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Multiple Imputation For Missing Ordinal Data 

   Ling Chen                              Mariana Toma-Drane 
                                  University of Arizona                     University of South Carolina  
 
                                  Robert F. Valois                              J. Wanzer Drane 
                            University of South Carolina                 University of South Carolina 
 
 

Simulations were used to compare complete case analysis of ordinal data with including multivariate 
normal imputations. MVN methods of imputation were not as good as using only complete cases. Bias 
and standard errors were measured against coefficients estimated from logistic regression and a standard 
data set. 
 

Key words: complete case analysis, missing data mechanism, multiple logistic regression 
 

 
Introduction 

 
Surveys are important sources of information in 
epidemiologic studies and other research as well, 
but often encounter missing data (Patricia, 
2002). Ordinal variables are very common in 
survey research; however, they challenge 
primary data collectors who might need to 
impute missing values of these variables due to 
their hierarchical nature but with unequal 
intervals. 

The traditional approach, complete case 
analysis (CC), excludes from the analysis 
observations with any missing value among 
variables of interest (Yuan, 2000). CC remains 
the most common method in the absence of 
readily available alternatives in software 
packages. However, using only complete cases 
could result in losing information about 
incomplete cases, thus biasing parameter  
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estimates, and compromising statistical power 
(Patricia, 2002). Multiple imputation (MI) 
procedure replaces each missing value with m 
plausible values generated under an appropriate 
model. These m multiply imputed datasets are 
then analyzed separately by using procedures for 
complete data to obtain desired parameter 
estimates and standard errors. Results from the 
m analyses are then combined for inferences by 
computing the mean of the m parameter 
estimates and a variance estimate that include 
both a within-imputation and a between-
imputation component (Rubin, 1987).  

MI has some desirable features, such as 
introducing appropriate random error into the 
imputation process and making it possible to 
obtain unbiased estimates of all parameters; 
allowing use of complete-data methods for data 
analysis; producing more reasonable estimates 
of standard errors and thereby increasing 
efficiencies of estimates (Rubin, 1987). In 
addition, MI can be used with any kind of data 
and any kind of analysis without specialized 
software (Allison, 2000). MI appears to be a 
more attractive method handling missing data in 
multivariate analysis compared to CC (King et 
al., 2001; Little & Rubin, 1989).  

However, certain requirements should 
be met to have its attractive properties. First, the 
data must be missing at random (MAR). Second, 
the model used to generate the imputed values 
must be correct in some sense. Third, the model 
used for the analysis must catch up, in some 
sense, with the model used in the imputation 
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(Allison, 2000). All these conditions have been 
rigorously described by Rubin (1987) and 
Schafer (1997). The problem is that it is easy to 
violate these conditions in practice.  

The purpose of this study was to 
investigate how well multivariate normal 
(MVN) based MI deals with non-normal missing 
ordinal covariates in multiple logistic regression, 
while there is definite violation against the 
distributional assumptions of the missing 
covariates for the imputation model.  

Simulated scenarios were created for the 
comparison assuming various missing rates for 
the covariates (5%, 15% and 30%) and different 
missing data mechanisms: missing completely at 
random (MCAR), missing at random (MAR) 
and missing nonignorable (NI). The 
performance of MVN based MI was compared 
to CC in each scenario. 

 
Methodology 

 
The mechanism that leads to values of certain 
variables being missing is a key element in 
choosing an appropriate analysis and 
interpreting the results (Little & Rubin, 1987).  

In sample survey context, let Y denote 
an n × p matrix of multivariate data, which is 
not fully observed. Let Yobs denote the set of 
fully observed values of Y and Ymis denote the 
set containing missing values of Y, i.e., Y = 
(Yobs,Ymis ).  

Rubin (1976) introduced a missing data 
indicator matrix R. The (i, j)th element Rij = 1 if 
Yij is observed; and Rij = 0 if Yij is missing. The 
notation of missing data mechanisms was 
formalized in terms of a model for the 
conditional distribution P(R | Y, ζ) of R given Y 
according to whether the probability of response 
depends on Yobs or Ymis or both, where ζ is an 
unkown parameter.  

