis) Y2 % Zs zh Z22 76
Barness d1e4 .0450  .0009 .000/7  .0319
(75.1) .0544 .0414 .0008 .0005 .0294
.0397 .0007 .0005 .0268
T(5) 1034 .0439 .0233 .0249 .0440
(6.00) .0489 .0409 .0215 .0225 .0398
.0383 .0199 .0206 .0362
Barnesl 1509 .0570 .0244 .0243 .0544
(6.00) .0674 .0537 .0225 .0220 .0496
.0502 .0206 .0201 .0456
T(6) .0968 .0449 .0283 .0228 .0469
(3.00) 0482 0417 0260 .0279 .0428
.0388 .0240 .0254 .0395
Laplace(2.0,1.0) 1166 .0493 .0303 .0324 .0516
(3.00) .0537 .0458 .0281 .0298 .0475

0427 .0261 .0271 .0439

JIB §4.0,1.0) .0742 .0468 .0386 .0436 .0520
(0.78) .0463 .0434 .0361 .0400 .0479
.0404 .0335 .0367 .0443

T(16) 0658 .0440 .0381 .0430 .049%4
(0.50) 0429 .0408 .0350 .0391 .0454

0377 .0324 .0355 .0415
JTB(1.25,0.5) 0587 .0457 .0417 .0483 .0529
(0.24) 0434 0420 .0387 .0439 .0483

0391 0357 .0401 .0441
T(32) 0583 .0447 .0406 .0462 .0512
(0.21) 0430 .0415 .0375 .0421 .0468

0382 .0344 .0382 .0423
JTB(2.0,0.5) 0387 .0359 .0350 .0394 .0410
(-0.30) 0338 .0325 .0320 .0350 .0364

.0298 .0291 .0313 .0325

NOTE: Entries are the estimated proportion of samples rgected in 100,000 simulated samples for Zs, Zh,
Z2,and Z6test using z,, (2, +t,,,)/2,and t, , critical points (first, second, and third numbersin
column Zs, Zh, Z2, and Z6) and chi-square and robust chi-square test (first and second) on the column
x5 X!

o,n-1
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Table 5. New Power Comparisons for Skewed Distribution Upper-Tailed
Rejection Region when o, = ko , significance level 0.100, n = 40

Distribution k=10 k=20 k=30

(skewness) Y5 x° Zs Z6 Y. x° Zs 76 x5, xf Zs 76
WebUI(L.0,0.5) 10T 102 10T  .280 315 315 439 499 501
(6.62) .098 .099 .098 .303 .309 .308 485 494 493
Gamma(1.0,0.15) .099 .098 .100 .318 339 .344 490 .523 .528
(5.16) 100 098 101 340 340 345 523 524 .528
1G(1.0,0.6) 100 .099 .099 .382 439 441 .612 .695 .698
(3.87) .100 099 .102 432 A37 447 .685 .694 .703
Chi(2) .098 .098 .098 .634 .703 .704 903 .940 .940
(2.00) .098 .098 .100 .697 .703 .708 937 940 .941

n = 40 (continued)

Distribution k=4.0 k=5.0 k=6.0
(skewness) 5. x° Zs 76 5. x° Zs Z6 Y5 xf Zs 76
Webull(1.0,0.5) o063  .634 .636 623  .729 731 725 797 799
(6.62) .619 .629 .629 715 725 725 784 793 794
Gamma(1.0,0.15) .611 .648 .653 697 731 .736 763 .794 .798
(5.16) .648 .649 .654 731 732 737 793 794 799
IG%l.0,0.6) 762 .837 .839 .852 .912 .914 906 .950 .951
(3.87) .828 .836 .842 906 .912 .916 946 950 .952
Chi(2) 975 .987 .988 993 .997 .997 998  .999 .999
(2.00) .987 .987 .988 997 997 .997 999 999 .999

