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Enhancing The Performance Of A Short Run Multivariate Control Chart  
For The Process Mean 

 
Michael B.C. Khoo            T. F. Ng 

School of Mathematical Sciences 
Universiti Sains, Malaysia 

 
 
Short run production is becoming more important in manufacturing industries as a result of increased 
emphasis on just-in-time (JIT) techniques, job shop settings and synchronous manufacturing. Short run 
production or more commonly short run is characterized by an environment where the run of a process is 
short. To meet these new challenges and requirements, numerous univariate and multivariate control 
charts for short run have been proposed. In this article, an approach of improving the performance of a 
short run multivariate chart for individual measurements will be proposed. The new chart is based on a 
robust estimator of process dispersion. 
 
Key words: Short run, process mean, process dispersion, quality characteristic, in-control, out-of-control  
 
 

Introduction 
 

Let nX  = ( )′npnn XXX ,...,, 21  denotes the p × 1 

vector of quality characteristics made on a part. 
Assume that nX , n = 1, 2, …, are independent 
and identically distributed (i.i.d.) multivariate 
normal, ( )Σµ,pN , observations where njX  is 

the observation on variable (quality 
characteristic) j at time n. Define the estimated 
mean vector obtained from a sequence of 

nXXX ,...,, 21  random multivariate observations 

as nX  = ( )′pXXX ,...,, 21  where 

nXX
n

i
ijj ∑

=

=
1

 is the estimated mean for 

variable j made from the first n observations. 
Table 1 gives the additional notations that are 
required in the article. 
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The following four cases (see Khoo & 
Quah, 2002) of µ and Σ known and unknown 
give the standard normal V statistics for the short 
run multivariate chart based on individual 
measurements: Because V statistics follow a 
standard normal distribution, this feature makes 
it suitable for the limits of the chart to be based 
on the 1-of-1, 3-of-3, 4-of-5 and EWMA tests 
which will be discussed in the later section. 
 
Case KK: ,, 00 ΣΣµµ == both known 

       =2
nT  ( 0µ−nX )′ )( 0

1
0 µΣ −−

nX    
and 
       )},({ 21

npn THV −Φ= n = 1, 2, … 

             (1) 
 
Case UK: µ  unknown, 0ΣΣ =  known     

                 =2
nT  ( 1−− nn XX )′ )( 1

1
0 −
− − nn XXΣ   

and 

     ,
1 21

⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −
Φ= −

npn T
n

n
HV n = 2, 3, … 

                         (2) 
Case KU: 0µµ =  known, Σ  unknown 

                     =2
nT  ( 0µ−nX )′ )( 0

1
1,0 µ−−

− nn XS   
where       

      =nS ,0 n

1
∑

=

−−
n

i
ii XX

1
00 )(( µµ )′ 
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and 

,
)1(

2
,

1

⎪⎭

⎪
⎬
⎫
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⎪
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−
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−
npnpn T

np

pn
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n = p + 1, p + 2, … 
(3) 

 
Case UU: µ and Σ both unknown 
  

=2
nT  ( 1−− nn XX )′ )( 1

1
1 −

−
− − nnn XXS  

 
where  
 

          =nS
1

1

−n ∑
=

−−
n

i
nini XXXX

1

)(( )′ 

and 
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)2(

)1)(1( 2
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nnp
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             n = p + 2, p + 3, …                                                 
(4) 

 
In Eq. (1) – (4), p represents the number of 
quality characteristics that are monitored 
simultaneously, i.e., p ≥ 2. 

 
 
 

 
 

 
 
 
 

 
Enhanced Short Run Multivariate Control Chart 
for Individual Measurements 
 The short run multivariate chart 
statistics in Eq. (1) and (2) are based on the 
known covariance matrix while that of Eq. (3) 
and (4) are based on the estimated covariance 
matrix, a.k.a., the sample covariance matrix. It is 
shown in Ref. 1 that the performance of the 
chart based on the V statistics in Eq. (3) and (4) 
are inferior to that of cases KK and UK in Eq. 
(1) and (2) respectively.  

Thus, in this article an approach to 
enhance the performance of the short run 
multivariate chart for cases KU and UU is 
proposed by replacing the estimators of the 
process dispersion, i.e., nS ,0  and nS  in Eq. (3) 

and (4) respectively with a robust estimator of 
scale based on a modified mean square 
successive difference (MSSD) approach. 
Holmes and Mergen (1993) and Seber (1984) 
provided discussion about the MSSD approach. 
The new estimator of the process dispersion is 
denoted by MSSDS  while the new V statistic is 

represented by .MSSDV   
 

 
 
 
 
 

 
 
 
 

 
Table 1. Notations for Cumulative Distribution Functions. 