Data are MCAR, if the distribution of R 
does not depend on Yobs or Ymis; that is P(R |Y, 
ζ) = P(R | ζ) for all Y. In this case, the observed 
values of Y form a random subset of all the 
sampled values of Y. Data are MAR if the 
distribution of R depends on the data Y only 
through the observed values Yobs; that is, P(R|Y, 
ζ) = P(R|Yobs, ζ) for all Ymis. MAR implies 
missing depends on observed covariates and 
outcomes, or missingness can be predicted by 

observed information. MCAR is a special case 
of MAR. The missing data mechanism is 
ignorable for likelihood-based inferences for 
both MCAR and MAR (Little & Rubin, 1987). 
Missing NI occurs when the probability of 
response of Y depends on the value of Ymis and 
possibly the value of Yobs as well.  

The data used in this investigation are 
from the 1997 South Carolina Youth Risk 
Behavior Survey (SCYRBS). The total number 
of complete and partial questionnaires collected 
is 5545. The survey employed a two-stage 
cluster sampling with derived weightings 
designed to obtain a representative sample of all 
South Carolina public high school students in 
grades 9-12, with the exception of those in 
special education schools. The survey ran from 
March until June 1997. 

The questionnaire covers six categories 
of priority health-risk behaviors required by the 
Center for Disease Control and Prevention, and 
locally, two additional psychological categories 
of questions were added that include quality of 
life and life satisfaction (Valois, Zulling, 
Huebner & Drane, 2001). The six categories of 
priority health-risk behaviors among youth and 
young adults are those that contribute to 
unintentional and intentional injuries; tobacco 
use; alcohol and other drug use; sexual 
behaviors; dietary behaviors and physical 
inactivity (Kolbe, 1990).  

The items on self-report youth risk 
behaviors are Q10 through Q20. The six life-
satisfaction variables, Q99 through Q104, are 
based on six domains: family, friends, school, 
self, living environment and overall life 
satisfaction. Each of the questions has seven 
response options based on the Multidimensional 
Students’ Life Satisfaction Scale (Seligson, 
Huebner & Valois, 2003). The response options 
are from the Terrible-to-Delighted Scale: 1 - 
terrible; 2 - unhappy; 3 - mostly dissatisfied; 4 - 
equally satisfied and dissatisfied; 5 - mostly 
satisfied; 6 - pleased; and 7 - delighted (10).  

The four race-gender groups: White 
Females (WF, 26.7%), White Males (WM, 
26.0%), Black Females (BF, 26.0%) and Black 
Males (BM, 21.3%) accounted for almost equal 
percentage in the sample. The sample was due to 
the belief that the relationship between life 
satisfaction and youth risk behaviors varies 
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across different race-gender groups, as 
demonstrated in previous research (Valois, 
Zulling, Huebner & Drane, 2001). 
 
Multiple Logistic Regression Analysis  

Exploring the relationship between life 
satisfaction and youth risk behaviors powered 
this study. Three covariates in ordinal scale were 
selected from the 1997 SCYRBS Questionnaire 
(see the Appendix for details). They were 
dichotomized as Q10: DRKPASS (Riding with a 
drunk driver); Q14: GUNSCHL (Carrying a gun 
or other weapon on school property) and Q18: 
FIGHTIN (Physical fighting), respectively. Each 
of them was coded “1” for “never” (0 time) and 
“2” for “ever” (equal to or greater than 1 time), 
with “1” as the referent level. All the six ordinal 
variables of life satisfaction (Q99 ~ Q104) were 
pooled for each participant to form a pseudo-
continuous dependent variable ranging in score 
from 6 to 42, i.e., “Lifesat = Q99 + Q100 + 
Q101 + Q102 + Q103 + Q104”. The score was 
expressed as Satisfaction Score (SS) with lower 
scores indicative of reduced satisfaction with life 
(Valois, Zulling, Huebner & Drane, 2001). SS 
ranging from 6 to 27 was categorized as 
dissatisfied. For the dichotomized outcome 
variable D2, the students in dissatisfied group 
(D2 = 1) served as the risk group and the others 
as the referent group (D2 = 0).  