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs and Z6
test using z,,, and (z,, +t, )/ 2 critical points (first, and second numbers in column Zs and Z6) and chi-

square and robust chi-square test (first and second) on the column 2, 72.
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Table 5 (continued). New Power Comparisonsfor Skewed Distribution Upper-Tailed Rejection
Region when o, = koy , significance level 0.100

n=20

Distribution k=1.0 k=20 k=3.0

(skewness) Yi. 2 Zs  Z6 Y2 xF Zs Z6 Yi.xF Zs 76
Wabull(1.0,0.5) .100 101 102 231 253 .255 343 382 .385
(6.62) 101 100 101 248 251 254 374 .380 .384
Gamma(1.0,0.15) .100 101  .100 254 266 .265 375 394 393
(5.16) 100 .101 .100 263 .267 .266 3890 395 394
IG%l.0,0.G) 099 098 .101 295 331 .340 459 519 531
(3.87) .098 .098 .100 325 332 .337 b11 520 .528
Chi(2) .099 102 102 469 525 527 729 786 .788
(2.00) .099 100 .098 514 521 519 77 783 781

n = 20 (continued)

Distribution k=4.0 k=5.0 k=6.0
(skewness) yi. yf Zs Z6 Y2 2 Zs Z6 Yi.xF Zs 76
Weibull(1.0,0.5) 432 481 484 502 557 .560 570 627  .631
(6.62) 471 478 483 546 554 559 616 625 .629
Gamma(1.0,0.15) 465 488 487 532 6557 .556 585 611 .610
(5.16) 483 490 .488 551 558 .57 .606 .612 .610
| Ggl.0,0.G) 586 .657 .667 .676 .748 .757 742 811 818
(3.87) 648 658 .665 739 748 755 802 811 .816
Chi %) .862 .903 .904 925 952  .952 959 975 .976
(2.00) .898 .901 .900 949 951  .950 974 975 975

NOTE: Entries arethe estimated proportion of samples rgjected in 100,000 simulated samples for Zs and
Z6 test using z,,, and (z, +t, . ,)/ 2 critical points (first, and second numbers in column Zs and Z6)

and chi-square and robust chi-square test (first and second) on the column ;(2 : ;(f .
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Table 6. New Power Comparisons for Heavy-tail Upper-Tailed Re ection Region
when o, = ko and significance level 0.100

n=40

Distribution k=10 k=20 k=30

(kurtosis) Y xiZs zZh 26 y*,x?Zs zZh Z6 x2. 17 Zs Zh Z6
barness 101 102 .100 .099 .2ob 415 .400 416 457 904 934 913
(75.1) .099 .098 .098 .097 .381 .405 .457 .416 .874 .898 .933 .912
TéS) .099 .099 .099 .099 775 .841 .853 .844 .978 .989 .991 .990
(6.00) .101 .100 101 .101 .840 .842 .856 .846 .989 .990 .991 .990
Laplace(2,1) 102 .101 101 .101  .766 .801 .797 .801 968 .978 .976 .979
(3.00) 101 .102 102 101 .798 .801 .821 .801 .978 .979 .980 .979
T(8) .097 .099 .099 .102 .845 .902 .903 .905 995 997 .997 .997
(1.50) .099 .101 .098 .102 .901 .904 .903 .905 996 .997 .997 .997

n = 40 (continued)
Distribution k=4.0 k=5.0 k=6.0

(kurtosis) 2. 1% Zs Zh 26 y?,y? Zszh 26  y?,y? Zs Zh Z6

(75.1) 997 .998 999 998 1.00 1.001.001.00 1.00 1.00 1.00 1.00
T(Ec? 1.00 .999 .999 .999 1.00 .001.00 1.00 1.00 1.00 1.00
(6.00) 1999 999 999 999 1.00 100 100 1.00 1.00 1.00

1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00
.001.00 100 1.00 1.00 1.00

(3.00) 997 .997 998 .997 1.00

T(8) 1.00 1.00 1.00 1.00 1.00
(1.50)

