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Using Scale Mixtures Of Normals To Model Continuously Compounded Returns  
 

                         Hasan Hamdan                                                           John Nolan                                               
Department of Mathematics and Statistics                     Department of Mathematics and Statistics 

                  James Madison University                                                    American University 
 

                         Melanie Wilson                              Kristen Dardia 
                 Department of Mathematics           Department of Mathematics and Statistics 
                         Allegheny College       James Madison University 
 
 
A new method for estimating the parameters of scale mixtures of normals (SMN) is introduced and 
evaluated. The new method is called UNMIX and is based on minimizing the weighted square distance 
between exact values of the density of the scale mixture and estimated values using kernel smoothing 
techniques over a specified grid of x-values and a grid of potential scale values. Applications of the 
method are made in modeling the continuously compounded return, CCR, of stock prices. Modeling this 
ratio with UNMIX proves promising in comparison with other existing techniques that use only one 
normal component, or those that use more than one component based on the EM algorithm as the method 
of estimation. 
 
Key words: Expectation-Maximization algorithm, UNMIX, kernel density smoothing, expected return 
 
 

Introduction 
 
The study of univariate scale mixtures of 
normals, SMN, has long been of interest to 
statisticians continuously hunting for better 
methods to model probability density functions. 
Modeling using these mixtures has many 
applications from genetics and medicine to 
economic and populations studies. More 
specifically, one can use SMN to model any data 
that is seemingly normally distributed and has a 
high kurtosis. Using SMN allows for the tails of 
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the density to be heavier than those in the 
normal density, giving a better coverage for data 
that varies greatly from the mean. 
 The most common estimation of the 
parameters of the mixtures is the EM algorithm 
of by Dempster, Larid, and Rubin (1977). This 
method is based on finding the maximum 
likelihood estimate of the parameters of a given 
data set. The EM algorithm performs well in 
cases where the distance between means of the 
components is relatively large. However, when 
estimating the parameters of a mixture of 
normals where all of the components have the 
same mean but different variances, the EM 
algorithm gives a poor estimation when these 
variances are small and close.  

In this article, we elaborate on a new 
approach of estimation, UNMIX, proposed by 
Hamdan and Nolan (2004). The UNMIX 
program uses kernel smoothing techniques to get 
an empirical estimate of the density of the data. 
It then estimates the parameters of the mixture 
based on minimizing the weighted least squares 
of the distance between the values from the 
empirical density and the new scale mixture 
density over a pre-specified grid of x-values, and  
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potential grid of σ values called r-grid. The 
UNMIX method will be used to estimate the 
density of the continuously compound return, 
CCR. The estimation of the density function is 
pertinent to knowing the probability that the 
closing stock price will stay within a certain 
interval during a given time period. The density 
function was first estimated simply by using a 
normal curve.  

However, Mandelbrot (1963) and Fama 
(1965) showed that the normal estimation did 
not model market returns appropriately due to 
the excess kurtosis and volatility clustering that 
characterize returns in financial markets. Clark 
(1973) then tested the use of the lognormal 
distribution to estimate the density of the stock 
returns. This is analogous to using the normal 
distribution to estimate the density of the natural 
log of the stock returns (also called the 
continuously compounded return). Following 
Clark’s estimation, Epps and Epps (1976) found 
that a better estimation is obtained when using a 
mixture of distributions.  

However, their assumption used the 
transaction volume as the mixing variable thus 
introducing excess error. Another popular 
method evolved recently when Zangari (1996), 
Wilson (1998), and Glasserman, Heidelberger 
and Shahabuddin (2000), used the multivariate t 
distribution to estimate the stock return. 
Unfortunately, Glasserman, Heidelberger, and 
Shahabuddin (2000), pointed out that since most 
stock returns have equally fat tails, this model 
frequently comes up short. Additionally, the 
method involves solving non-linear equations to 
derive a numerical approximation of an input 
covariance matrix and requires the consuming 
and difficult job of inverting marginal 
distributions.  