As defined, all the four variables used in 
logistic regression were dichotomized. 
DRKPASS, GUNSCHL and FIGHTIN were 
used as predictor variables while D2 was chosen 
as the response or criterion variable. The three 
predictor variables are each independently 
associated with life dissatisfaction with odds 
ratios (OR) ranging from 1.42 to 2.27; they are 
also associated with each other with odds ratios 
ranging from 2.22 to 4.52.  

To use the sampling design in multiple 
logistic regression analysis, dichotomous 
logistic regression (PROC MULTILOG) was 
conducted using SAS-callable Survey Data 
Analysis (SUDAAN) for weighted data at an 
alpha level of 0.05 (Shah, Barnwell & Bieler, 
1997) (See Appendix.). The analyses were done 
separately for the four race-gender groups, and 
the regression coefficient (β) and the standard 
error of the regression coefficient (Se (β)) for 
each covariate were obtained. 

Simulations  
Simulations were applied to compare the 

performance of CC and MI in estimating 
regression.  Create a complete standard dataset. 
The SAS MI procedure was used to impute the 
very few missing values in the youth risk 
behavior variables (Q10 through Q20) and the 
six life-satisfaction variables (Q99 through 
Q104) in the 1997 SCYRBS Dataset once, 
because missing percentages of these variables 
are very low, ranging from 0.13% to 4.11%. The 
resulting dataset was regarded as the Complete 
Standard Dataset in the simulations. This dataset 
was considered the true gold standard and some 
values of the three variables related to the three 
predictors in logistic regression were set to be 
missing. The PROC MI code (see Appendix) 
used to create the Complete Standard Dataset 
was the same as that used to impute values for 
missing covariates except that missing values 
were imputed five times in the simulations. The 
distributions of the three ordinal covariates in 
the Complete Standard Dataset were also 
examined. The three covariates are all highly 
skewed instead of being approximately normal 
(Figure 1). 

 
Simulating datasets with missing covariates 
 Three missing data mechanisms were 
simulated: MCAR, MAR and NI. For the case of 
MCAR, each simulated sample began by 
randomly deleting a certain percentage of the 
values of Q10, Q14 and Q18 from the Complete 
Standard Dataset such that the three covariates 
were missing at the same rate (5%, 15% and 
30%).  

For MAR, a certain percentage of values 
of Q10 were removed from the Complete 
Standard Dataset with a probability related to the 
outcome variable (D2) and the other two 
variables Q14 and Q18. For the NI condition, a 
certain percentage of values of Q10 were 
removed such that the larger values of Q10 were 
more likely to be missing, as in real datasets 
some covariates corresponding to sensitive 
matters, whether large or small, their responses 
are often more likely to be missing (Wu & Wu, 
2001). For all the scenarios assuming MAR and 
NI, Q14 and Q18 were randomly removed 
assuming MCAR at the same rate as Q10.  
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Figure 1. Distribution of the three covariates in the Complete Standard Dataset. 
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Nine scenarios were created where the 
covariates Q10 (DRKPASS), Q14 (GUNSCHL) 
and Q18 (FIGHTIN) were missing at the same 
rate (5%, 15% and 30%), the life-satisfaction 
variables (Q99 ~ Q104) were complete as in the 
Complete Standard Dataset, however. In each 
scenario 500 datasets with missing covariates 
were generated. Table 1 lists the missing data 
mechanisms for the covariates, and the average 
percentage of complete cases (all the three 
covariates complete) in the 500 datasets for each 
scenario. All the simulations were performed 
using SAS version 8.2 (2002).  