(.)Φ      - The standard normal cumulative distribution function 

(.)1−Φ   - The inverse of the standard normal cumulative distribution   
                function 

(.)vH    - The chi-squared cumulative distribution function with v   
                degrees of freedom 

(.)
21,vvF -  The Snedecor-F cumulative distribution function with ),( 21 vv   

                 degrees of freedom   
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The following formulas give the new 
standard normal MSSDV  statistics for cases KU 
and UU: Note that all the notations which are 
used here are similar to that defined in the 
previous section. 
 
Case KU: 0µµ =  known, Σ  unknown 
For odd numbered observations, i.e., n, is an odd 
number, 
 

       2
MSSD,nT  = ( ) ( )0

1
1,MSSD0 µµ −′− −

− nnn XSX  
where 
      

( )( )∑
−

=
−−−

′−−=
1

2,4,6
111MSSD, 2

1 n

i
iiiin XXXXS  

and  
      =nVMSSD,  

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ +−Φ
+−

− 2
,MSSD12,

1

2

12
2
1 npnp

T
p

pn
F ,   n = 2p + 

1, 2p + 3, …     
           (5a) 
For even numbered observations, i.e., n, is an 
even number, 

         2
MSSD,nT  = ( ) ( )0

1
2,MSSD0 µµ −′− −

− nnn XSX  
where 
      

( )( )∑
−

=
−−−

′−−=
2

6,4,2
112MSSD, 2

1 n

i
iiiin XXXXS  

and 
      =nVMSSD,  

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡ −Φ
−

− 2
,MSSD2,

1

2

2
2
1 npnp

T
p

pn
F ,   n = 2p + 2, 2p 

+ 4, …  
(5b) 

 
Case UU: µ and Σ both unknown 
For odd numbered observations, i.e., n, is an odd 
number, 

2
MSSD,nT  = ( ) ( )1

1
1,MSSD1 −

−
−− −′− nnnnn XXSXX  

 
 
 
 
 

where 
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−

=
−−−
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1
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i
iiiin XXXXS  
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           (6a)  
For even numbered observations, i.e., n, is an 
even number, 
 

2
MSSD,nT  = ( ) ( )1

1
2,MSSD1 −

−
−− −′− nnnnn XXSXX  

 
where 
      

( )( )∑
−

=
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2

6,4,2
112MSSD, 2

1 n

i
iiiin XXXXS  
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=nVMSSD,   
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⎭
⎬
⎫

⎩
⎨
⎧

⎥
⎦

⎤
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⎣

⎡ −−Φ
−

− 2
,MSSD2,

1

2

)1)(2(
2
1 npnp

T
np

npn
F , 

n = 2p + 2, 2p + 4, … 
                                                                       (6b) 
 
For the MSSDV  statistics in eqs. (5a), (5b), (6a) 
and (6b) above, p is the number of quality 
characteristics monitored simultaneously, hence 
p ≥ 2. 
 
Tests for Shifts in the Mean Vector µ 
 Because all the MSSDV  statistics are 
standard normal random variables, the following 
tests will be used in the detection of shifts in the 
mean vector. Given a sequence of MSSDV  

statistics, i.e., ..., , ..., , , MSSD,2,MSSD1MSSD, maa VVV ++  

where aVMSSD,  represents the control chart 

statistic, MSSDV , at observation a, the tests are 
defined as follow: 



PERFORMANCE OF A SHORT RUN MULTIVARIATE CONTROL CHART  230 

The 1-of-1 Test: When mVMSSD,  is 

plotted, the test signals a shift in µ if mVMSSD,  > 

3σ, i.e., mVMSSD,  > 3. 

The 3-of-3 Test: When mVMSSD,  is 

plotted, the test signals a shift in µ if mVMSSD, , 

1MSSD, −mV  and 2MSSD, −mV  all exceed 1σ (i.e., 1). 

This test requires the availability of three 
consecutive MSSDV  statistics. 

The 4-of-5 Test: When mVMSSD,  is 

plotted, the test signals a shift in µ if at least four 
of the five values mVMSSD, , 1MSSD, −mV , …, 

4MSSD, −mV  exceed 1σ (i.e., 1). This test can only 

be used if five consecutive MSSDV  statistics are 
available. 

In addition to these tests, the EWMA 
chart computed from a sequence of the MSSDV  
statistics is also considered. The EWMA chart is 
defined as follows: 
 

,)1( 1MSSD,MSSD,MSSD, −α−+α= mmm ZVZ    

 m = a, a + 1, …                       (7) 
 
where 01MSSD, =−aZ  and a is an integer 

representing the starting point of the monitoring 
of a process. The UCL of an EWMA chart is 

)2( α−αK , where α is the smoothing 

constant and K is the control limit constant. For 
the simulation study in this paper, the values of 
(α, K) used are (0.25, 2.90) which gives UCL = 
1.096, i.e., similar to that in Ref. 1. 
 
