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An Algorithm For Generating Unconditional Exact Permutation  
Distribution For A Two-Sample Experiment 

 
J. I. Odiase          S. M. Ogbonmwan 

Department of Mathematics 
University of Benin, Nigeria 

 
 
An Algorithm that generates the unconditional exact permutation distribution of a 2 x n experiment is 
presented. The algorithm is able to handle ranks as well as actual observations. It makes it possible to 
obtain exact p-values for several statistics, especially when sample sizes are small and the application of 
large sample approximation is unreliable. An illustrative implementation is achieved and leads to the 
computation of exact p-values for the Mood test when the sample size is small. 
 
Key words: permutation test, Monte Carlo test, p-value, rank order statistic, Mood test 
 
 

Introduction 
 
An important part of Statistical Inference is the 
representation of observed data in terms of a p-
value. In fact, the p-value plays a major role in 
determining whether to accept or reject the null 
hypothesis. The p-value assists in establishing 
whether the observed data are statistically 
significant and so, any statistical approach that 
will guarantee its proper computation should be 
developed and employed in inferential statistics 
so that the probability of making a type I error is 
exactly α. 
 In practice, data are usually collected 
under varied conditions with some distributional 
assumptions such as that the data came from a 
normal distribution. It is advisable to avoid as 
much as possible making so many distributional  
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assumptions because data are usually never 
collected under ideal or perfect conditions, that 
is, do not conform perfectly to an assumed 
distribution or model being employed in its 
analysis. The p-value obtained through the 
permutation approach turns out to be the most 
reliable because it is exact, see Agresti (1992) 
and Good (2000). 
 If the experiment to be analyzed is made 
up of small or sparse data, large sample 
procedures for statistical inference are not 
appropriate (Senchaudhuri et al., 1995; Siegel & 
Castellan, 1988). In this article, consideration is 
given to the special case of 2 x n tables with row 
and column totals allowed to vary with each 
permutation – this seems more natural than 
fixing the row and column totals. This is the 
unconditional exact permutation approach which 
is all-inclusive rather than the constrained or 
conditional exact permutation approach of fixing 
row and column totals. This later approach 
mainly addresses contingency tables (Agresti, 
1992). 
 Several approaches have been suggested 
as alternatives to the computationally intensive 
unconditional exact permutation see Fisher 
(1935) and Agresti (1992) for a discussion on 
exact conditional permutation distribution. Also 
see Efron (1979), Hall and Tajvidi (2002), Efron 
and Tibshirani (1993), Opdyke (2003) for Monte 
Carlo approaches. Other approaches like the 
Bayesian and the likelihood have also been 
found useful in obtaining exact permutation 
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distribution (Bayarri & Berger, 2004; 
Spiegelhalter, 2004). 
 Large sample approximations are 
commonly adopted in several nonparametric 
tests as alternatives to tabulated exact critical 
values. The basic assumption required for such 
approximations to be reliable alternatives is that 
the sample size should be sufficiently large. 
However, there is no generally agreed upon 
definition of what constitutes a large sample size 
(Fahoome, 2002). 
 Available software for exact inference is 
expensive, with varied restrictions in the 
implementation of exact permutation procedures 
in the software. Computational time is highly 
prohibitive even with very fast processor speed 
of available personal computers. R. A. Fisher 
compiled by hand 32,768 permutations of 
Charles Darwin’s data on the height of cross-
fertilized and self-fertilized zea mays plants. The 
enormity of this task possibly discouraged 
Fisher from probing further into exact 
permutation tests (Ludbrook & Dudley, 1998). 
 Permutation tests provide exact results, 
especially when complete enumeration is 
feasible. A comprehensive documentation of the 
properties of permutation tests can be found in 
Pesarin (2001). The problem with permutation 
tests has been high computational demands, viz 
space and time complexities. Sampling from the 
permutation sample space rather than carrying 
out complete enumeration of all possible distinct 
rearrangements is what most of the available 
permutation procedures do, see Opdyke (2003) 
for a detailed listing of widely available 
permutation sampling procedures.  

Opdyke (2003) however observed that 
most of the existing procedures can perform 
Monte Carlo sampling without replacement 
within a sample, but none can avoid the 
possibility of drawing the same sample more 
than once, thereby reducing the power of the 
permutation test. 
 The purpose of this article is to fashion 
out a sure and efficient way of obtaining 
unconditional exact permutation distribution by 
ensuring that a complete enumeration of all the 
distinct permutations of any 2-sample 
experiment is achieved. This will produce exact 
p-values and therefore ensure that the 
probability of making a type I error is exactly α. 

This article also provides computer algorithms 
for achieving complete enumeration. 
  

Methodology 
 
Good (2000) considered the tails of permutation 
distribution in order to arrive at p-values, though 
he never carried out complete enumeration 
required for a permutation test. This approach 
has no precise model for the tail of the 
distribution from which data are drawn, (Hall & 
Weissman, 1997). The five steps for a 
permutation test presented in Good (2000) can 
be summarized thus: 
 

1.     Analyze the problem. 
2. Choose a statistic and establish a 
rejection rule that will distinguish the 
hypothesis from the alternative. 
3. Compute the test statistic for the 
original observations. 

 4.     Rearrange the observations, compute 
the test statistic for every new 
arrangement and repeat this process until 
all permutations are obtained. 
5. Construct the distribution for the test 
statistic based on Step 4. 
 

Step 4 is where the difficulty in 
permutation test lies because a complete 
enumeration of all distinct permutations of the 
experiment is required. A 2-sample experiment 
with 15 variates in each sample requires 
155,117,520 permutations. Clearly, the 
enumeration cannot be done manually, even if 
the computer produces 1000 permutations in a 
second, over 43 hours will be required for a 
complete enumeration. When this is achieved, p-
values can be computed. Good (2000) identified 
the sufficient condition for a permutation test to 
be exact and unbiased against shifts in the 
direction of higher values as the exchangeability 
of the observations in the combined sample. 