1
1

1

Laplace2,1) 995 .997 996 997 999 1.
1

100 1.00 100 1.00 100 1

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh,
and Z6 test using z,, and (z, +t,,,)/ 2 critical points (first, and second numbers in column Zs, Zh, and

a,n-1

Z6) and chi-square and robust chi-square test (first and second) on the column ;(2 : ;(,2 .
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Table 6 (continued). New Power Comparisons for Heavy-tail Upper-Tailed Rejection Region when
o, =ko? and significance level 0.100

n=20

Distribution k=10 k=20 k=30

(kurtosis) X2 x? ZsZh 76 X2 . x%Zs zZh 76 x2. 1% Zs Zh Z6
(75.1) 101 .101 .099 .098 1290 .306 .331 .309 714 739 774 755
T(5) 102 .102 .101 .101 584 646 .662 .648 868 .907 .914 .908
(6.00) 1100 .102 .101 .102 637 648 .662 .652 1900 .908 .914 .907
Laplace(2,1)  .099 .099 .101 .098 565 .601 .613 .598 834 .861 .863 .859
(3.00) 1099 .102 .101 .099 560 .608 .604 .598 860 .864 .862 .858
T(8) 1102 .100 .100 .100 691 714 715 .714 1931 .940 .938 .940
(1.50) 101 .102 .098 .098 714 716 714 711 1940 1941 .936 .939

n = 20 (continued)

Distribution k=4.0 k=50 k=6.0

(kurtosis) X2 1% ZszZh 26 y®,y? Zszh 26 y*,y? Zs zh Z6
Barnes3 .656 .958 .967 .966 .899 .993 .996 .995 .975 .999 .999 .999
(75.1) .854 960 .973 .964 .992 .993 .996 .994 .998 .999 .999 .999
T(E(? 960 .973 976 .974 .986 .992 .992 992 995 .997 .997 .997
(6.00) 972 974 976 .975 .992 992 .992 .993 .997 .997 .997 .997
Laplace(2,1) .936 .950 .951 .949 .973 .980 .978 .980 .988 .992 .990 .991
(3.00) 950 .951 .950 .949 .980 .981 .986 .980 .992 .992 .992 .991
T(? 984 .986 .984 .986 .996 .997 .996 .997 .999 .999 .999 .999
(1.50) 986 .986 .984 .986 .997 .997 .996 .997 .999 .999 .999 .999

NOTE: Entries are the estimated proportion of samples rgected in 100,000 simulated samples for Zs, Zh,
and Z6 test using z,,, and (z, +t, . ,)/ 2 critica points (first, and second numbers in column Zs, Zh, and

Z6) and chi-square and robust chi-square test (first and second) on the column ;(2 : ;(,2 .
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Table 7. Traditional Power Comparisons for Skewed Distribution Upper-Tailed Rejection Region

when o, =ko¢ , significance level 0.100, n = 40

Distribution k=1.0 k=20 k=3.0
(skewness) X2 .x? Zsz6  yt.x? Zs 26 yt.y? Zs 76
Welbull(1.0,0.5) 207 .07/8 .0/8 .464 .2/0 .272 .638 448 452
(6.62) 100 .077 .077 .307 .267 .269 488 446 448
Gamma(1.0,0.15) .245 .088 .089 .529 .318 .322 .694 500 .503
(5.16) 114 .087 .087 .361 .315 .318 542 497 500
1G(1.0,0.6) 229 .081 .083 .600 .403 .409 805 .666 .674
(3.87) 104 .079 .081 .440 .399 .406 696 .663 .670
Chi 62% 201 .085 .092 .789 .680 .695 959 930 .93
(2.00 .096 .083 .090 .698 .676 .692 936 .929 934

n = 40 (continued)
Distribution k=4.0 k=5.0 k=6.0
(skewness) Yx? zZs 26 oyt y’ Zs 26yt y? Zs Z6
Weibull(1.0,0.5) 749 585 589 822 .687 .691 870 762 .766
(6.62) 622 582 586 .717 .684 .688 .7188 .762 .763
Gamma(1.0,0.15) 7186 .628 631 .846 .715 .718 .883 776 .779
(5.16) 664 626 628 746 .713 .715 802 7714 776
| Gg1.0,0.6) 902 .818 .823 .948 .899 .903 971 942 944
(3.87) 837 816 .821 910 .898 .901 949 941 943
Chi(2) 992 986 .987 .998 .997 .997 100 999 .999
(2.00) 987 .985 .987 .997 .997 .997 999 999 999