 
Multiple Imputation 

The missing covariates in each 
simulated dataset were then imputed five times 
using the SAS MI procedure (see Appendix). 
First, initial parameter estimates were obtained 
by running the Expectation-Maximization (EM) 
algorithm until convergence up to a maximum 
of 1000 iterations. Using the EM estimates as 
starting values, 500 cycles were ran of Markov 
Chain Monte Carlo (MCMC) full-data 
augmentation under a ridge prior with the 
hyperparameter set to 0.75 to generate five 
imputations. A multivariate normal model was 
applied to the data augmentation for the non-
normal ordinal data without trying to meet the 
distributional assumptions of the imputation 
model.  

Three auxiliary variables (Q11, Q13 and 
Q19) as well as the outcome variable D2 were 
entered into the imputation model as if they 
were jointly normal, to increase the accuracy of 
the imputed values of Q10, Q14 and Q18 
(Allison, 2000; Schafer, 1997 & 1998; Rubin, 
1996).  

The maximum and minimum values for 
the imputed values were specified, which were 
based on the scale of the response options for the 
1997 SCYRBS questions. These specifications 
were necessary so that the imputations were not 
made outside of the range of the original 
variables. The continuously distributed imputes 
for Q10, Q14 and Q18 were rounded to the 
nearest category using a cutoff value of 0.5.  
 
 
 
 

Inferences from CC and MI  
For inference from CC, multiple logistic 

regression analysis was performed for each of 
the 500 datasets with missing covariates. The 
estimates for β and Se (β) for CC in each 
scenario were the average of the 500 estimates 
from the 500 incomplete datasets, respectively. 
For inference from MI, The point estimate of β 
was first obtained from the five imputed dataset 
estimates; and Se (β) was obtained by 
combining the within-imputation variance and 
between-imputation variance from the five 
repeated imputations (Rubin, 1987; SAS 
Institute, 2002). The estimates for β and Se (β) 
for MI in each scenario were the average of the 
500 point estimates of β and the 500 combined 
Se (β), respectively.  
 
Comparison of complete case and multiple 
imputation model results  

To compare the performance of CC and 
MI, biases and standard errors of point estimates 
were mainly considered. Each regression 
coefficient calculated from the Complete 
Standard Dataset was taken as the true 
coefficient and those from CC and MI in each 
scenario were compared to the true ones. Bias is 
expressed as estimate from CC or MI minus the 
estimate from the Complete Standard Dataset, 
i.e., estimated β − β true value. The average 
absolute value of bias (AVB) of β for each 
covariate was compared between the two 
methods for the same race-gender group.  
 

Results 
 
The missing values in the risk behavior and life-
satisfaction variables were imputed, and the 
resulting dataset was defined as the Complete 
Standard Dataset as if it was originally 
complete. Table 2 contains the estimates and 
standard errors of the regression coefficients 
from the 1997 SCYRBS dataset together with 
those from the Complete Standard Dataset. 
Given the low percentages of missing variables 
in 1997 SCYRBS dataset and thus the few cases 
omitted from the CC, the results from the two 
datasets are very similar. 
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An example is presented from 

comparing CC and MI across the nine scenarios 
among White Females in table 3. The histogram 
of the average AVB of β for each covariate in 
this example is shown in figure 2. To evaluate 
the the imputation procedure, the absolute value 
of bias in point estimates and coverage 
probability were mainly considered. The 
coverage probability is defined as the possibility 
of the true regression coefficient β being 
covered by the actual 95 percent confidence 
interval. Further, the percent AVB of β for each 
covariate, calculated by dividing AVB by the 
corresponding true β, better compares the two 
methods with regard to bias. Greater or equal 
to10% of bias is beyond acceptance. 