 Let ( )T
ini2i1i i

x,,x,xX �= , i = 1, 2 

and ni is the ith sample size. Also, let XN = (X1, 
X2), where N = n1 + n2. XN is composed of N 
independent and identically distributed random 

variables. We have 
!!
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possible permutations of the N variates of the 2 
samples of size n, i = 1, 2 which are equally 
likely, each having the probability 

1

!2n!1n

!N
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
. 

 
For equal sample sizes, n = n1 = n2, the 

number of permutations = 
( )
( )2n!

2n !
 or 

( )2n!

!N
 and  

 

the probability of each permutation = 
( )

!N

2n!
. 

  
 
 
 
 

For all possible permutations of the N 
variates, systematically develop a pattern 
necessary for the algorithm required for the 
generation of all the distinct permutations. The 
presentation of the systematic generation of all 
the possible permutations of the N variates now 
follows. 

Examine an experiment of two samples 
(treatments), each with two variates, i.e., 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2212

2111

xx

xx
, where x11, x12, x21 and x22 

represent sample values. Number of distinct 

arrangements = 6
2!2!

4! =  (permutations) as 

listed in Table 1. 
 
 
 

 
Table 1: Permutations of a 2 x 2 Experiment. 

 

2212

2111

xx

xx

1

 

2212

1121

xx

xx

2

 

1112

2122

xx

xx

3

 

2221

1211

xx

xx

4

 

1222

2111

xx

xx

5

 

1222

1121

xx

xx

6

 

 
Numbers 1 – 6 on top of the permutations represent the permutation numbers 
 The actual process of permuting the variates of the experiment reveals the following. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2212

2111

xx

xx
 original arrangement of the experiment 1 permutation 

x11 ← x2i, i = 1, 2     2 permutations 
x12 ← x2i, i = 1, 2     2 permutations 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1222

1121

xx

xx
 exchange the samples (columns)  1 permutation 

 In an attempt to offer a mathematical explanation for the method of exchanges of variates leading 
to the algorithm, observe that 
 

1   1  x  1
0

2

0

2
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutation (original arrangement of the experiment) 

4    2  x  2
1

2

1

2
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutations (using one variate from first sample) 

1   1  x  1
2

2

2

2
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutation (exchange the samples, i.e., 2 variates) 

Total = 1 + 4 + 1 = 6 
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Observe that permutation (1) is the 
original arrangement, permutations (2) to (5) are 
obtained by using the elements of the first 
column to interchange the elements of the 
second column, one at a time. Permutation (6) is 
obtained by interchanging the columns of the 
original arrangement of the experiment, making 
use of the two elements in the first column. 
 Examine a 2-sample experiment, where 

each sample has 3 variates, i.e. 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2313

2212

2111

xx

xx

xx

. 

The expectation is to have 20
3!3!

6! =  

permutations, which are given in Table 2. 
The process of permuting the variates 

reveal the following: 
 

                                 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2313

2212

2111

xx

xx

xx

 original 

arrangement of the experiment 1 permutation 
 
x11 ← x2i, i = 1, 2, 3  3 permutations 
x12 ← x2i, i = 1, 2, 3 3 permutations 
x13 ← x2i, i = 1, 2, 3 3 permutations 
 

                            ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

t

s

x

x

1

1  ← ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

j

i

x

x

2

2
;  

s ≠ t, i ≠ j (3 x 3)  9 permutations 
 

                               
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1323

1222

1121

xx

xx

xx

  

 
exchange the samples (columns) 1 permutation 
Again, observe that 

1   1  x  1
0

3

0

3
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutation  

(original arrangement of the experiment) 

9    3  x  3
1

3

1

3
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutations  

(using one variate from first sample) 

9    3  x  3
2

3

2

3
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutations  

(using two variates from first sample) 

1    1  x  1
3

3

3

3
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 Permutation  

(exchange samples, i.e., three variates) 
Total = 1 + 9 + 9 + 1 = 20 
 

Similarly, observe that permutation (1) 
is the original matrix, permutations (2) to (10) 
are obtained by using the elements of the first 
column to interchange the elements of the 
second column, one at a time. Permutations (11) 
to (19) are obtained by using 2 elements of the 
first column to interchange the elements of the 
second column, and permutation (20) is obtained 
by interchanging the columns of the original 
arrangement of the experiment. 
 Continuing in the above fashion, clearly, 
the number of permutations for any 2-sample 
experiment can be written as 
 

 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛n

0i i

n

i

n
 = ∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛n

0i i

n
2

  

                                       =   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

n

2n
 

 
for equal sample sizes. An adjustment for 

unequal sample sizes yields 
( )

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛21 n,nmin

0i

21

i

n

i

n
 

permutations, because ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

b

a
 = 0 for b > a. 

 After obtaining all the distinct 
permutations from a complete enumeration, the 
statistic of interest is computed for each 
permutation. Each value of the statistic obtained 
from a complete enumeration occurs with 

probability 

1

!2n!1n

!N
−

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
 for sample sizes, n1 

and n2, N = n1 + n2, this translates to
( )

!N

2n!
 for n 

= n1 = n2. The distribution of the statistic is  
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thereafter obtained by simply tabulating the 
distinct values of the statistic against their 
probabilities of occurrence in the complete 
enumeration. 
 This method of obtaining unconditional 
exact permutation distribution also suffices 
when ranks of observations of an experiment are 
used instead of the actual observations. In 
handling ranks with this approach, tied 
observations do not pose any problems because 
the permutation process will be implemented as 
if the tied observations or ranks are distinct. 
 Given an n x p experiment,  
 

XN = 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

pnn

p

xx

xx

�

���

�

1

111

, N = np 

 
 
 

 
with xij as actual observations, i = 1, 2, …, p, j = 
1, 2, …, n for some rank order statistic, replace 
these observations with ranks. In order to 
achieve this, do a combined ranking from the 
smallest to the largest observation. For equal 
sample sizes, this yields an n x p matrix of ranks 
represented as follows: 
 

 RN = 

( ) ( )

( ) ( ) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

p
nn

p

RR

RR

�

���

�

1

1

1

1

,  

 

N = np and ( )j
iR  is the ith rank for sample j, see 

Sen and Puri (1967) for an expository discussion 
of rank order statistics. At this stage, the method 
can now be applied to this matrix of ranks. Note 
that any rearrangement or permutation of this 
matrix of ranks can be used in generating all the 
other distinct permutations. 