NOTE: Entries arethe estimated proportion of samples rgjected in 100,000 simulated samples for Zs and
Z6 test using z,,, and (z, +t, . ,)/ 2 critical points (first, and second numbers in column Zs and Z6)

and chi-square and robust chi-square test (first and second) on the column ;(2 : ;(f .
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Table 7 (continued). Traditional Power Comparisons for Skewed Distribution Upper-Tailed
Reection Region when o, = kof , Significance level 0.100, n = 20

Distribution k=1.0 k=20 k=3.0

(skewness) Y x? zs 26 oyt y’ Zs 26yt y? Zs Z6
Welbull(1.0,0.5) A73  .080 .080 .3%4 218 220 .482 .336 .340
(6.62) 097 .078 .0/8 .245 214 215 .364 .332 .334
Gamma(1.0,0.15) 206 .092 .093 402 252 254 533 377 .380
(5.16) JA12 090 .090 .282 .248 249 408 372 .374
1G(1.0,0.6) 97 089 .091 457 310 317 .628 495 504
(3.87) J06 .086 .088 .335 .304 .310 519 489 497
Chi 62 183  .093 .103 .613 503 523 .833 .770 .785
(2.00 J03 090 .099 518 49 515 .780 .765 .779

n = 20 (continued)

Distribution k=4.0 k=5.0 k=6.0

(skewness) Yx? zs 26 oyt y’ Zs 26yt y? Zs Z6
Weibull(1.0,0.5) 578 439 443 646 516 521 699 577 .582
(6.62) 466 433 437 541 511 514 601 572 576
Gamma(1.0,0.15) 615 471 473 677 546 548 722 601 .604
(5.16) 502 466 467 574 541 542 627 597  .598
| Ggl.0,0.G) 741 634 643 816 731 739 .863 .797 .805
(3.87) 653 629 637 747 727 734 810 .794 .800
Chi %) 924 893 901 .964 949 953 .982 .973 .976
(2.00) 808 890 .897 951 947 951 974 972 975

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs and
Z6 test using z,,, and (z, +t, )/ 2 critical points (first, and second numbers in column Zs and Z6) and

chi-square and robust chi-square test (first and second) on the column ;(2 : ;(f .
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Table 8. Traditional Power Comparisons for Heavy-tail Upper-Tailed Reection Region
when o, = ko and significance level 0.100, n = 40

Distribution k=1.0 k=20 k=30

(kurtosis) Y2 x? Zs zh 26  y*,y>Zs Zh Z6 x2.x%2s zZh Z6
Barnes3 171 .066 .005 .065 432 312 116 .317 840 .827 .666 .846
(75.1) .088 .065 .004 .064 344 308 .113 .312 .836 .824 .659 .842
TéS) 159 .077 .053 .085 .863 .814 .768 .830 990 .985 .972 .987
(6.00) .086 .076 .052 .083 .820 .811 .765 .827 986 .985 .971 .987
Laplace(2,]) .178 .087 .067 .097 .857 .784 .736 .799 954 973 .958 .976
(3.00) .094 085 .066 .095 .793 .781 .733 .795 975 973 .958 .975
T(8) 141 .086 .073 .097 .916 .889 .873 .901 997 995 .993 .996
(1.50) .090 .084 .071 .095 .891 .887 .871 .899 995 1995 .993 .996

n = 40 (continued)