As proposed by Clark (1973) and Epps 
and Epps (1976), we look deeper into modeling 
the CCR (the natural log of the stock returns), 
we find that modeling the distribution using a 
simple normal curve should be avoided due to 
the fact that the CCR of most stock prices are 
mound shaped but have a high kurtosis (also 
known as a high volatility). Therefore, these 
ratios can be modeled using a SMN with mean 
zero, since the mean of the CCR of the prices is 
close to zero. A brief explanation of the concept 
of a random variable X having a density 

function of the form of a SMN is introduced in 
Section 2. Next, in Section 3, techniques of 
estimation of SMN are listed and brief 
background on the common EM algorithm is 
also presented. In Section 4, the density of CCR 
is estimated for different stocks with SMN using 
the UNMIX program and using a single normal. 
Also, the density is also estimated using the EM 
algorithm and the results are compared. Finally, 
some suggestions for improving this method are 
made in the conclusion section. 
 

Methodology 
 
A random variable X  is a scale mixture of 

normals or SMN if AZX
d

= , where Z ∼ N(0,1), 

A > 0, A  and Z  independent. Here N(0,1) is 
the standard normal variable with mean 0 and 
standard deviation 1.  Therefore, X  has a 
probability density function  
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where φ  is the standard normal density and the 

mixing measure π  is the distribution of A .   

An SMN can either be an infinite or a 
finite mixture, depending upon the mixing 
measure π. If our mixing measure is discrete and 
A  takes on a finite number of values, say 

mσσ ,...,1 with respective probabilities 

mππ ,...,1 then the probability density function 

can be rewritten as 
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A common finite mixture, called the 
contaminated normal, occurs when A  takes on 
two values, with 21 σσ <  and 21 ππ > . In this 
case our density function can be simplified to  

( ) )/(1)/()( 2111 σφπσφπ xxxf −+= . 
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Some common examples of infinite SMN are the 
Generalized t distribution, Exponential power 
family, and Sub-Gaussian distributions. The 
following theorem gives the characteristics 
necessary for a distribution to be SMN with 
mean zero.  

Theorem: (Schoenberg, 1938) Given 
any random variable X  with density )(xf , X  
is a scale mixture of normals if and only if 

( )xfxh =)(  is a completely monotone 
function. See Feller (1971) for definition of 
completely monotone function. As we have seen 
above when A  takes on a finite number of 
values, the density of X  can be written more 
simply in the same manner as equation (2). 
When π is not concentrated at a finite number of 
points, Hamdan and Nolan (2004) give a 
constructive method on how to discretize π so 
that equation (2) is uniformly close to equation 
(1).     
 
Estimating Scale Mixtures of Normals 

 In estimating SMN one needs to find the 
following: number of components, estimated 
parameters of each component, and estimated 
weights of each component. We highlight some 
of the important developments in this area.  

This problem of estimating SMN has 
been the subject of a large diverse body of 
literature. Dempster, Larid, and Rubin (1977) 
introduced the EM algorithm for approximating 
the maximum likelihood estimates. Because 
other methods have been developed based on the 
EM algorithm. A robust powerful approach 
based on minimizing distance estimation is 
analyzed by Beran (1977) and Donoho and Liu 
(1988). Zhang (1990) used Fourier methods to 
derive kernel estimators and provided lower and 
upper bounds for the optimal rate of 
convergence. Priebe (1994) developed a 
nonparametric maximum likelihood technique 
from related methods of kernel estimation and 
finite mixtures.  
 