Evaluating the Performance of the Enhanced 
Short Run Multivariate Chart 
 A simulation study is performed using 
SAS version 8 to study the performance of the 
enhanced short run multivariate chart for 
individual measurements. To enable a 
comparison to be made between the 
performance of the new short run chart with the 
chart proposed in Ref. 1, the simulation study of 
the new bivariate chart is conducted under the 
same condition as that of Ref. 1. The on-target 
mean vector vector is 0µ  = (0, 0)′ while the in-

control covariance matrix is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ
ρ

=
1

1
0Σ  where 

ρ is the correlation coefficient between the two 
quality characteristics. For every value of c ∈ 
{10, 20, 50}, c in-control observations are 
generated from a ( )002 , ΣµN  distribution 
followed by 30 additional observations from a 

( )02 ,Σµ SN  distribution. The MSSDV  statistics for 
cases KU and UU in Eq. (5a), (5b), (6a) and (6b) 
are computed as soon as enough values are 
available to define its statistics for the particular 
case.  

This procedure is repeated 5000 times 
and the proportion of times an o.o.c. signal is 
observed from c + 1 to c + 30 for the first time is 
recorded. All of the tests defined in the previous 
section are used in evaluating the performance 
of the chart. Note that the new chart is also 
directionally invariant. Thus, the chart’s 
performance is determined solely by the square 
root of the noncentrality parameter (see Ref. 1). 
Because of the directionally invariant property 
of the new short run multivariate chart, only Sµ  

= (δ,0)′ based on ρ = 0 and 0.5 are considered in 
the simulation study. 

The results of cases KU and UU for the 
enhanced short run multivariate chart are given 
in Tables 2 and 3 for ρ = 0 and 0.5 respectively. 
Tables 4 and 5 give the corresponding results of 
the short run multivariate chart proposed in Ref. 
1. The results show that the approach 
incorporating the new estimator of process 
dispersion, i.e., MSSDS , are superior to that 
proposed in Ref. 1. 

For example, if δ = 1.5, c = 10 and ρ = 
0, the probabilities of detecting an o.o.c. for case 
KU are 0.225, 0.721, 0.681 and 0.739 for the 
enhanced chart based on the 1-of-1, 3-of-3, 4-of-
5 and EWMA tests respectively (see Table 2). 
From the results in Table 4, the corresponding 
probabilities that are computed for these four 
tests are 0.056, 0.253, 0.172 and 0.157 
respectively. Clearly, these probabilities are 
much lower than those of the enhanced chart. 
Note also that the Type-I error of the enhanced 
chart based on the 3-of-3, 4-of-5 and EWMA 
tests are higher than those in Ref. 1. However, 
from Tables 2 and 3, it is observed that the 
probabilities of signaling a false o.o.c. for these 
three tests decrease as the values of c increase. 
The probabilities  of a false alarm  for the 1-of-1  
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Table 2. Simulation Results of the Enhanced Short Run Multivariate Chart for Cases KU and UU based on 

)0,0(0
′=µ , =Sµ (δ,0)′ and ρ = 0. 

 
 

ρ = 0 
c = 10 c = 20 c = 50 

sµ = (δ,0)′ 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 

δ             

0.0      KU 0.039 0.152 0.111 0.116 0.032 0.130 0.086 0.087 0.040 0.113 0.066 0.064 
           UU 0.036 0.156 0.111 0.118 0.035 0.123 0.079 0.087 0.037 0.113 0.063 0.069 
             
0.5      KU 0.055 0.220 0.169 0.173 0.049 0.194 0.130 0.140 0.070 0.187 0.121 0.126 
           UU 0.040 0.171 0.126 0.133 0.037 0.149 0.100 0.108 0.054 0.158 0.096 0.102 
             
1.0      KU 0.111 0.423 0.360 0.394 0.123 0.422 0.343 0.396 0.167 0.440 0.352 0.420 
           UU 0.049 0.221 0.168 0.174 0.063 0.239 0.171 0.189 0.114 0.305 0.228 0.266 
             
1.5      KU 0.225 0.721 0.681 0.739 0.277 0.746 0.703 0.779 0.390 0.790 0.746 0.846 
           UU 0.064 0.308 0.247 0.261 0.112 0.396 0.329 0.362 0.240 0.578 0.505 0.594 
             
2.0      KU 0.409 0.919 0.910 0.947 0.510 0.943 0.931 0.970 0.665 0.972 0.968 0.991 
           UU 0.091 0.434 0.371 0.387 0.189 0.611 0.550 0.609 0.431 0.841 0.813 0.893 
             