 

Table 2: Permutations of a 2 x 3 Experiment. 
 

2313

2212

2111

xx

xx

xx

1

 

2313

2212

1121

xx

xx

xx

2

 

2313

1112

2122

xx

xx

xx

3

 

1113

2212

2123

xx

xx

xx

4

 

2313

2221

1211

xx

xx

xx

5

 

2313

1222

2111

xx

xx

xx

6

 

1213

2223

2111

xx

xx

xx

7

 

2321

2212

1311

xx

xx

xx

8

 

2322

1312

2111

xx

xx

xx

9

 

1323

2212

2111

xx

xx

xx

10

 

2313

1222

1121

xx

xx

xx

11

 

1213

2223

1121

xx

xx

xx

12

 

1213

1123

2122

xx

xx

xx

13

 

2322

1312

1121

xx

xx

xx

14

 

1323

2212

1121

xx

xx

xx

15

 

1323

1112

2122

xx

xx

xx

16

 

2322

1321

1211

xx

xx

xx

17

 

1323

2221

1211

xx

xx

xx

18

 

1323

1222

2111

xx

xx

xx

19

 

1323

1222

1121

xx

xx

xx

20

 

 

Numbers 1 – 20 on top of the permutations represent the permutation numbers. 
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The first step in developing the 
algorithm is to formulate the matrix of ranks, by 
adopting the trivial permutation, because it does 
not matter what rearrangement of the actual 
matrix of ranks is used in initiating the process 
of permutation, that is, 

 

                     

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

+
+
+

211

1

1

1

nnn

3n3

2n2

1n1

��

  

 

and in the case of n1 =  n2 = n, 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+
+
+

2nn

3n3

2n2

1n1

��

. 

 
For the above matrix of ranks, ensure 

that ties are taken care of, by replacing ranks of 
tied observations with the mean of their ranks. 
 In designing the computer algorithm for 
the method of complete enumeration via 
permutation described so far, it is intended that 
all statements should be read like sentences or as 
a sequence of commands. We write Set T ←  1, 
where Set is part of the statement language and 
T is a variable. Words that form the statement 
language required for this work include: do, od, 
else, for, if, fi, set, then, through, to, as used in 
Goodman and Hedetniemi (1977). To 
distinguish variable names from words in the 
statement language, variable names appear in 
full capital letters. 
  
 
 
 
 
 
 
 
 
 
 

As a way of illustration, in formulating 
the computer algorithm for unconditional exact 
permutation distribution, a consideration is 
given to rank order statistic. The computer 
algorithm for the generation of the “trivial” 
matrix of ranks is presented in the next session 
for equal sample sizes. 
 
 

Results 
 
Algorithm (RANK) Generation of the trivial 
matrix of ranks 
 

Step 1. Set P ←  number of treatments;  
                  K ←  Number of variates 
Step 2. For I ←  1 to P do through Step 4 
Step 3. For J ←  1 to K do through Step 4 
Step 4. [X is the matrix of ranks]  
             Set X(J, I) ←  (I – 1)K + J od 

 
 For all possible permutations of the N 
samples of p subsets of size n, the model of the 
number of permutations required for the 
computer algorithm for an experiment of two 
samples is: 
 

 ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛n

0i i

n

i

n
 permutations 

 
where n is the number of variates in each sample 
(column) i.e., the balanced case. The computer 
algorithm now follows. 
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Algorithm (PERMUTATION) 

 
Step 1  For J1 ←  1 to K do through Step 5 
Step 2  Set TEMP ←  X(J1, P - 1), I1 ←  P 
Step 3  For J2 ←  1 to K do Step 5 
Step 4  Set X(J1, P - 1) ←  X(J2, I1), X(J2, I1) ←  TEMP 
Step 5  [Compute statistic and restore original values of X] od 
Step 6  For I ←  1 to K – 1 do through Step 16 
Step 7  Set TEMP1 ←  X(I, P - 1) 
Step 8  For J ←  I + 1 to K do through Step 16 
Step 9  Set TEMP2 ←  X(J, P - 1) 
Step 10  For L ←  P to P do through Step 16 
Step 11  For I1 ←  1 to K do through Step 16 
Step 12  For L1 ←  L to P do through Step 16 
Step 13  If L ←  L1 then Set T ←  I1 + 1 
                                             else Set T ←  1 fi 
Step 14  For J1 ←  T to K do Step 16 
Step 15 Set X(I, P - 1)← X(I1, L), X(I1, L) ← TEMP1, 