EM algorithm 
 The EM algorithm developed by 
Dempster, Larid, and Rubin (1977), is based on 
finding the maximum likelihood estimate of the 
components, parameters, and weights of a 

mixture of normals. It should be noted that 
though we will only use the EM algorithm for a 
mixture of normals, it can be generalized for 
other mixtures. However, differentiation 
problems become more complicated in the M 
step of the algorithm for non-normal mixtures. 
The EM algorithm does not assume that we are 
dealing with SMN and allows each density 
function to have a different mean. Therefore, 
given the data points, nxx ,...,1 , from the finite 

normal mixture of k components  

j
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j j
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the data are completed by letting each ix  

correspond to a iy . The new iy is a vector 

giving the initial value ix  and also a sequence of 

values kzz ,...,1  which tells the location of the 

x  value as follows:  

1

ij

if  is generated  by 
1

the jth component;

0 otherwise

( , ,..., ) 
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i

i i i ik

x
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⎪⎩

 

Therefore the only missing values are the labels, 

iki zz ,...,1 . Next the maximum likelihood 

estimate of each iy  is found in the in the 

Expectation Step of the EM algorithm. An initial 
guesses for the parameters 

         kkk σσµµππ ˆ,...,ˆ,ˆ,...,ˆ,ˆ,...,ˆ 111  

are taken. Then an estimate of probability of 
category membership of the ith observation, 
conditional on ix  is found based on using the 

parameter estimate 

( )kkk σσµµππ ˆ,...,ˆ,ˆ,...,ˆ,ˆ,...,ˆ 111 . 

This estimation is noted by  
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 The next step is to compute the 
weighted means and variances in the 
Maximization Step of the EM algorithm for 
mixtures of normals. Then the E and the M steps 
are iterated until the parameters converge, and 
the final values are used as the parameters 
estimates of the mixture of normals. The EM 
algorithm works well in modeling SMN where 
the variance of the components are relatively 
large, but as the variances approach zero, the 
algorithm shows a poor performance. In general, 
as shown in many simulation studies, when the 
components are not well-separated, estimation 
based on maximum likelihood is poor (Dick & 
Bowden, 1973). 

There are also many practical 
difficulties in estimating SMN using the EM. 
Some of these are computationally difficult and 
intractable. For example, when the MLE of the 
mixing measure in the finite case is found, a 
large local maxima might be found that occurs 
as a consequence of a fitted component having a 
very small (but nonzero) variance. Moreover, it 
is not clear how to initialize the estimates, 
especially when the mixture is a scale mixture. 
Though, methods have recently been developed 
by Biernacki, Celeux, & Govaert (2003) in order 
to find the most efficient initializing conditions. 
Another key problem in finite mixture models is 
determining the number of components in the 
mixture. Several criteria based on the penalized 
log-likelihood, such as Akaike Information 
Criterion, AIC, the Bayesian Information 
Criterion, BIC, and the Information Complexity 
Criterion introduced by Bozdogan (1993), have 
been used.   
 
UNMIX  

The next approach, UNMIX, uses kernel 
smoothing techniques to estimate the empirical 
density of a sample. It then minimizes the 
weighted square distance between the kernel 
smoothing estimate and the density computed by 

discretizing the mixture over a pre-specified grid 
of x-values and potential grid of sigma values. 
Given a sample of size n from the mixture, we 
fix a grid of possible sigma values (called the 
σ -grid), and possible x values (called the x-
grid), kxx ...1  , where .mk ≤   

  In order to obtain an estimate 

)( of )(ˆ xfxf for each x  in the x -grid, we use 
kernel smoothing techniques discussed briefly at 
the end of the section. Our model is  

( ) ijji

m
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where iε  are independent with mean 0. That is 

solved for jπ  by minimizing  
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with ( )ji
j

ij x σφ
σ

φ /
1=  and iw are weights. We 

will use iw =1 throughout. However, if the data 

are heavy-tailed then one can try different 
weights until he finds a good fit (in the heavy-
tailed case, a good strategy might be weighting 
the points that are close to the mean of the x-grid 
less than those that are far from the mean of the 
x-grid. Next consider the problem as a quadratic 
programming problem with two constraints: 

1=∑ jπ  and 0≥jπ  for all j. Expanding 

)(πS : 
 