2.5      KU 0.611 0.986 0.986 1.000 0.740 0.994 0.994 0.998 0.882 0.999 0.998 1.000 
           UU 0.126 0.574 0.516 0.534 0.293 0.799 0.769 0.815 0.660 0.969 0.968 0.989 
             
3.0      KU 0.787 0.998 0.999 1.000 0.894 1.000 0.999 1.000 0.974 1.000 1.000 1.000 
           UU 0.173 0.718 0.678 0.681 0.430 0.927 0.914 0.939 0.849 0.997 0.998 1.000 
             
4.0      KU 0.965 1.000 1.000 1.000 0.992 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           UU 0.292 0.910 0.897 0.897 0.695 0.996 0.995 0.998 0.988 1.000 1.000 1.000 
             
5.0      KU 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           UU 0.423 0.980 0.981 0.978 0.883 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 3. Simulation Results of the Enhanced Short Run Multivariate Chart for Cases KU and UU based 
on )0,0(0

′=µ , =Sµ  (δ,0)′ and ρ = 0.5. 
 

 
ρ = 0 

c = 10 c = 20 c = 50 

sµ = (δ,0)′ 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 

δ             

0.0      KU 0.039 0.152 0.111 0.116 0.032 0.130 0.086 0.087 0.040 0.113 0.066 0.064 
           UU 0.036 0.156 0.111 0.118 0.035 0.123 0.079 0.087 0.037 0.113 0.063 0.069 
             
0.5      KU 0.063 0.238 0.189 0.191 0.058 0.214 0.149 0.166 0.078 0.210 0.138 0.157 
           UU 0.040 0.179 0.132 0.137 0.040 0.163 0.113 0.118 0.061 0.171 0.108 0.120 
             
1.0      KU 0.141 0.513 0.459 0.499 0.164 0.520 0.447 0.519 0.227 0.546 0.462 0.571 
           UU 0.055 0.245 0.191 0.198 0.076 0.281 0.216 0.237 0.148 0.387 0.295 0.359 
             
1.5      KU 0.304 0.826 0.805 0.859 0.382 0.863 0.842 0.901 0.518 0.900 0.885 0.949 
           UU 0.078 0.364 0.307 0.317 0.144 0.498 0.429 0.484 0.322 0.709 0.662 0.760 
             
2.0      KU 0.525 0.971 0.968 0.988 0.648 0.988 0.985 0.995 0.821 0.995 0.996 0.999 
           UU 0.112 0.522 0.466 0.478 0.255 0.734 0.692 0.744 0.572 0.932 0.923 0.973 
             
2.5      KU 0.750 0.998 0.997 1.000 0.864 0.999 0.999 1.000 0.961 1.000 1.000 1.000 
           UU 0.157 0.679 0.639 0.645 0.404 0.900 0.888 0.924 0.810 0.994 0.995 0.999 
             
3.0      KU 0.894 1.000 1.000 1.000 0.965 1.000 1.000 1.000 0.997 1.000 1.000 1.000 
           UU 0.217 0.822 0.796 0.793 0.556 0.976 0.974 0.985 0.941 1.000 1.000 1.000 
             
4.0      KU 0.994 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           UU 0.371 0.962 0.958 0.959 0.826 1.000 1.000 1.000 0.999 1.000 1.000 1.000 
             
5.0      KU 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
           UU 0.537 0.996 0.995 0.996 0.959 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 4. Simulation Results of the Short Run Multivariate Chart in Ref. 1 for Cases KU and UU 
based on )0,0(0

′=µ , =Sµ  (δ,0)′ and ρ = 0. 
 

 
ρ = 0 

c = 10 c = 20 c = 50 

sµ = (δ,0)′ 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 

δ             
0.0      KU 0.041 0.102 0.052 0.038 0.037 0.103 0.046 0.044 0.042 0.103 0.056 0.042 
           UU 0.040 0.103 0.052 0.039 0.039 0.100 0.049 0.041 0.038 0.101 0.050 0.043 
             
0.5      KU 0.048 0.120 0.069 0.056 0.049 0.133 0.073 0.066 0.057 0.153 0.088 0.088 
           UU 0.041 0.100 0.054 0.040 0.040 0.106 0.053 0.049 0.051 0.131 0.070 0.069 
             
1.0      KU 0.052 0.178 0.110 0.093 0.072 0.233 0.149 0.151 0.113 0.312 0.221 0.263 
           UU 0.043 0.112 0.062 0.051 0.052 0.143 0.084 0.080 0.087 0.225 0.154 0.167 
             
1.5      KU 0.056 0.253 0.172 0.157 0.093 0.387 0.286 0.321 0.184 0.581 0.493 0.617 
           UU 0.041 0.128 0.074 0.065 0.067 0.216 0.141 0.148 0.144 0.417 0.320 0.393 
             