X(J, P - 1) ←  X(J1, L1), X(J1, L1) ←  TEMP2 
Step 16  [Compute statistic and restore original values of X] od 
Step 17  For I ←  1 to K – 2 do through Step 32 
Step 18  Set TEMP1 ←  X(I, P - 1) 
Step 19  For J ←  I + 1 to K – 1 do through Step 32 
Step 20  Set TEMP2 ←  X(J, P - 1) 
Step 21  For M ←  J + 1 to K do through Step 32 
Step 22  Set TEMP3 ←  X(M, P - 1) 
Step 23  For L ←  P to P do through Step 32 
Step 24  For I1 ←  1 to K do through Step 32 
Step 25  For L1 ←  L to P do through Step 32 
Step 26  If L ←  L1 then Set T ←  I1 + 1 
                                             else Set T ←  1 fi 
Step 27  For J1 ←  T to K do through Step 32 
Step 28  For L2 ←  L1 to P do through Step 32 
Step 29  If L1 ←  L2 then Set T1 ←  J1 + 1 
                                               else Set T1 ←  1 fi 
Step 30  For J2 ←  T1 to K do Step 32 
Step 31 Set X(I, P - 1)← X(I1, L), X(I1, L) ←  TEMP1, 

X(J, P - 1) ←  X(J1, L1), X(J1, L1) ←  TEMP2, 
X(M, P - 1) ←  X(J2, L2), X(J2, L2) ←  TEMP3 

Step 32  [Compute statistic and restore original values of X] od 
Step 33  For I ←  1 to K – 3 do through Step 53 
Step 34  Set TEMP1 ←  X(I, P - 1) 
Step 35  For J ←  I + 1 to K – 2 do through Step 53 
Step 36  Set TEMP2 ←  X(J, P - 1) 
Step 37  For M ←  J + 1 to K – 1 do through Step 53 
Step 38  Set TEMP3 ←  X(M, P - 1) 
Step 39  For N ←  M + 1 to K do through Step 53 
Step 40  Set TEMP4 ←  X(N, P - 1) 
Step 41  For L ←  P to P do through Step 53 
Step 42  For I1 ←  1 to K do through Step 53 
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The PERMUTATION algorithm was 

translated to FORTRAN codes and implemented 
in Intel Visual FORTRAN for a 2 x 5 
experiment. The 252 distinct permutations 
generated are presented in the Appendix.  The 
algorithm can be extended to any sample size, 
depending on the processor speed and memory 
space of the computer being used to implement 
the algorithm. For an optimal management of 
computer memory (space complexity), the 
permutations are not stored, they are discarded 
immediately the statistic of interest is computed. 
 By way of illustration, generate the p-
values for a 2 x 5 experiment for the Mood test. 
Fahoome (2002) noted that when α = 0.05, 
sample size should exceed 5 for the large sample 
approximation to be adopted for the Mood test. 
The unconditional permutation approach makes 
it possible to obtain exact p-values even for 
fairly  large  sample  sizes.  Given  two  samples, 
 
 
 
 
 
 

 
 
 
 
y11, y12, …, y1n and y21, y22, …, y2n, the test 
statistic for the Mood test is 
 

 M = 
2n

1i
1i 2

12n
R∑

=
⎟
⎠

⎞
⎜
⎝

⎛ +−  

for equal sample sizes. 
R1i is the rank of y1i, i = 1, 2, …, n obtained after 
carrying out a combined ranking for the two 
samples. The large sample approximation for 
equal samples is 

           z    = 

( )

( )( )
180

41

12

1

22

2

−+

−−

NNn

Nn
M

,  

 
where N = 2n and M the Mood test statistic. 

The p-values obtained are presented in 
Table 3 and the distribution of the test statistic is 
represented graphically in Figure 1. 
 

 
 
 

 

 
Step 43  For L1 ←  L to P do through Step 53 
Step 44  If L ←  L1 then Set T ←  I1 + 1 
                     else Set T ←  1 fi 
Step 45  For J1 ←  T to K do through Step 53 
Step 46  For L2 ←  L1 to P do through Step 53 
Step 47  If L1 ←  L2 then Set T1 ←  J1 + 1 
           else Set T1 ←  1 fi 
Step 48  For J2 ←  T1 to K do through Step 53 
Step 49  For L3 ←  L2 to P do through Step 53 
Step 50  If L2 ←  L3 then Set T2 ←  J2 + 1 
           else Set T2 ←  1 fi 
Step 51  For J3 ←  T2 to K do Step 53 
Step 52 Set X(I, P - 1)← X(I1, L), X(I1, L) ← TEMP1, 

X(J, P - 1) ←  X(J1, L1), X(J1, L1) ←  TEMP2, 
X(M, P - 1) ←  X(J2, L2), X(J2, L2) ←  TEMP3, 
X(N, P - 1) ←  X(J3, L3), X(J3, L3) ←  TEMP4 od 

Step 53  [Compute statistic and restore original values of X] od 
Step 54  [Interchange samples and compute statistic] 
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Table 3. p-values for Mood Statistic. 

 
M p(M) p-value M p(M) p-value 
11.25 0.0079 0.0079 43.25 0.0397 0.6032 
15.25 0.0079 0.0159 45.25 0.0476 0.6508 
17.25 0.0159 0.0317 47.25 0.0714 0.7222 
21.25 0.0317 0.0635 49.25 0.0397 0.7619 
23.25 0.0317 0.0952 51.25 0.0397 0.8016 
25.25 0.0159 0.1111 53.25 0.0476 0.8492 
27.25 0.0397 0.1508 55.25 0.0397 0.8889 
29.25 0.0476 0.1984 57.25 0.0159 0.9048 
31.25 0.0397 0.2381 59.25 0.0317 0.9365 
33.25 0.0397 0.2778 61.25 0.0317 0.9682 
35.25 0.0714 0.3492 65.25 0.0159 0.9841 
37.25 0.0476 0.3968 67.25 0.0079 0.9921 
39.25 0.0397 0.4365 71.25 0.0079 1.0000 
41.25 0.1270 0.5635    
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Figure 1. Exact distribution of Mood test statistic for a 2 x 5 experiment. 
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Clearly, results obtained from using 
Normal distribution, which is the large sample 
asymptotic distribution for the Mood test, will 
certainly not be exactly the same as using the 
exact permutation distribution, especially for 
small sample sizes. The permutation approach 
produces the exact p-values. 
 