 
Both CC and MI produced biased 

estimates of β in all the scenarios. CC showed 
little or no bias for all the scenarios under 
MCAR. The AVB of β for each covariate is 
consistently less than 0.05 for all the three 
covariates even with about 34% complete cases 
(30% missing for each covariate). However, CC 
showed larger AVB’s of β in the scenarios under 
MAR and NI than in those under MCAR with 
the same missing covariate rates. Further, MI 
was generally less successful than CC because 
MI showed larger AVB’s of β than CC in most 
of the scenarios regardless of missing data 
mechanism and missing covariate rate. (Results 
for the other three race-gender groups not shown 
here.) 

 
Table 1. Simulated scenarios for datasets with missing covariates. 

Missing data mechanism for each covariate 

Scenario 

Missing 
percentage of 

each 
covariate  

Average 
percentage of 

complete 
cases 

Q10 
(DRKPASS) 

Q14 
(GUNSCHL) 

Q18 
(FIGHTIN) 

1 5% 85.73% MCAR MCAR MCAR 
2 5% 85.42% MAR MCAR MCAR 
3 5% 85.55% NI MCAR MCAR 
4 15% 61.34% MCAR MCAR MCAR 
5 15% 61.19% MAR MCAR MCAR 
6 15% 62.54% NI MCAR MCAR 
7 30% 34.22% MCAR MCAR MCAR 
8 30% 34.30% MAR MCAR MCAR 
9 30% 34.10% NI MCAR MCAR 

 
Table 2. Logistic regression coefficients and standard error estimates in the 1997 SCYRBS Dataset and the 
Complete Standard Dataset. 

DRKPASS GUNSCHL FIGHTIN  
Group 

  β * Se( β ) †  β  Se( β )   β   Se( β )  

White female 
N=1359 (1361) ‡  

0.14 
(0.16) 

0.10 
(0.11) 

0.99 
(0.94) 

0.21 
(0.23) 

0.88 
(0.84) 

0.16 
(0.16) 

Black female 
N=1335 (1336) 

0.03 
(0.02) 

0.14 
(0.14) 

0.69 
(0.63) 

0.28 
(0.24) 

0.36 
(0.45) 

0.15 
(0.16) 

White male 
N=1338 (1340) 

0.32 
(0.25) 

0.17 
(0.16) 

0.10 
(0.32) 

0.17 
(0.15) 

0.43 
(0.53) 

0.13 
(0.11) 

Black male 
N=1119 (1119) 

0.43 
(0.35) 

0.16 
(0.14) 

0.95 
(0.94) 

0.20 
(0.23) 

0.32 
(0.52) 

0.11 
(0.11) 

* β, logistic regression coefficient. 
† Se (β), standard error of logistic regression coefficient.  
‡ Numbers in parentheses, sample size, logistic regression coefficient and standard error of logistic 
regression coefficient from the Complete Standard Dataset.  
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Figure 2. Average AVB’s (absolute value of bias) of logistic regression coefficients across the nine scenarios among 
White Females. S1 ~ S9 represent Scenario1 ~ Scenario 9, respectively. 
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Table 3. Comparison of complete case and multiple imputation model results across the nine scenarios among 
White Females. 
 

DRKPASS 
β *true value = 0.16 

Se (β) true value = 0.11 

GUNSCHL 
β true value = 0.94 

Se (β) true value = 0.23 

FIGHTIIN 
β true value = 0.84 

Se (β) true value = 0.16 
 

AVB ‡ Se(β) † AVB  Se(β) AVB  Se(β)  
CC 0.0082 0.1178 0.0075 0.2574 0.0033 0.1740 Scenario 1 
MI 0.0043 0.1088 0.0306 0.2414 0.0613 0.1627 
CC 0.0132 0.1190 0.0148 0.2725 0.0198 0.1768 

Scenario 2 
MI 0.0329 0.1094 0.0044 0.2448 0.0280 0.1602 
CC 0.0189 0.1162 0.0462 0.2712 0.0295 0.1759 

Scenario 3 
MI 0.0004 0.1061 0.0324 0.2470 0.0725 0.1593 
CC 0.0116 0.1467 0.0182 0.3302 0.0046 0.1964 