2.0      KU 0.069 0.340 0.248 0.247 0.132 0.558 0.469 0.536 0.292 0.821 0.785 0.903 
           UU 0.049 0.164 0.104 0.091 0.096 0.329 0.241 0.270 0.233 0.652 0.585 0.713 
             
2.5      KU 0.096 0.434 0.337 0.342 0.193 0.713 0.650 0.741 0.445 0.949 0.943 0.991 
           UU 0.064 0.215 0.145 0.133 0.151 0.468 0.381 0.428 0.368 0.841 0.809 0.921 
             
3.0      KU 0.131 0.522 0.425 0.442 0.290 0.833 0.789 0.882 0.617 0.991 0.991 1.000 
           UU 0.096 0.269 0.184 0.181 0.232 0.611 0.528 0.603 0.539 0.947 0.942 0.991 
             
4.0      KU 0.268 0.663 0.561 0.605 0.569 0.949 0.933 0.984 0.914 1.000 1.000 1.000 
           UU 0.194 0.372 0.258 0.292 0.484 0.804 0.733 0.854 0.873 0.996 0.997 1.000 
             
5.0      KU 0.473 0.747 0.652 0.730 0.832 0.984 0.980 0.999 0.996 1.000 1.000 1.000 
           UU 0.355 0.448 0.304 0.397 0.769 0.900 0.851 0.957 0.987 1.000 1.000 1.000 
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Table 5. Simulation Results of the Short Run Multivariate Chart in Ref. 1 for Cases KU and UU 
based on )0,0(0

′=µ , =Sµ  (δ,0)′ and ρ = 0.5. 
 

 
ρ = 0 

c = 10 c = 20 c = 50 

sµ = (δ,0)′ 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 1-of-1 3-of-3 4-of-5 EWMA 

δ             
0.0      KU 0.041 0.102 0.052 0.038 0.037 0.103 0.046 0.044 0.042 0.103 0.056 0.042 
           UU 0.040 0.103 0.052 0.039 0.039 0.100 0.049 0.041 0.038 0.101 0.050 0.043 
             
0.5      KU 0.047 0.124 0.072 0.059 0.052 0.141 0.082 0.082 0.065 0.166 0.101 0.102 
           UU 0.042 0.102 0.055 0.041 0.041 0.115 0.063 0.049 0.054 0.144 0.079 0.079 
             
1.0      KU 0.054 0.196 0.124 0.120 0.077 0.274 0.190 0.201 0.129 0.391 0.295 0.355 
           UU 0.042 0.115 0.068 0.050 0.056 0.165 0.098 0.097 0.098 0.281 0.197 0.217 
             
1.5      KU 0.061 0.286 0.202 0.199 0.109 0.465 0.374 0.428 0.234 0.700 0.638 0.789 
           UU 0.047 0.139 0.087 0.077 0.079 0.266 0.181 0.199 0.181 0.527 0.440 0.553 
             
2.0      KU 0.085 0.399 0.308 0.305 0.171 0.650 0.588 0.679 0.387 0.916 0.903 0.976 
           UU 0.062 0.182 0.119 0.121 0.126 0.416 0.325 0.364 0.314 0.785 0.744 0.870 
             
2.5      KU 0.127 0.501 0.402 0.421 0.269 0.804 0.769 0.857 0.589 0.984 0.985 0.999 
           UU 0.091 0.250 0.167 0.173 0.218 0.578 0.495 0.564 0.508 0.927 0.922 0.983 
             
3.0      KU 0.187 0.590 0.490 0.527 0.418 0.900 0.884 0.951 0.789 0.998 0.998 1.000 
           UU 0.139 0.317 0.217 0.229 0.341 0.717 0.645 0.733 0.719 0.979 0.983 0.999 
             
4.0      KU 0.394 0.724 0.626 0.686 0.751 0.977 0.970 0.996 0.981 1.000 1.000 1.000 
           UU 0.293 0.424 0.288 0.354 0.678 0.883 0.831 0.935 0.965 1.000 1.000 1.000 
             
5.0      KU 0.653 0.801 0.700 0.802 0.944 0.995 0.993 1.000 1.000 1.000 1.000 1.000 
           UU 0.518 0.489 0.325 0.473 0.909 0.949 0.911 0.989 0.999 1.000 1.000 1.000 
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Table 6. MSSDV  and V Statistics for Case UU. 