Example 
 Consider the following example on page 
278 of Freund (1979) on difference of means. 
Table 2: Heat-producing capacity of coal in 
millions of calories per tonne 
 

Mine1 Mine2 
8400 7510 
8230 7690 
8380 7720 
7860 8070 
7930 7660 

 
 

Subjecting the data in Table 2 to Mood 
test, the test statistic (M) is 39.25 and from 
Table 3 containing unconditional exact 
permutation distribution of Mood test statistic, 
the corresponding p-value is 0.4365 which 
exceeds α = 0.05, suggesting that we cannot 
reject the null hypothesis of no difference 
between  the   heat-producing  capacity  of  coal 
from the two mines. Adopting the large sample 
Normal approximation for Mood test, z 
calculated is –0.17 which gives a p-value of 
0.4325 and this exceeds α/2 = 0.025, meaning 
that the observed data are compatible with the 
null hypothesis of no difference as earlier 
obtained from the exact permutation test. 

 
Conclusion 

 
Several authors have attempted to obtain exact 
p-values for different statistics using the 
permutation approach. Two things have made 
their attempts an uphill task. First is the speed of 
computer required to perform a permutation test. 
Until recently, the speed of available computers 
has been grossly inadequate to handle complete 
enumeration for even small sample sizes. Recent 
advances in computer design has drawn 
researchers in this area closer to the realization 
of complete enumeration even for fairly large 

sample sizes. Secondly, the intensive looping in 
computer programming required for complete 
enumeration for unconditional exact permutation 
test demands a good programming skill. 

 In this article, a straight forward but 
computer intensive approach has been adopted 
in creating an algorithm that can carryout a 
systematic enumeration of distinct permutations 
of a 2-sample experiment. With this algorithm, 
the p-values for statistics involving two samples 
can be accurately generated, thereby ensuring 
that the probability of making a type I error is 
exactly α 
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Appendix:  Permutations of a 2 x 5 Experiment. 
 

1 
 1  6 
 2  7 
 3  8 
 4  9 
 5  10 

2 
 6  1 
 2  7 
 3  8 
 4  9 
 5  10 

3 
 7  6 
 2  1 
 3  8 
 4  9 
 5  10 

4 
 8  6 
 2  7 
 3  1 
 4  9 
 5  10 

5 
 9  6 
 2  7 
 3  8 
 4  1 
 5  10 

6 
 10  6 
 2  7 
 3  8 
 4  9 
 5  1 

7 
 1  2 
 6  7 
 3  8 
 4  9 
 5  10 

8 
 1  6 
 7  2 
 3  8 
 4  9 
 5  10 

9 
 1  6 
 8  7 
 3  2 
 4  9 
 5  10 

10 
 1  6 
 9  7 
 3  8 
 4  2 
 5  10 

11 
 1  6 
 10 7 
 3  8 
 4  9 
 5  2 

12 
 1  3 
 2  7 
 6  8 
 4  9 
 5  10 

13 
 1  6 
 2  3 
 7  8 
 4  9 
 5  10 

14 
 1  6 
 2  7 
 8  3 
 4  9 
 5  10 

15 
 1  6 
 2  7 
 9  8 
 4  3 
 5  10 

16 
 1  6 
 2  7 
 10 8 
 4  9 
 5  3 

17 
 1  4 
 2  7 
 3  8 
 6  9 
 5  10 

18 
 1  6 
 2  4 
 3  8 
 7  9 
 5  10 

19 
 1  6 
 2  7 
 3  4 
 8  9 
 5  10 

20 
 1  6 
 2  7 
 3  8 
 9  4 
 5  10 

21 
 1  6 
 2  7 
 3  8 
 10 9 
 5  4 

22 
 1  5 
 2  7 
 3  8 
 4  9 
 6  10 

23 
 1  6 
 2  5 
 3  8 
 4  9 
 7  10 

24 
 1  6 
 2  7 
 3  5 
 4  9 
 8  10 

25 
 1  6 
 2  7 
 3  8 
 4  5 
 9  10 

26 
 1  6 
 2  7 
 3  8 
 4  9 
 10 5 

27 
 6  1 
 7  2 
 3  8 
 4  9 
 5  10 

28 
 6  1 
 8  7 
 3  2 
 4  9 
 5  10 

29 
 6  1 
 9  7 
 3  8 
 4  2 
 5  10 

30 
 6  1 
 10 7 
 3  8 
 4  9 
 5  2 

31 
 7  6 
 8  1 
 3  2 
 4  9 
 5  10 

32 
 7  6 
 9  1 
 3  8 
 4  2 
 5  10 

33 
 7  6 
 10 1 
 3  8 
 4  9 
 5  2 

34 
 8  6 
 9  7 
 3  1 
 4  2 
 5  10 

35 
 8  6 
 10 7 
 3  1 
 4  9 
 5  2 

36 
 9  6 
 10 7 
 3  8 
 4  1 
 5  2 

37 
 6  1 
 2  3 
 7  8 
 4  9 
 5  10 

38 
 6  1 
 2  7 
 8  3 
 4  9 
 5  10 

39 
 6  1 
 2  7 
 9  8 
 4  3 
 5  10 

40 
 6  1 
 2  7 
 10 8 
 4  9 
 5  3 

41 
 7  6 
 2  1 
 8  3 
 4  9 
 5  10 

42 
 7  6 
 2  1 
 9  8 
 4  3 
 5  10 

43 
 7  6 
 2  1 
 10 8 
 4  9 
 5  3 

44 
 8  6 
 2  7 
 9  1 
 4  3 
 5  10 

45 
 8  6 
 2  7 
 10 1 
 4  9 
 5  3 

46 
 9  6 
 2  7 
 10 8 
 4  1 
 5  3 

47 
 6  1 
 2  4 
 3  8 
 7  9 
 5  10 

48 
 6  1 
 2  7 
 3  4 
 8  9 
 5  10 
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Appendix Continued: 
 