Distribution k=4.0 k=50 k=6.0

(kurtosis) Y2 x% Zs zh 26  y*,y*Zs Zh Z6 x2.x%2s zZh Z6
Barnes3 994 994 871 .995 1.00 1.00 .894 1.00 1.00 1.00 .907 1.00
(75.2) 994 993 .867 .995 100 1.00 .891 1.00 1.00 1.00 .903 1.00
T(E_(? 999 .999 .992 .999 100 1.00 .995 1.00 1.00 1.00 .996 1.00
(6.00) 999 999 .992 .999 100 1.00 .995 1.00 1.00 1.00 .996 1.00
Laplace(2,1) .998 .997 .992 .997 1.00 1.00 .997 1.00 1.00 1.00 .999 1.00
(3.00) 997 997 .992 .997 1.00 1.00 .997 1.00 1.00 1.00 .999 1.00
T(? 1.00 1.00 .999 1.00 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00
(1.50) 1.00 1.00 .999 1.00 100 1.00 .999 1.00 1.00 1.00 1.00 1.00

NOTE: Entries are the estimated proportion of samples rgected in 100,000 simulated samples for Zs, Zh, and
Z6testusing z,, and (z, +t, )/ 2 critical points (first, and second numbers in column Zs, Zh, and Z6) and

chi-square and robust chi-square test (first and second) on the column ;(2 : ;(f .
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Table 8 (continued) Traditional Power Comparisons for Heavy-tail Upper-Tailed Rejection Region
when o, = ko and significance level 0.100, n = 20

Distribution k=1.0 k=20 k=30

(kurtosis) Y2 x? Zs zh 26  y*,y>Zs Zh Z6 x2.x%2s zZh Z6
Barnes3 132 .063 .004 .062 287 .225 .062 .230 596 581 .425 .609
(75.1) .078 .062 .004 .059 .238 .220 .058 .223 588 572 .410 597
TgS) 143 .080 .050 .091 .678 .607 .519 .634 913 .885 .823 .898
(6.00) .086 .077 .047 .087 .614 .600 .508 .626 .888 .882 .815 .894
Laplace(2,]) .164 .090 061 .102 679 584 482 .609  .895 .852 .769 .864
(3.00) .096 .086 .058 .098 594 577 471 .600 .857 .848 .759 .860
T(8) 134 .087 .068 .102 741 690 .636 .717 945 929 .899 .938
(1.50) .090 .084 .065 .098 692 .682 .627 .710 931 .927 .894 .936

n = 20 (continued)

Distribution k=4.0 k=50 k=6.0
(kurtosis) Y2 x? Zs zh 26  y*,y>Zs Zh 26 x2.x%2s zZh Z6
. . . 925 . . . .987 997 996 .812 .997
(75.1) 910 904 .768 .921 .984 .983 .862 .987 996 .996 .886 .997
T(E(? 976 .967 .927 .972 993 990 .963 .991 998 .997 .976 .997
(6.00) 968 .966 .922 .970 990 .989 .959 .991 997 996 .973 .997
Laplace(2,1) .964 .947 .888 .952 986 .979 .940 .982 994 991 .963 .992
(3.00) 949 945 .881 .950 980 .978 .935 .981 992 991 .959 .992
T(? 988 .984 .967 .986 997 996 .986 .996 999 .999 992 .999
(1.50) .983 .983 .965 .985 996 .995 .984 .996 999 999 .991 .999

NOTE: Entries are the estimated proportion of samples rejected in 100,000 simulated samples for Zs, Zh,
and Z6 test using z,, and (z, +t,,,,)/2 critical points (first, and second numbers in column Zs, Zh, and