Observation 
No., n 1X  2X  nV  nVMSSD,  Observation 

No., n 1X  2X  nV  nVMSSD,  

1 1.404 0.268 - - 21 0.819 -0.277 0.395 0.580 
2 0.624 1.392 - - 22 1.706 0.564 0.780 1.085 
3 0.454 0.755 - - 23 1.198 -1.313 2.181 2.434 
4 -1.768 -1.902 1.162 - 24 2.863 0.211 2.049 2.737 
5 -0.224 0.140 -1.452 -1.650 25 2.141 0.438 0.545 1.657 
6 -0.082 0.734 -0.585 -1.214 26 1.823 0.474 -0.023 0.987 
7 1.146 0.484 -0.190 -0.327 27 1.609 0.414 -0.366 0.630 
8 1.816 0.906 0.222 0.058 28 2.811 2.192 1.191 1.650 
9 -1.245 -1.555 0.482 0.296 29 0.170 -0.650 -0.987 -0.676 

10 -0.976 -0.340 -0.199 0.023 30 -0.776 -1.186 -0.193 0.347 
11 -0.621 -1.058 -0.266 -0.393 31 -0.111 -0.613 -1.216 -0.838 
12 -0.080 -0.710 -0.507 -0.800 32 1.400 0.302 -0.656 0.313 
13 0.742 -0.146 -0.202 0.042 33 1.584 0.337 -0.403 0.609 
14 -0.543 -0.818 -0.824 -0.654 34 2.047 0.585 0.080 1.203 
15 -2.335 -2.801 1.437 1.507 35 0.481 0.690 -0.153 0.667 
16 -0.848 -1.176 -0.808 -0.415 36 3.773 2.495 1.693 2.545 
17 -0.431 0.590 0.836 0.742 37 1.891 1.871 0.673 1.256 
18 1.369 1.863 0.769 0.955 38 2.169 1.073 -0.160 0.420 
19 0.283 0.197 -1.659 -1.405 39 1.761 1.191 -0.400 0.049 
20 0.850 0.149 -0.155 0.028 40 1.184 -0.113 -0.531 0.132 

 

Figure 1. Plotted MSSDV  Statistics for Case UU 

 

                      Observation Number 
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test in Tables 2, 3, 4 and 5 are almost the same. 
The results also show that the performance of 
the enhanced chart based on the basic 1-of-1 rule 
is superior to the chart proposed in Ref. 1. 
 
An Example of Application 

An example will be given to show how 
the proposed enhanced short run multivariate 
chart is put to work. To simulate an in-control 
process, 20 bivariate observations are generated 
using SAS version 8 from a ( )002 , ΣµN  
distribution. For an o.o.c. process, with a shift in 
the mean vector, the next 20 bivariate 
observations are generated from a ( )02 ,Σµ SN  

distribution. Here, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0

0
0µ , ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0

3.1
Sµ , 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ρ
ρ

=
1

1
0Σ  where ρ = 0.8. The 40 

observations generated are substituted in eqs. 
(6a) and (6b) to compute the corresponding 

MSSDV  statistics for case UU. Similarly, these 40 
observations are substituted in Eq. (4) to  

 

 
 

compute the corresponding V statistics for case 
UU. The computed V and MSSDV  statistics are 
summarized in Table 6. Figures 1 and 2 show 
the plotted MSSDV  and V statistics respectively. 

For the enhanced chart based on the MSSDV  
statistics, the 3-of-3 test signals an o.o.c. at 
observation 24 while the 4-of-5 test signals at 
observation 25. The chart proposed in Ref. 1 
based on the V statistics fails to detect a shift in 
the mean vector. 

 
Conclusion 

 
It is shown in this paper that the enhanced chart 
based on a robust estimator of scale, i.e., MSSDS  
gives excellent improvement over the existing 
short run multivariate chart proposed in Khoo & 
Quah (2002). The proofs of how the MSSDV  
statistics for cases KU and UU are derived are 
shown in the Appendix. 
 
 

 

 
Figure 2. Plotted V Statistics for Case UU 

 

 
           Observation Number 
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Appendix 
 

In this section, it will be shown that the MSSDV  
statistics in eqs. (5a), (5b), (6a) and (6b) are 
N(0,1) random variables. All the notations used 
here are already defined in the earlier sections. 
The following theorems taken from Seber 
(1984) are used: 

Theorem A.  Suppose that y ∼ ),,( Σ0pN  

W ∼ ),,( ΣnWp  and y and W are statistically 

independent. Assumed that the distribution are 
nonsingular, i.e., Σ > O, and n ≥ p, so that 1−W  
exists with probability 1. 
 
Let  

=2T  ny′ 1−W y′,                        (A1) 
then    

n

T

p

pn 2)1( +−
 ∼ 1, +− pnpF                  (A2) 

 
Theorem B.  Suppose that nXXX ,...,, 21  are 
independently and identically distributed (i.i.d.) 
as ),,( Σ0pN  then  

 ∑
=

′n

i
ii XX

1

∼ ),( ΣnW p        (A3) 

where ),( ΣnWp  is the Wishart distribution with 

n degrees of freedom. 
 