49 
 6  1 
 2  7 
 3  8 
 9  4 
 5  10 

50 
 6  1 
 2  7 
 3  8 
 10 9 
 5  4 

51 
 7  6 
 2  1 
 3  4 
 8  9 
 5  10 

52 
 7  6 
 2  1 
 3  8 
 9  4 
 5  10 

53 
 7  6 
 2  1 
 3  8 
 10 9 
 5  4 

54 
 8  6 
 2  7 
 3  1 
 9  4 
 5  10 

55 
 8  6 
 2  7 
 3  1 
 10 9 
 5  4 

56 
 9  6 
 2  7 
 3  8 
 10 1 
 5  4 

57 
 6  1 
 2  5 
 3  8 
 4  9 
 7  10 

58 
 6  1 
 2  7 
 3  5 
 4  9 
 8  10 

59 
 6  1 
 2  7 
 3  8 
 4  5 
 9  10 

60 
 6  1 
 2  7 
 3  8 
 4  9 
 10 5 

61 
 7  6 
 2  1 
 3  5 
 4  9 
 8  10 

62 
 7  6 
 2  1 
 3  8 
 4  5 
 9  10 

63 
 7  6 
 2  1 
 3  8 
 4  9 
 10 5 

64 
 8  6 
 2  7 
 3  1 
 4  5 
 9  10 

65 
 8  6 
 2  7 
 3  1 
 4  9 
 10 5 

66 
 9  6 
 2  7 
 3  8 
 4  1 
 10 5 

67 
 1  2 
 6  3 
 7  8 
 4  9 
 5  10 

68 
 1  2 
 6  7 
 8  3 
 4  9 
 5  10 

69 
 1  2 
 6  7 
 9  8 
 4  3 
 5  10 

70 
 1  2 
 6  7 
 10 8 
 4  9 
 5  3 

71 
 1  6 
 7  2 
 8  3 
 4  9 
 5  10 

72 
 1  6 
 7  2 
 9  8 
 4  3 
 5  10 

73 
 1  6 
 7  2 
 10 8 
 4  9 
 5  3 

74 
 1  6 
 8  7 
 9  2 
 4  3 
 5  10 

75 
 1  6 
 8  7 
 10 2 
 4  9 
 5  3 

76 
 1  6 
 9  7 
 10 8 
 4  2 
 5  3 

77 
 1  2 
 6  4 
 3  8 
 7  9 
 5  10 

78 
 1  2 
 6  7 
 3  4 
 8  9 
 5  10 

79 
 1  2 
 6  7 
 3  8 
 9  4 
 5  10 

80 
 1  2 
 6  7 
 3  8 
 10 9 
 5  4 

81 
 1  6 
 7  2 
 3  4 
 8  9 
 5  10 

82 
 1  6 
 7  2 
 3  8 
 9  4 
 5  10 

83 
 1  6 
 7  2 
 3  8 
 10 9 
 5  4 

84 
 1  6 
 8  7 
 3  2 
 9  4 
 5  10 

85 
 1  6 
 8  7 
 3  2 
 10 9 
 5  4 

86 
 1  6 
 9  7 
 3  8 
 10 2 
 5  4 

87 
 1  2 
 6  5 
 3  8 
 4  9 
 7  10 

88 
 1  2 
 6  7 
 3  5 
 4  9 
 8  10 

89 
 1  2 
 6  7 
 3  8 
 4  5 
 9  10 

90 
 1  2 
 6  7 
 3  8 
 4  9 
 10 5 

91 
 1  6 
 7  2 
 3  5 
 4  9 
 8  10 

92 
 1  6 
 7  2 
 3  8 
 4  5 
 9  10 

93 
 1  6 
 7  2 
 3  8 
 4  9 
 10 5 

94 
 1  6 
 8  7 
 3  2 
 4  5 
 9  10 

95 
 1  6 
 8  7 
 3  2 
 4  9 
 10 5 

96 
 1  6 
 9  7 
 3  8 
 4  2 
 10 5 

97 
 1  3 
 2  4 
 6  8 
 7  9 
 5  10 

98 
 1  3 
 2  7 
 6  4 
 8  9 
 5  10 

99 
 1  3 
 2  7 
 6  8 
 9  4 
 5  10 

100 
 1  3 
 2  7 
 6  8 
 10 9 
 5  4 

101 
 1  6 
 2  3 
 7  4 
 8  9 
 5  10 

102 
 1  6 
 2  3 
 7  8 
 9  4 
 5  10 

103 
 1  6 
 2  3 
 7  8 
 10 9 
 5  4 

104 
 1  6 
 2  7 
 8  3 
 9  4 
 5  10 

105 
 1  6 
 2  7 
 8  3 
 10 9 
 5  4 

106 
 1  6 
 2  7 
 9  8 
 10 3 
 5  4 

107 
 1  3 
 2  5 
 6  8 
 4  9 
 7  10 

108 
 1  3 
 2  7 
 6  5 
 4  9 
 8  10 

109 
 1  3 
 2  7 
 6  8 
 4  5 
 9  10 

110 
 1  3 
 2  7 
 6  8 
 4  9 
 10 5 

111 
 1  6 
 2  3 
 7  5 
 4  9 
 8  10 

112 
 1  6 
 2  3 
 7  8 
 4  5 
 9  10 

113 
 1  6 
 2  3 
 7  8 
 4  9 
 10 5 

114 
 1  6 
 2  7 
 8  3 
 4  5 
 9  10 

115 
 1  6 
 2  7 
 8  3 
 4  9 
 10 5 

116 
 1  6 
 2  7 
 9  8 
 4  3 
 10 5 

117 
 1  4 
 2  5 
 3  8 
 6  9 
 7  10 

118 
 1  4 
 2  7 
 3  5 
 6  9 
 8  10 

119 
 1  4 
 2  7 
 3  8 
 6  5 
 9  10 

120 
 1  4 
 2  7 
 3  8 
 6  9 
 10 5 

121 
 1  6 
 2  4 
 3  5 
 7  9 
 8  10 

122 
 1  6 
 2  4 
 3  8 
 7  5 
 9  10 

123 
 1  6 
 2  4 
 3  8 
 7  9 
 10 5 

124 
 1  6 
 2  7 
 3  4 
 8  5 
 9  10 

125 
 1  6 
 2  7 
 3  4 
 8  9 
 10 5 

126 
 1  6 
 2  7 
 3  8 
 9  4 
 10 5 

127 
 6  1 
 7  2 
 8  3 
 4  9 
 5  10 

128 
 6  1 
 7  2 
 9  8 
 4  3 
 5  10 

129 
 6  1 
 7  2 
 10 8 
 4  9 
 5  3 

130 
 6  1 
 8  7 
 9  2 
 4  3 
 5  10 

131 
 6  1 
 8  7 
 10 2 
 4  9 
 5  3 

132 
 6  1 
 9  7 
 10 8 
 4  2 
 5  3 
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Appendix Continued: 
 