Scenario 4 
MI 0.0133 0.1151 0.0893 0.2591 0.1732 0.1574 
CC 0.0286 0.1521 0.0504 0.3666 0.0802 0.2039 

Scenario 5 
MI 0.1437 0.1166 0.0339 0.2610 0.0815 0.1555 
CC 0.0667 0.1451 0.0633 0.3517 0.0724 0.2105 

Scenario 6 
MI 0.0315 0.1137 0.0996 0.2628 0.1800 0.1556 
CC 0.0194 0.2097 0.0390 0.4840 0.0111 0.2478 

Scenario 7 
MI 0.0279 0.1237 0.1083 0.2704 0.3118 0.1523 
CC 0.0138 0.1991 0.0335 0.4312 0.1002 0.2347 

Scenario 8 
MI 0.2718 0.1227 0.0660 0.2738 0.0575 0.1500 
CC 0.0323 0.2227 0.0261 0.5611 0.0951 0.2661 

Scenario 9 
MI 0.0771 0.1344 0.1278 0.2828 0.3126 0.1506 

* β, logistic regression coefficient. 
† Se (β), standard error of logistic regression coefficient. 
‡ AVB, absolute value of bias  (| estimated β − β true value |).  

 
Table 4. Coverage probability in Scenarios 2 and 8 for White Females. 

 
 DRKPASS (%) GUNSCHL (%) FIGHTIN (%) 

CC 96.8 96.4 95.0 Scenario 2 
MI 94.2 99.0 93.8 
CC 95.0 94.0 87.0 

Scenario 8 
MI 77.0 90.4 88.2 

 
Table 5. Average Correct Imputation Rate for the three covariates. 

 
Original scale (%) Recoded (%) Transformation 

*  
Scenario 

Q10 Q14 Q18 DRKPASS GUNSCHL FIGHTIN 
2 15.94 83.20 31.40 47.81 86.77 49.20 Without  
8 21.25 83.22 29.21 41.05 86.75 47.39 
2 40.04 89.47 50.80 65.14 92.11 66.00 

With  
8 52.40 89.54 50.75 65.52 91.81 63.22 
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Also, in most scenarios the percent AVB 
of β from MI is far greater than that from CC 
and is greater than 10% of acceptance level. This 
discrepancy was especially obvious for all the 
scenarios under MCAR (Scenarios 1, 4 and 7). 
Moreover, the AVB’s and percent AVB’s from 
MI increase substantially as larger proportions 
of the covariates were missing. Interestingly, MI 
showed consistently decreased Se (β) for each 
covariate in all the scenarios, which is not 
surprising, because the standard error of MI is 
based on full datasets (Allison, 2001).  

Table 4 lists the coverage probabilities 
in Scenarios 2 and 8 among White Females as an 
example. In both scenarios, the coverage 
probabilities from MI are not all better than 
those from CC. 

Clearly, the current MVN based 
multiple imputation did not perform as well as 
CC in generating unbiased regression estimates. 
To investigate how well the present MI actually 
imputed the missing non-normal ordinal 
covariates, Scenarios 2 and 8 were used to check 
the imputation efficiency, as the two scenarios 
have the same setting for missing data 
mechanism but different missing covariate rates. 
The Average Correct Imputation Rate is 
calculated as the average proportion of correctly 
imputed observations among the missing 
covariates. Correct imputation occurs when the 
imputed value is identical to its true value in the 
Complete Standard Dataset. Table 5 displays the 
Average Correct Imputation Rates for the three 
covariates in both original scales (Q10, Q14 and 
Q18) and recoded scales (DRKPASS, 
GUNSCHL and FIGHTIN).  

The Average Correct Imputation Rates 
for Q10 and Q18 are lower than 32% in both 
scenarios. Recoding helped to improve 
imputation efficiency for all the three covariates, 
this can be explained by the loss of precision 
after recoding. Surprisingly, the Average Correct 
Imputation Rates for Q14 (GUNSCHL) are very 
close in the two scenarios. In addition, they are 
consistently and considerably higher than those 
for the other two covariates. This may be 
explained by the fact that a vast majority of its 
observations fall into one category (figure 1).  