( )( )

2

2 2 2

1 1 1

2

2 2
1

1 1 1 1 1

2 2
1

1 1 1

1 1 1

( ) 2 ;

2 ;

2

.

k m k

i i i i ij j i ij j
i j j

k k k k k

i i i ij j ij j
i i j i j

k m k

i i i ij j
i j j

k m m

j ij j i il l
i j j

S w y w y w

w y w y

w y w y

w w

π φ π φ π

φ π φ π

φ π

φ π φ π

= = =

= = = = =

= = =

= = =

⎡ ⎤⎛ ⎞
⎢ ⎥= − + ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞
= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

+

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑∑∑

 



MIXTURES TO MODEL CONTINUOUSLY COMPOUNDED RETURNS 218 

Because 2

1

2
1 i

k

i

yw∑
=

 is independent of π , it is a 

constant. Reformulating the problem in a matrix 
environment, we let g  be the ( )1×m vector 
defined as  

          ,,......,
1 1
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To simplify, let ∑ =
= k

i ii ywc
1

22

2

1
 be a 

constant, resulting in the following formula for 
)(πS : 
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Therefore π  can be found by minimizing 
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2

1
 subject to our two quadratic 

programming constraints 1
1

=∑ =

m

j jπ  and 

0≥jπ , this latter constraint can be rewritten in 

matrix form as b≥πA  where 
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of order ( )mm ×  and )00( �=Tb  of order 

( )1×m  . A quadratic programming routine, 
QPSOLVE which is a Fortran subroutine, is 
used to solve this problem. UNMIX is a Splus 
program that takes the sample, x-grid, r-grid, 
and a vector of weights as the input and calls 

QPSOLVE. The program’s output is a vector of 
estimated weights over the given r-grid.  

In obtaining an estimate for ),(xf  
kernel smoothing techniques were used. One 
important variable in density estimates using 
kernel smoothing techniques is the bandwidth. 
In general, using a large bandwidth over-
smoothes the density curve, and small 
bandwidths can under-smooth the density curve. 
In essence, the bandwidth controls how wide the 
kernel function is spread about the point of 
interest. If there are a large number of values, ix  

near x , then the weight of x  is relatively large 
and the estimation of the density at x  will also 
be large.  
 There are four sources of variability 
involved when using UNMIX to estimate a 
SMN. The first is the sampling variability, the 
second is due to the method of density 
estimation and bandwidth used. The third 
variability is the choice of the x-grid and finally, 
the fourth is the choice of the r-grid.  

Controlling sampling variability can be 
done by increasing the sample size. However, 
controlling the variability introduced by the 
method of density estimation requires care and 
investigation of the sample and bandwidth used. 
For example, we can weight the observations by 
using their distance from the center. There is 
considerable literature on how to pick the most 
effective bandwidth including articles by Hardle 
and Marron (1985) and Muller (1985). For the 
purposes of this article, when using the UNMIX 
program, the default bandwidth based on the 
literature given in R-Software is used.  

UNMIX performs well for estimating 
distributions with a high kurtosis but losses 
accuracy for data that is extremely concentrated 
about the mean. However, these difficulties can 
be overcome due to the flexibility of the 
program in terms of fitting the data. In 
particular, the r-grid can be changed and the 
weights interactively in a systematic way until a 
good fit is found. We have found that the most 
useful x-grid is evenly distributed and 
symmetric about the mode, where the distance 
from the mode on both sides is the absolute 
maximum of the sample data because the mode 
is 0 in this case. This allows the x-grid to cover 
all data points. Also in creating the σ -grid, a 
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simple guideline is to make it evenly distributed 
from a point close to zero to a point at least three 
sample standard deviations away from zero. This 
again allows for the σ -grid to cover a large 
percentage of potential sigma values no matter 
what the original distribution of sigma is. Here, 
we assume that the values in the x-grid and the 
σ -grid are the only possible values for each x  
and ,σ therefore it is important to pick them 
within in the range of the sample. 
 