133 
 7  6 
 8  1 
 9  2 
 4  3 
 5  10 

134 
 7  6 
 8  1 
 10 2 
 4  9 
 5  3 

135 
 7  6 
 9  1 
 10 8 
 4  2 
 5  3 

136 
 8  6 
 9  7 
 10 1 
 4  2 
 5  3 

137 
 6  1 
 7  2 
 3  4 
 8  9 
 5  10 

138 
 6  1 
 7  2 
 3  8 
 9  4 
 5  10 

139 
 6  1 
 7  2 
 3  8 
 10 9 
 5  4 

140 
 6  1 
 8  7 
 3  2 
 9  4 
 5  10 

141 
 6  1 
 8  7 
 3  2 
 10 9 
 5  4 

142 
 6  1 
 9  7 
 3  8 
 10 2 
 5  4 

143 
 7  6 
 8  1 
 3  2 
 9  4 
 5  10 

144 
 7  6 
 8  1 
 3  2 
 10 9 
 5  4 

145 
 7  6 
 9  1 
 3  8 
 10 2 
 5  4 

146 
 8  6 
 9  7 
 3  1 
 10 2 
 5  4 

147 
 6  1 
 7  2 
 3  5 
 4  9 
 8  10 

148 
 6  1 
 7  2 
 3  8 
 4  5 
 9  10 

149 
 6  1 
 7  2 
 3  8 
 4  9 
 10 5 

150 
 6  1 
 8  7 
 3  2 
 4  5 
 9  10 

151 
 6  1 
 8  7 
 3  2 
 4  9 
 10 5 

152 
 6  1 
 9  7 
 3  8 
 4  2 
 10 5 

153 
 7  6 
 8  1 
 3  2 
 4  5 
 9  10 

154 
 7  6 
 8  1 
 3  2 
 4  9 
 10 5 

155 
 7  6 
 9  1 
 3  8 
 4  2 
 10 5 

156 
 8  6 
 9  7 
 3  1 
 4  2 
 10 5 

157 
 6  1 
 2  3 
 7  4 
 8  9 
 5  10 

158 
 6  1 
 2  3 
 7  8 
 9  4 
 5  10 

159 
 6  1 
 2  3 
 7  8 
 10 9 
 5  4 

160 
 6  1 
 2  7 
 8  3 
 9  4 
 5  10 

161 
 6  1 
 2  7 
 8  3 
 10 9 
 5  4 

162 
 6  1 
 2  7 
 9  8 
 10 3 
 5  4 

163 
 7  6 
 2  1 
 8  3 
 9  4 
 5  10 

164 
 7  6 
 2  1 
 8  3 
 10 9 
 5  4 

165 
 7  6 
 2  1 
 9  8 
 10 3 
 5  4 

166 
 8  6 
 2  7 
 9  1 
 10 3 
 5  4 

167 
 6  1 
 2  3 
 7  5 
 4  9 
 8  10 

168 
 6  1 
 2  3 
 7  8 
 4  5 
 9  10 

169 
 6  1 
 2  3 
 7  8 
 4  9 
 10 5 

170 
 6  1 
 2  7 
 8  3 
 4  5 
 9  10 

171 
 6  1 
 2  7 
 8  3 
 4  9 
 10 5 

172 
 6  1 
 2  7 
 9  8 
 4  3 
 10 5 

173 
 7  6 
 2  1 
 8  3 
 4  5 
 9  10 

174 
 7  6 
 2  1 
 8  3 
 4  9 
 10 5 

175 
 7  6 
 2  1 
 9  8 
 4  3 
 10 5 

176 
 8  6 
 2  7 
 9  1 
 4  3 
 10 5 

177 
 6  1 
 2  4 
 3  5 
 7  9 
 8  10 

178 
 6  1 
 2  4 
 3  8 
 7  5 
 9  10 

179 
 6  1 
 2  4 
 3  8 
 7  9 
 10 5 

180 
 6  1 
 2  7 
 3  4 
 8  5 
 9  10 

181 
 6  1 
 2  7 
 3  4 
 8  9 
 10 5 

182 
 6  1 
 2  7 
 3  8 
 9  4 
 10 5 

183 
 7  6 
 2  1 
 3  4 
 8  5 
 9  10 

184 
 7  6 
 2  1 
 3  4 
 8  9 
 10 5 

185 
 7  6 
 2  1 
 3  8 
 9  4 
 10 5 

186 
 8  6 
 2  7 
 3  1 
 9  4 
 10 5 

187 
 1  2 
 6  3 
 7  4 
 8  9 
 5  10 

188 
 1  2 
 6  3 
 7  8 
 9  4 
 5  10 

189 
 1  2 
 6  3 
 7  8 
 10 9 
 5  4 

190 
 1  2 
 6  7 
 8  3 
 9  4 
 5  10 

191 
 1  2 
 6  7 
 8  3 
 10 9 
 5  4 

192 
 1  2 
 6  7 
 9  8 
 10 3 
 5  4 

193 
 1  6 
 7  2 
 8  3 
 9  4 
 5  10 

194 
 1  6 
 7  2 
 8  3 
 10 9 
 5  4 

195 