Equation (5a): Case KU 

We need to show that for odd numbered 
observations, i.e., when n is an odd number, 

2
MSSD,nT  = ( ) ( )0

1
1,MSSD0 µµ −′− −

− nnn XSX   

∼ ( )12,
2
1

12

2
+−+− pnp

F
pn

p
 

 
Proof: 
If jX , j = 1, 2, 3, …, are i.i.d. ( )Σµ,pN   

 
variables, then 
 
           1−− ii XX  ∼ ( )Σ2,0pN , i = 2, 4, 6, … 

and 

 ( )1
2

1
−− ii XX  ∼ ( )Σ,0pN , i = 2, 4, 6, … . 

Thus, from eq. (A3) of Theorem B, 

( )( )∑
−

=
−−

′−−
1

6,4,2
112

1 n

i
iiii XXXX  ∼ ⎟

⎠

⎞
⎜
⎝

⎛ − Σ,
2

1n
W p , 

 
i.e.,  

 1MSSD, −nS  ∼ ⎟
⎠

⎞
⎜
⎝

⎛ − Σ,
2

1n
Wp .  

          (A4) 
Because 0µµ =  is known, then 

 0µ−nX  ∼ ( )Σ,0pN    

          (A5) 
 
Substituting Eq. (A4) and (A5) into Eq. (A1) 
and (A2) of Theorem A, 
  

⎟
⎠

⎞
⎜
⎝

⎛ −

⎟
⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛ +−−

2

1

2

1
1

2

1

n
p

n
p

n

( ) ( )0
1

1MSSD,0 µµ −′− −
− nnn XSX   

∼ 
1,

2
1 +−− pp nF  

i.e., 
  

p

pn

2

)12( +− ( ) ( )0
1

1MSSD,0 µµ −′− −
− nnn XSX   

∼ ( )12,
2
1 +− pnp

F . 

 
Define  

      2
MSSD,nT  = ( ) ( )0

1
1,MSSD0 µµ −′− −

− nnn XSX ;  

 
then 

2
MSSD,nT  ∼ ( )12,

2
1

12

2
+−+− pnp

F
pn

p
 for n > 2p – 1,  

i.e., n = 2p+1, 2p+3, … . 
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Equation (5b): Case KU 
We need to show that for even 

numbered observations, i.e., when n is an even 
number, 

2
MSSD,nT  = ( ) ( )0

1
2,MSSD0 µµ −′− −

− nnn XSX  

 ∼ ( )pnp
F

pn

p
2,

2
1

2

2
−−

 

 
Proof: 
 If jX , j = 1, 2, 3, …, are i.i.d. ( )Σµ,pN  

variables, then 
 1−− ii XX  ∼ ( )Σ2,0pN , i = 2, 4, 6, … 

and 

( )1
2

1
−− ii XX  ∼ ( )Σ,0pN , i = 2, 4, 6, … . 

 
Thus, from Eq. (A3) of Theorem B, 
 

( )( )∑
−

=
−−

′−−
2

6,4,2
112

1 n

i
iiii XXXX  ∼ ⎟

⎠

⎞
⎜
⎝

⎛ − Σ,
2

2n
W p , 

 
i.e.,  

 2MSSD, −nS  ∼ ⎟
⎠

⎞
⎜
⎝

⎛ − Σ,
2

2n
Wp .  

          (A6) 
Because 0µµ =  is known, then 
  
             0µ−nX  ∼ ( )Σ,0pN        (A7) 

 
Substituting Eq. (A6) and (A7) into Eq. (A1) 
and (A2) of Theorem A, 
  

⎟
⎠

⎞
⎜
⎝

⎛ −

⎟
⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛ +−−

2

2
2

2
1

2

2

n
p

n
p

n

( ) ( )0
1

2MSSD,0 µµ −′− −
− nnn XSX   

∼ 
1,

2
2 +−− pp nF  

 
i.e., 

p

pn

2

)2( − ( ) ( )0
1

2MSSD,0 µµ −′− −
− nnn XSX   

∼ ( )pnp
F

2,
2
1 −

. 

 
Define  

2
MSSD,nT  = ( ) ( )0

1
2,MSSD0 µµ −′− −

− nnn XSX ; 

then 

2
MSSD,nT  ∼ ( )pnp

F
pn

p
2,

2
1

2

2
−−

 for n > 2p, 

 
 i.e., n = 2p+2, 2p+4, … . 
 
Equation (6a): Case UU 

We need to show that for odd numbered 
observations, i.e., when n is an odd number, 

2
MSSD,nT  = ( ) ( )1

1
1,MSSD1 −

−
−− −′− nnnnn XXSXX  ∼ 

( )12,
2
1

)1)(12(

2
+−−+− pnp

F
npn

np
 

 
Proof: 
If jX , j = 1, 2, 3, …, are i.i.d. ( )Σµ,pN  

variables, then 
  

1−− ii XX  ∼ ( )Σ2,0pN , i = 2, 4, 6, … 

 
and 
 

( )1
2

1
−− ii XX  ∼ ( )Σ,0pN , i = 2, 4, 6, … . 