Results 
 
Estimating the density of stock returns has been 
important to statisticians and those interested in 
finance since the stock market opened. Fama 
(1965) and many others model stock prices 
based on simple random walk assumption. In 
other words the actual price of a stock will be a 
good estimate of its intrinsic value. The standard 
assumption is that the percentage changes in the 
stock price in a short period of time are normally 
distributed with parameters µ, expected return of 
the stock, and σ which is the volatility of the 
stock price. The expected return is estimated by  

∑ =
= n

i ix
n

x
1

1
and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

−1

ln
i

i
i S

S
x , where TS is 

the current stock price. Therefore, the 1 period 
volatility is estimated by 
 

                    ( )∑ =
−

−
n

i i xx
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2

1

1
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 The continuously compounded return, 
CCR, can now be estimated as follows with 

τ−TS  as the stock price τ  time units earlier: 

               ( )[ ]τστσµφ
τ

,2/~ln 2−⎟⎟
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⎞
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−T

T

S

S
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Comparing Normal Estimate to UNMIX 
Estimate 

We now estimate and compare the 
density of the CCR using a single normal curve 
and a scale mixture of normals. Taking 
advantage of Yahoo’s (an internet search 
engine) intensive finance sources, three stocks 
were found whose price quotes showed 

relatively high volatility: Ciber Inc, 
ExxonMobil, and Continental Airlines. For each 
of the stocks, we sampled the weekly closing 
prices over the past four years, from July 14, 
2000 to July 14, 2004. The natural log of the 
return was taken to find the CCR for each stock.  
 Modeling with the single normal method 
described above and the UNMIX program, their 
performances were compared against the 
empirical density found using kernel smoothing 
techniques. The empirical density is then used to 
estimate the density over an x-grid of 51 
equally-spaced points between -4S and 4S, 
where S is the sample standard deviation. 
Because the empirical density can be made very 
close to the true density at any given point, it is 
considered as the true density in each of the 
following error calculations which are presented 
in Table 1, Table 2 and Table 3.  

Example 1: In this example, the density 
of the CCR, of Ciber Inc. stock, is estimated. 
The normal estimate based on the random walk 
assumption has a mean of -.00686 and standard 
deviation of .09041. The estimated SMN was 
found using the UNMIX program and has 4 
components with weight vector of 
(.52951,.07374,.39415,.00260) and an estimated 
σ-vector of (.12266,.06048,.03885,.03750). The 
estimated densities were evaluated on the same 
x-grid and the results are shown in Figure 1.  

The maximum and average error 
between each estimate and the empirical density 
can be seen in Table 1. In Figure 2, the three 
density estimates were found for an x-grid 
located in the tail of distribution of CCR and it 
consists 25 equally-spaced points between .2 and 
.45. Using the normal assumption, the 
probability of any sample point falling in such 
range is approximately .012 and approximately 
.035 when the scale mixture assumption is used. 
Though this probability is not high, most density 
estimation techniques do not recover the tails 
well where the most extreme occurrences can be 
found. This could be very problematic in finance 
and risk analysis. 
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Notice in Figure 2 that estimating with 

SMN produces a better fit in the tails. In contrast 
to overestimating the rate of return in the body, 
where around 95% of the data are located, the 
normal curve tends to underestimate the density 
in the tails. As in our examples, the distributions 
for the CCR tend to have fatter tails than the 
proposed normal has. Because the tails of the 
data are heavy, the scale mixture estimation will 
produce a better fit than the normal. 