Natural logarithmic transformation on 
the three covariates was also attempted before 
multiple imputation to approximate normal 

variables and to fit the distributional 
assumptions of the imputation model. The 
Average Correct Imputation Rates for Q10 and 
Q18 in original and recoded scales in both 
scenarios improved as compared to before the 
transformation, but still not satisfactory (below 
53%). Nevertheless, the majority of Q4 (above 
89%) in both scales have been correctly 
imputed.   

Also examined was the effect of 
rounding on imputation efficiency, because the 
continuously distributed imputes have been 
rounded to the nearest category using a cutoff 
value 0.5 to preserve their ordinal property. For 
illustration an example is presented using a 
random dataset with missing covariates created 
in Scenario 8. The 50th ~ 65th observations of 
Q10 in this dataset are listed in table 6 along 
with their five imputed values in the same 
manner as in the simulations but without 
rounding the continuous imputed values. A large 
proportion (34 out of 50) of the imputed values 
is in different categories from their true values 
after being rounded using the cutoff value 0.5.  

The prevalence of dissatisfaction, D2 = 
1, ranges from 0.58% to 6.95% among the four 
race-gender groups. Interestingly, even with 
such low frequencies of the outcome (D2 = 1), 
all the covariates are significantly related to the 
outcome with odds of dissatisfaction with the 
trait present ranges from 1.42 to 2.27 times the 
same odds when the trait is absent. The three 
traits DRKPASS, GUNSCHL and FIGHTIN are 
strongly associated with each other with odds 
ratios between the traits ranging from 2.22 to 
4.52. The significant associations between the 
four variables support these four variables as 
objects of our study of imputations on their 
values and whether imputation removes biases 
under these conditions. 

In this study, CC showed smaller bias in 
the scenarios assuming MCAR for each 
covariate than in those with MAR and NI, 
regardless of proportions of missing covariates. 
This is consistent with the study by Allison 
(2000). The finding that the scenarios under NI 
showed relatively large biases in CC as 
compared to the MCAR conditions is also in 
accordance with King et al. (2001).  
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Accumulating evidence suggests that MI 

is usually better than, and almost always not 
worse than CC (Wu & Wu, 2001; Schafer, 1998; 
Allison, 2001; Little, 1992). Evidence provided 
by Schafer (1997, 2000) demonstrated that 
incomplete categorical (ordinal) data can often 
be imputed reasonably from algorithms based on 
a MVN model. However, our study did not show 
consistent results with the findings from 
Schafer, this is mainly due to ignorance of 
assumption of normality.    

It is known that sensitivity to model 
assumptions is an important issue regarding the 
consistency and efficiency of normal maximum 
likelihood method applied to incomplete data. 
The improved, though unsatisfactory, imputation 
after natural logarithmic transformation 
presented a good demonstration of the 
importance of sensitivity to normal model 
assumption.  

Moreover, normal ML methods do not 
guarantee consistent estimates, and they are 
certainly not necessarily efficient when the data  
 

 
 
 
are non-normal (Little, 1992). The MVN based 
MI procedure not specifically tailored to highly 
skewed ordinal data may have seriously 
distorted the ordinal variables’ distributions or 
their relationship with other variables in our 
study, and therefore is not reliable when 
imputing highly skewed ordinal data.  

It was suggested that and highly skewed 
variables may well be transformed to 
approximate normality (Tabachnick & Fidell, 
2000). Nevertheless, highly skewed ordinal 
variables with only four or five values can 
hardly be transformed to nearly normal variables 
as shown by the unsatisfactory imputation 
efficiencies after natural logarithmic 
transformation. This study gives a warning that 
doing imputation without checking distributional 
assumptions of imputation model can lead to 
worse trouble than not imputing at all. 