Z6) and chi-square and robust chi-square test (first and second) on the column ;(2 : ;(,2 .
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Table 9. Comparisonsof Typel Error Ratesamong Zs & Z6 when n=30
Skewed Distributions
Distribution «=0.10 «=0.05 «=0.02 «=0.01
(skewness) Zs Z6 Zs Z6 Zs Z6 Zs Z6
16(1.0,0.1) .0clo  .0/92 0049 .0454 Ua/o .02Z24 ‘030T .0138
(9.49) .0792 .0775 .0534 .0435 .0361 .0206 .0286 .0121
.0779 .0759 .0518 .0416 .0348 .0189 .0273 .0108
Weibull(1,0.5) .0802 .0804 .0517 .0437 .0305 .0184 .0234 .0110
(6.62) .0788 .0786 .0500 .0416 .0288 .0168 .0219 .0095
.0775 .0769 .0484 .0396 .0273 .0150 .0204 .0082
LN(0,1) 0722 .0729 .0447 .0381 .0256 .0158 .0197 .0091
(6.18) .0706 .0710 .0431 .0361 .0243 .0145 .0181 .0078
.0693 .0693 .0415 .0342 .0231 .0132 .0166 .0069
IGE)l.0,0.ZS) .0833 .0835 .0512 .0432 .0324 .0198 .0231 .0104
(6.00) .0818 .0816 .0494 .0409 .0305 .0181 .0214 .0091
.0802 .0797 .0478 .0388 .0290 .0164 .0198 .0079
Gamma(1,.15) .0877 .0890 .0538 .0472 .0298 .0200 .0212 .0110
(5.16) .0856 .0863 .0517 .0448 .0280 .0179 .0196 .0098
.0837 .0840 .0499 .0427 .0265 .0161 .0178 .0085
IG%l.0,0.S) .0828 .0864 .0503 .0447 .0264 .0175 .0182 .0101
(4.24) .0811 .0833 .0481 .0421 .0245 .0158 .0165 .0090
.0803 .0814 .0464 .0397 .0227 .0141 .0149 .0080
Chi(2) .0886 .0942 .0490 .0477 .0241 .0214 .0155 .0128
(2.83) .0864 .0915 .0468 .0453 .0221 .0193 .0138 .0115
.0843 .0890 .0448 .0430 .0203 .0176 .0126 .0102
Exp(1.0) .0880 .0970 .0463 .0486 .0229 .0226 .0145 .0141
(2.00) .0857 .0944 .0441 .0459 .0210 .0206 .0129 .0125
.0835 .0918 .0420 .0437 .0195 .0189 .0115 .0110
Chi(2) .0894 .0978 0472 .0494 .0233 .0230 .0146 .0140
(2.00) .0872 .0951 .0450 .0468 .0214 .0210 .0128 .0123
.0848 .0930 .0428 .0446 .0196 .0191 .0116 .0111
Barnes2 .0933 .1048 .0518 .0570 .0265 .0284 .0169 .0181
(1.75) .0912 .1022 .0497 .0546 .0245 .0262 .0151 .0161
.0891 .0995 .0474 .0520 .0225 .0240 .0136 .0145
1G(1.0,25.0) .0865 .1021 .0441 .0505 .0204 .0216 .0109 .0112
(0.60) .0841 .0990 .0418 .0478 .0185 .0198 .0098 .0094
.0816 .0963 .0398 .0452 .0168 .0178 .0087 .0081
Chi(24) .0868 .1017 .0420 .0483 .0187 .0202 .0110 .0109
(0.58) .0845 .0990 .0399 .0456 .0169 .0180 .0097 .0094
.0821 .0963 .0377 .0433 .0153 .0163 .0086 .0079

NOTE: Entries arethe estimated proportion of samples rgjected in 100,000 simulated samples for Zs and
Z6 test using z,,, (z, +t,,,)/2,and t, , critical points (first, second, and third numbers in column

Zsand Z6).
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Table 9 (continued). Comparisons of Typel Error Ratesamong Zs & Z6
when n=30 Heavy-tailed Distributions