 
 
 

 
Under the single normal assumption, the 

95% confidence interval for the mean of the 
CCR is (-.1767, .1767). Equivalently and by 
exponentiation, the interval for the mean rate of 
return is (.8381, 1.1933). The corresponding 
UNMIX estimate is found to be (.8469, 1.1808).  
In comparison to UNMIX, the normal curve 
tends to overestimate the rate of return in the 
body of the density. Though the gap does not 
seem large when investing a small amount, for 

Figure 1: Estimated Density of CCR for Ciber Inc stock. 
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Figure 2: Estimated Density in the right tail of CCR of Ciber Inc. 
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big time investors 1 penny off per dollar can 
translate to thousands of dollars lost when 
investing millions. In Table 4, we summarize the 
bounds for the middle 95% probability of the 
distribution for all three examples.  
 

Examples 2 & 3: In these two examples, 
estimate the densities for the CCR of 
ExxonMobil and Continental Airline stocks are 
found based on a single normal and using 
UNMIX. The single normal and UNMIX 
estimates are plotted against the empirical 
density, as described in the previous example, 
the results are shown in Figure 3 and Figure 4 
respectively. The single normal for the 
ExxonMobil case has an estimated mean of 
.000248 and an estimated standard σ of 0.038. 
The scale mixture for the ExxonMobile case has 
4 components with a weight vector of 
(.04734,.47208,.4412,.03938) and the 
corresponding estimated σ-vector of 
(.091,.02587,.02542,.01276). 

However, the single normal for the 
Continental Airline case has an estimated mean 
of -0.0076 and an estimated σ of 0.0930. Finally, 
the scale mixture for the Continental Airline 
case has 5 components with a weight vector of 
(.07006,.01495,.44468,.32486,.14544) and the 
corresponding estimated σ-vector of 
(.24215,.24074,.08372,.08232,.02343).  

Notice in Figures 3 and 5 the empirical 
density tends to be negatively skewed. This is 
common in the densities of CCR since there is a 
greater probability of the stock market to 
produce large downward movements than large 
upward movements. This can be explained by 
the public’s tendency to pull-out of a falling 
market thus causing prices to drop even further. 

In the following tables, the maximum 
absolute difference between the empirical 
density and the estimated density over the 
selected grid using a single normal is indicated 
by Max. Norm., and the average value is 
indicated by Avg. Norm. Similarly, Max. 
UNMIX and Avg. UNMIX are the 
corresponding values when a scale mixture, with 
UNMIX as a method of estimation, is used 
rather than one single normal as a model for 
CCR. 

 
 

Next, the performance of the UNMIX 
method is compared to the EM algorithm in 
estimating the density of the CCR of the same 
three stocks. The number of components to be 
used with the EM is also unknown, and there are 
many ways that can be used to estimate it. Here, 
we tried two, three, four and five component 
mixture. 

There was no noticeable difference 
between the four-component mixture and the 
five-component mixture. Therefore, the four-
component mixture was used for our examples. 
The parameters were then estimated using the 
EM algorithm and it was compared to that found 
using the UNMIX estimation. The initialization 
of the parameters was somewhat arbitrary 
because our goal is to find the best density fit 
and not to investigate the speed or the 
convergence of these estimation methods. The 
π’s were initialized such that each component 
has an equal weight of .25, and the µ’s were 
initialized such that = the mean of the sample, 

1µ  and 432  and , µµµ = .2,.4, and .8 times the 

mean of the sample respectively. 
Then, the σ’s were initialized for each 

component in the same manner as the µ’s. For 
each of the three examples, the process was 
repeated 50 times and the mean of the parameter 
estimate was taken as the final EM estimate. The 
estimated densities of the stocks are shown in 
Figure 7.  

Notice that the EM estimate tends to 
overestimate the mean of the empirical density 
which is a consequence of the fitted component 
having a very small variance. The EM captures 
the skewness of the density better but in general, 
UNMIX outperforms it. This is seen by the fact 
that in the three examples, the EM algorithm 
produces both a greater maximum and average 
error as summarized in Table 5. 
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Figure 3: Estimated Density of CCR for Exxon Mobile stock. 
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Figure 4: Estimated Density of CCR in the right tail of Exxon Mobile stock.  
Probability of being in the tail is approximately .0372. 
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Figure 5: Estimated Density of CCR for Continental Airline. 
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Figure 6: Estimated Density in the right tail of CCR for Continental Airlines stock. 
Probability of being in this tail is .0186. 
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Table 1: Maximum and average errors of the Normal and UNMIX estimates of CCR for Ciber Inc. 