In addition, rounding after MI should be 
further explored in terms of appropriate cutoff 
values. One is cautioned that rounding could 
also bring its own bias into regression analysis 
in multiple imputations of categorical variables.  

 
Table 6. Five Imputations for missing Q10 without rounding on imputed values from one random dataset in 
Scenario 8. 
 

Imputation number 
Obs. Q10 

True 
value 1 2 3 4 5 

50 2 2      
51 . 1 1.7823 * 1.6022 * 1.7633 * 1.8180 * 1.3918 
52 2 2      
53 . 1 1.3587 2.0277  1.8274 * 1.6079 * 1.4763 
54 . 2 2.1264 2.4809 2.3249 2.0099 2.0358 
55 . 1 1.7062 * 1.6104 * 1.6476 * 1.5978 * 1.6790 * 
56 1 1      
57 . 1 1.4641 1.8700 * 1.5210 * 1.2140 1.5401 * 
58 . 1 1.9022 * 1.8579 * 1.6802 * 1.7611 * 1.5634 * 
59 1 1      
60 1 1      
61 . 1 1.5195 * 1.6148 * 1.5551 * 1.9029 * 1.5423 * 
62 . 1 1.6313 * 1.6186 * 1.7034 * 1.4602 1.8294 * 
63 . 1 1.6788 * 1.6553 * 1.6355 * 1.6657 * 1.5695 * 
64 . 2  1.7022  2.0307  1.7366 1.4447 *  1.8448 
65 1 1      
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Conclusion 
 

Applied researchers can be reasonably confident 
in utilizing CC to generate unbiased regression 
estimates even when large proportions of data 
missing completely at random. For ordinal 
variables with highly skewed distributions, 
MVN based MI cannot be expected to be 
superior to CC in generating unbiased regression 
estimates. It is cautionary that researchers doing 
imputation without checking distributional 
assumptions of imputation model can get into 
worse trouble than not imputing at all. 
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Appendix A: 1997 SCYRBS Questionnaire items associated with the three covariates in regression analysis 
  
Question 10 (Q10). During the past 30 days, how many times did you ride in a car or other vehicle driven by 
someone who had been drinking alcohol?  
1. 0 times  
2. 1 time  
3. 2 or 3 times  
4. 4 or 5 times  
5. 6 or more times  
 
Question 14 (Q14). During the past 30 days, on how many days did you carry a weapon such as a gun, knife, or 
club on school property?  
1. 0 days  
2. 1 day  
3. 2 or 3 days  
4. 4 or 5 days  
5. 6 or more days 
  
Question 18 (Q18). During the past 12 months, how many times were you in a physical fight?  
1. 0 times  
2. 1 time  
3. 2 or 3 times  
4. 4 or 5 times  
5. 6 or 7 times  
6. 8 or 9 times  
7. 10 or 11 times  
8. 12 or more times  
 

Appendix B: SAS Code 
SAS PROC MI code for multiple imputation  
proc mi data=first.c&I out=outmi&I seed=6666 nimpute=5 
minimum=1 1 1 1 1 1 0  maximum=5 5 5 5 8 5 1 round=1 noprint; 
em maxiter=1000 converge=1E-10; 
mcmc impute=full initial=em prior=ridge=0.75 niter=500 nbiter=500; 
freq weight; 
var Q10 Q11 Q13 Q14 Q18 Q19 D2;  
run; 
 

Appendix C: SUDAAN Code 
SUDAAN PROC MULTILOG code for multiple logistic regression analysis  
Proc multilog data=stand filetype=sas design=wr noprint;   
nest stratum psu; 
weight weight; 
subpopn sexrace=1  / name=”white female”; 
subgroup D2 drkpass gunschl fightin; 
levels 2 2 2 2; 
reflevel drkpass=1 gunschl=1 fightin=1; 
model D2 = drkpass gunschl fightin; 
output beta sebeta/filename=junk_2 filetype=sas; 
run;  
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