Distribution «=0.10 «=0.05 «=0.02 «=0.01
(skewness) Zs 76 Zs Z6 Zs Z6 Zs Z6
Barness .0644  .063l 0390 .0305 .02l .0155 .0196  .0067
(75.2) .0630 .0613 .0379 .0286 .0249 .0121 .0186 .0056
.0615 .0596 .0367 .0270 .0238 .0108 .0175 .0047
T(5) .0795 .0887 .0385 .0388 .0170 .0144 .0103 .0075
(6.00) .0775 .0861 .0365 .0365 .0157 .0128 .0088 .0065
.0754 .0835 .0347 .0342 .0143 .0113 .0077 .0054
Barnesl 1014 1096 .0517 .0507 0234 .0191 .0146 .0107
(6.00) .0988 .1066 .0490 .0477 .0215 .0169 .0128 .0091
.0965 .1035 .0468 .0448 .0197 .0151 .0113 .0076
T(E(? .0823 .0932 .0407 .0431 .0180 .0170 .0102 .0088
(3.00) .0799 .0903 .0385 .0404 .0163 .0151 .0089 .0075
.0777 .0875 .0365 .0381 0148 .0134 .0078 .0062
Laplace(2,1) .0879 .0911 .0444 .0474 .0203 .0199 .0124 .0113
(3.00) .0857 .0893 .0423 .0448 .0186 .0179 .0108 .0098
.0836 .0879 .0401 .0422 .0170 .0161 .0096 .0084
JIB(4.0,1.0) .0894 .1045 .0455 .0516 .0203 .0212 0117 .0114
(0.78) .0872 .1008 .0431 .0490 .0185 .0193 .0103 .0099
.0851 .0979 .0409 .0461 .0168 .0172 .0092 .0083
T(16) .0882 .1035 .0441 .0504 .0195 .0205 .0112 .0107
(0.50) .0859 .1007 .0417 .0476 0179 .0184 .0099 .0092
.0836 .0977 .0397 .0450 .0160 .0165 .0087 .0078
JIB(1.25,0.5) .0895 .1059 .0441 .0518 .0190 .0203 0116 .0114
(0.29) .0856 .1017 .0419 .0486 .0172 .0183 .0100 .0098
.0827 .0988 .0398 .0459 .0156 .0163 .0087 .0081
T(32) .0884 .1049 .0436 .0501 .0186 .0196 .0107 .0103
(0.212) .0859 .1019 .0415 .0476 .0169 .0175 .0093 .0086
.0834 .0992 .0391 .0452 .0151 .0157 .0083 .0074
JIB(2.0,0.5) .0769 .0943 .0350 .0408 .0131 .0131 .0067 .0055
(-0.30) .0743 .0903 .0327 .0382 .0117 .0113 .0059 .0044
.0705 .0868 .0306 .0355 .0105 .0098 .0049 .0034

NOTE: Entries arethe estimated proportion of samples rgjected in 100,000 simulated samples for Zs and
Z6 test using z,,, (z, +t,,,)/2,and t, , critical points (first, second, and third numbers in column
Zsand Z6).
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Conclusion

This study proposed a new right-tailed test of the
variance of non-normal distributions. The test is
adapted from Hall's inverse Edgeworth
expansion for variance (1992) with the purpose
to find a new test with fewer restrictions from
assumptions and no need for the knowledge of
the distribution type. To this end, the study
compared Type | eror rates and power of
previously known tests to its own.

Of the previous tests and six new tests
examined by the study, Z6 had the best
performance for right-tailed tests. The Z6 test

outperformsthe y? test by far while performing

much better than the y’ test on skewed

distributions and better with heavy-tailed
distributions. The Z6 test does not need the
original assumptions for the Zs test that the
coefficient of skewness of the parent distribution

is greater than V2 or that the distribution is
skewed.

Additionally, the Z6 test performs better
overall than the Zs test since Zs performs poorly
with smaller alpha levels. Test Z6, unlike Zh,
does not need the original assumptions that the
population coefficient of skewness is zero in the
heavy-tailed distribution or that the distribution
is heavy-tailed. Also, the Z6 test performs better
for skewed distributions than the Zh test, which
has low power at lower aphas. Finally, when
considering the Type | eror rates, both
distribution types, and power, the Z6 test is the
best in performance overall. The Z6 test can be
used for both types of distributions with good
power performance and superior Type | error
rates. Therefore, the Z6 test is a good choice for
right-tailed tests of variance with non-normal
distributions
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