 
      Error              Body. Den.        Tail Den. 
Max. Norm.           1.6440             .2630 
Max. UNMIX         .7874              .1188 
Avg. Norm.             .3645              .0499 
Avg. UNMIX          .1559              .0203 

 
Table 2: Maximum and average errors of the Normal and UNMIX estimates of CCR 

for ExxonMobile stock. 
 

              Error            Body. Den.        Tail Den. 
Max. Norm.           1.9545             1 .0582 
Max. UNMIX        1.7341                .4712        
Avg. Norm.             .5838                .2268 

     Avg. UNMIX          .4015               .1283       
 

Table 3: Maximum and average errors of the Normal and UNMIX estimates 
of CCR for Continental Airline stock. 

 
         Error                  Body. Den.        Tail Den. 

Max. Norm.              1.3104            .1897 
Max. UNMIX            .8375             .1410          
Avg. Norm.              .26911             .0699 
Avg. UNMIX           .02090            .0579    
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Table 4: Bounds for the middle 95% probability of the distribution for the CCR of Ciber Inc., 

ExxonMobil, and Continental Airlines in both the normal and UNMIX estimates. 
 

  Stock                     Normal                     UNIMIX 
Ciber Inc.           (.8381, 1.1933)       (.8469, 1.1808) 
ExxonMobile     (.9428,1.0607)        (.9462, 1.0569) 
Continental         (.8334, 1.200)         (.8416, 1.1882) 

 
Figure 7: Estimated Density of CCR using the UNMIX program and the 

EM algorithm for (a) Ciber Inc.; (b) ExxonMobil; (c) Continental Airlines. 
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Conclusion 
 
Estimation of the CCR of stocks has been an 
interest of both statisticians and financiers due to 
the importance of producing accurate models for 
the data. As evidenced by the previous 
examples, UNMIX allows for this analysis to 
occur with smaller error in comparison to the 
single normal assumption and the common 
methods based on the EM algorithm.  

Although the EM algorithm is well 
developed and allows for different location and 
different scales, sometimes it has some practical 
difficulties. For example, when trying to find the 
MLE of the parameters, it might find a large 
local maxima that occurs as a consequences of a 
fitted component having a very small (but non-
zero) variance. Also, there are still some 
problems associated with initializing the 
parameters including the number of components. 

However, UNMIX fitted the data better 
than the EM. We believe that it will always fit 
the data well, because it is based on minimizing 
the weighted distance between empirical density 
and the mixture over a given grid. However, in 
terms of estimating the actual parameters, more 
work needs to be done because the EM still does 
a better job in estimating the actual values as we 
have seen in many simulated examples where 
the actual mixtures are known.  

Here are some areas where we can 
improve UNMIX. First, make it most applicable 
is the possibility of handling not only scale, but 
location conditions. Also improvements to the 
program  can be  made by developing guidelines  
 

 
 

 
 
to choose the most optimal x-grid and r-grid. 
Finally, we can improve the empirical density 
estimate by using optimal kernel functions and 
bandwidths. Implications of the UNMIX 
program can apply beyond the scope of the stock 
market. This program can be used to model 
distributions with relatively high possibilities of 
outlying events. Staying in the realm of finance 
the program can be used to estimate exchange 
rates.  

However, there are also many examples 
outside of the finance field including fitting 
extreme data. For example, the UNMIX 
program was used to fit the density of some 
heavy-tailed data. These data were generated 
from the class of stable densities that have 
infinite variance and known to be infinite 
variance mixture of normals such as Cauchy 
density. Although more work needs to be done, 
but the UNMIX method looks promising in 
fitting such data. 
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