 
Thus, from Eq. (A3) of Theorem B, 
 

( )( )∑
−

=
−−

′−−
1

6,4,2
112

1 n

i
iiii XXXX  ∼ ⎟

⎠

⎞
⎜
⎝

⎛ − Σ,
2

1n
W p , 

 
i.e.,  

 1MSSD, −nS  ∼ ⎟
⎠

⎞
⎜
⎝

⎛ − Σ,
2

1n
W p .  

     (A8) 
Because µ is unknown, 
  

1−nX  ∼ pN ⎟
⎠

⎞
⎜
⎝

⎛

−1
,
n

Σµ  

Then, 
 

1−− nn XX  ∼ pN ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛

−
+ Σ

1

1
1,

n
0  ≡ 

pN ⎟
⎠

⎞
⎜
⎝

⎛

−
Σ

1
,
n

n
0  

and 
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n

n 1− ( )1−− nn XX  ∼ pN ( )Σ,0  

          (A9) 
Substituting Eq. (A8) and (A9) into Eq. (A1) 
and (A2) of Theorem A, 
( )( )( )

( )2
1

1
2

1
2

1 1
−

−−− +−
n

n
nnn

p

p

( ) ( )1
1

1MSSD,1 −
−

−− −′− nnnnn XXSXX  ∼ 
1,

2
1 +−− pp nF  

i.e.,  

 
( )( )

np

npn

2

112 −+−

( ) ( )1
1

1MSSD,1 −
−

−− −′− nnnnn XXSXX  ∼ ( )12,
2
1 +− pnp

F   

 
Define  

2
MSSD,nT  = ( ) ( )1

1
1,MSSD1 −

−
−− −′− nnnnn XXSXX ; 

then 

2
MSSD,nT  ∼ ( )12,

2
1

)1)(12(

2
+−−+− pnp

F
npn

np
  

for n > 2p−1, i.e., n = 2p+1, 2p+3, … . 
 
Equation (6b): Case UU 

We need to show that for even 
numbered observations, i.e., when n is an even 
number, 
 

2
MSSD,nT  = ( ) ( )1

1
2,MSSD1 −

−
−− −′− nnnnn XXSXX  ∼ 

( )pnp
F

npn

np
2,

2
1

)1)(2(

2
−−−

 

 
Proof: 
If jX , j = 1, 2, 3, …, are i.i.d. ( )Σµ,pN  

variables, then 
 1−− ii XX  ∼ ( )Σ2,0pN , i = 2, 4, 6, … 

and 

( )1
2

1
−− ii XX  ∼ ( )Σ,0pN , i = 2, 4, 6, …  . 

 
 
Thus, from Eq. (A3) of Theorem B, 
 

( )( )∑
−

=
−−

′−−
2

6,4,2
112

1 n

i
iiii XXXX  ∼ ⎟

⎠

⎞
⎜
⎝

⎛ − Σ,
2

2n
W p , 

 
i.e.,  

 2MSSD, −nS  ∼ ⎟
⎠

⎞
⎜
⎝

⎛ − Σ,
2

2n
Wp .  

     (A10) 
Because µ is unknown, 
 

1−nX  ∼ pN ⎟
⎠

⎞
⎜
⎝

⎛

−1
,
n

Σµ  

Then, 

 1−− nn XX  ∼ pN ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛

−
Σ

1
,

n

n
0   

and 

 
n

n 1− ( )1−− nn XX  ∼ pN ( )Σ,0   

                    (A11) 
 
Substituting Eq. (A10) and (A11) into Eq. (A1) 
and (A2) of Theorem A,  
 
( )( )( )

( )2
2

1
2

2
2

2 1
−

−−− +−
n

n
nnn

p

p

( ) ( )1
1

2MSSD,1 −
−

−− −′− nnnnn XXSXX  ∼ 
1,

2
2 +−− pp nF  

 
i.e.,  

 
( )( )

np

npn

2

12 −−

( ) ( )1
1

2MSSD,1 −
−

−− −′− nnnnn XXSXX  ∼ 
2

2
,

pn
p

F −   

 
Define  

2
MSSD, nT  = ( ) ( )1

1
2,MSSD1 −

−
−− −′− nnnnn XXSXX ;  

then 
 

2
MSSD,nT  ∼ ( )pnp

F
npn

np
2,

2
1

)1)(2(

2
−−−

 for n > 2p,  

 
i.e., n = 2p+2, 2p+4, …  ▄ 
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