 1  6 
 7  2 
 9  8 
 10 3 
 5  4 

196 
 1  6 
 8  7 
 9  2 
 10 3 
 5  4 

197 
 1  2 
 6  3 
 7  5 
 4  9 
 8  10 

198 
 1  2 
 6  3 
 7  8 
 4  5 
 9  10 

199 
 1  2 
 6  3 
 7  8 
 4  9 
 10 5 

200 
 1  2 
 6  7 
 8  3 
 4  5 
 9  10 

201 
 1  2 
 6  7 
 8  3 
 4  9 
 10 5 

202 
 1  2 
 6  7 
 9  8 
 4  3 
 10 5 

203 
 1  6 
 7  2 
 8  3 
 4  5 
 9  10 

204 
 1  6 
 7  2 
 8  3 
 4  9 
 10 5 

205 
 1  6 
 7  2 
 9  8 
 4  3 
 10 5 

206 
 1  6 
 8  7 
 9  2 
 4  3 
 10 5 

207 
 1  2 
 6  4 
 3  5 
 7  9 
 8  10 

208 
 1  2 
 6  4 
 3  8 
 7  5 
 9  10 

209 
 1  2 
 6  4 
 3  8 
 7  9 
 10 5 

210 
 1  2 
 6  7 
 3  4 
 8  5 
 9  10 

211 
 1  2 
 6  7 
 3  4 
 8  9 
 10 5 

212 
 1  2 
 6  7 
 3  8 
 9  4 
 10 5 

213 
 1  6 
 7  2 
 3  4 
 8  5 
 9  10 

214 
 1  6 
 7  2 
 3  4 
 8  9 
 10 5 

215 
 1  6 
 7  2 
 3  8 
 9  4 
 10 5 

216 
 1  6 
 8  7 
 3  2 
 9  4 
 10 5  
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217 
 1  3 
 2  4 
 6  5 
 7  9 
 8  10 

218 
 1  3 
 2  4 
 6  8 
 7  5 
 9  10 

219 
 1  3 
 2  4 
 6  8 
 7  9 
 10 5 

220 
 1  3 
 2  7 
 6  4 
 8  5 
 9  10 

221 
 1  3 
 2  7 
 6  4 
 8  9 
 10 5 

222 
 1  3 
 2  7 
 6  8 
 9  4 
 10 5 

223 
 1  6 
 2  3 
 7  4 
 8  5 
 9  10 

224 
 1  6 
 2  3 
 7  4 
 8  9 
 10 5 

225 
 1  6 
 2  3 
 7  8 
 9  4 
 10 5 

226 
 1  6 
 2  7 
 8  3 
 9  4 
 10 5 

227 
 6  1 
 7  2 
 8  3 
 9  4 
 5  10 

228 
 6  1 
 7  2 
 8  3 
 10 9 
 5  4 

229 
 6  1 
 7  2 
 9  8 
 10 3 
 5  4 

230 
 6  1 
 8  7 
 9  2 
 10 3 
 5  4 

231 
 7  6 
 8  1 
 9  2 
 10 3 
 5  4 

232 
 6  1 
 7  2 
 8  3 
 4  5 
 9  10 

233 
 6  1 
 7  2 
 8  3 
 4  9 
 10 5 

234 
 6  1 
 7  2 
 9  8 
 4  3 
 10 5 

235 
 6  1 
 8  7 
 9  2 
 4  3 
 10 5 

236 
 7  6 
 8  1 
 9  2 
 4  3 
 10 5 

237 
 6  1 
 7  2 
 3  4 
 8  5 
 9  10 

238 
 6  1 
 7  2 
 3  4 
 8  9 
 10 5 

239 
 6  1 
 7  2 
 3  8 
 9  4 
 10 5 

240 
 6  1 
 8  7 
 3  2 
 9  4 
 10 5 

241 
 7  6 
 8  1 
 3  2 
 9  4 
 10 5 

242 
 6  1 
 2  3 
 7  4 
 8  5 
 9  10 

243 
 6  1 
 2  3 
 7  4 
 8  9 
 10 5 

244 
 6  1 
 2  3 
 7  8 
 9  4 
 10 5 

245 
 6  1 
 2  7 
 8  3 
 9  4 
 10 5 

246 
 7  6 
 2  1 
 8  3 
 9  4 
 10 5 

247 
 1  2 
 6  3 
 7  4 
 8  5 
 9  10 

248 
 1  2 
 6  3 
 7  4 
 8  9 
 10 5 

249 
 1  2 
 6  3 
 7  8 
 9  4 
 10 5 

250 
 1  2 
 6  7 
 8  3 
 9  4 
 10 5 

251 
 1  6 
 7  2 
 8  3 
 9  4 
 10 5 

252 
 6  1 
 7  2 
 8  3 
 9  4 
 10 5 

Numbers 1 – 252 on top of the permutations represent the permutation numbers 
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