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INVITED ARTICLES 
Robust Confidence Intervals for Effect Size in the Two-Group Case 

 

 
H. J. Keselman 

University of Manitoba 

 
James Algina 

   University of Florida 

 
Katherine Fradette 

  University of Manitoba 
 

 
The probability coverage of intervals involving robust estimates of effect size based on seven procedures 
was compared for asymmetrically trimming data in an independent two-groups design, and a method that 
symmetrically trims the data. Four conditions were varied: (a) percentage of trimming, (b) type of 
nonnormal population distribution, (c) population effect size, and (d) sample size. Results indicated that 
coverage probabilities were generally well controlled under the conditions of nonnormality. The 
symmetric trimming method provided excellent probability coverage. Recommendations are provided. 
 
Key words: Robust Intervals, effect size statistics, symmetric and asymmetric trimmed means, 
nonnormality 
 
 

Introduction 
 
Journal editorial policies in medicine and 
psychology encourage researchers to supplement 
significance testing by reporting confidence 
intervals (CIs) as well as effect size (ES) 
statistics. As Fidler, Thomason, Cumming, 
Finch, and Leeman (2004) note, this movement 
started in medicine as early as the 1980s (see 
Rothman 1975, 1978a, 1978b). In psychology, 
in the past 15 years or so, there has been 
renewed emphasis on reporting ESs because of 
editorial policies requiring ESs (e.g., Murphy, 
1997; Thompson, 1994) and official support for 
the practice. According to The Publication 
Manual of the American Psychological 
Association    (2001),    “it    is    almost   always  
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necessary to include some index of ES or 
strength of relationship in your Results section.” 
(p. 25). The practice of reporting ESs has also 
received support from the APA Task Force on 
Statistical Inference (Wilkinson and the Task 
Force on Statistical Inference, 1999). An interest 
in reporting CIs for ESs has accompanied the 
emphasis on ESs. Cumming and Finch (2001), 
for example, presented a primer of CIs for ESs. 
The purpose of this article is to bring to the 
attention of researchers in medicine and 
psychology, and other interested researchers, 
who set CIs around an ES parameter, a better 
approach than currently adopted methods. 

 Algina and Keselman (2003) and Algina, 
Keselman and Penfield (2005) investigated two 
two-group ES statistics, looking, in particular, at 
the confidence coefficient of two intervals 
associated with each. One of the ES statistics 
was Cohen’s (1965) standardized mean 
difference statistic 

 

2 1Y Y
d

S
−= , 
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where jY  is the mean for the jth level ( j 1, 2= ) 

of a treatment factor and S is the square root of 
the pooled variance. The second was  
 

t2 t1
R

W

Y Y
d .643

S

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
, 

 
where tjY  denotes the jth 20% trimmed mean, 

WS  is the square root of the pooled 20% 

Winsorized variance and .643 is the population 
20% Winsorized standard deviation for a 
standard normal distribution. These authors 
included .643 in the definition of their robust 
effect so that the population values of Rd  R( )δ  

and d (δ ) would be equal when data are drawn 
from normal distributions with equal variances. 

However, these authors also pointed out that 
it is not obligatory to include the .643 multiplier 
in the definition of Rd  and Rδ . Accordingly, the 

multiplier is excluded in this article. Using each 
ES statistic, CIs were constructed by using 
critical values obtained from theory or through a 
bootstrap method. Algina and Keselman (2003) 
found that probability coverage for intervals of 
the usual statistic based on least squares 
estimators was inaccurate whether or not the 
interval’s critical values were obtained from a 
theoretical or bootstrap distribution. They also 
reported that probability coverage was 
inaccurate when the interval was set around a 
robust parameter of ES and the critical values 
for the interval were obtained from a theoretical 
probability distribution. However, probability 
coverage was by in large accurate (e.g., .940-
.971 for a .95 confidence coefficient) when the 
interval for the robust parameter of ES was 
based on critical values obtained through a 
bootstrap method (see Algina et al., 2005). 

Keselman, Wilcox, Lix, Algina and Fradette 
(in press) found that tests of treatment group 
equality based on robust estimators performed 
very well, with respect to Type I error control 
and power to detect effects in nonnormal 
heteroscedastic distributions, when adopting 
robust estimators based on asymmetric trimming 
of the data. That is, rather than trim a 
predetermined fixed amount of data from each 

tail of the empirical distribution, as frequently is 
recommended in the literature (e.g., 20% from 
each tail; see Wilcox, 1997; Wilcox & 
Keselman, 2003), Keselman et al. used nine 
adaptive procedures that empirically determined 
the amounts of data that should be trimmed in 
the right and left tails of each of the nonnormal 
distributions that they examined in their Monte 
Carlo investigation. The rationale behind 
asymmetric trimming is to remove more of the 
offending data (i.e., data that does not represent 
the bulk of the observations, that is, the typical 
score) from the tail containing more of the 
outlying values. 

Based on the two aforementioned studies, it 
is believed that more accurate confidence 
coefficients for Algina and Keselman’s (2003) 
and Algina et al.’s (2005) robust parameter of 
ES could be obtained by adopting the 
asymmetric trimming procedures enumerated in 
Keselman et al. (in press). Accordingly, this 
issue will be investigated in this article. 

 
Theoretical Background 

 
ES Statistics and Accompanying CIs 

In the two independent-groups paradigm, 
Cohen’s (1965) standardized mean difference 
statistic, d, is a popular choice for estimating ES. 
His ES statistic is defined as  
 

2 1Y Y
d

S
−= . 

 
Cohen’s d estimates  
 

2 1µ µδ
σ
−= , 

 
where jµ  is the jth population mean and σ  is 

the population standard deviation, assumed to be 
equal for both groups. 

When the scores are independently 
distributed and are drawn from normal 
distributions having equal variances, an exact CI 
for the population ES (i.e., δ ) can be 
constructed by using the noncentral t distribution 
(see, e.g., Cumming & Finch, 2001 or Steiger & 
Fouladi, 1997). The noncentral t distribution is 
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the sampling distribution of the t statistic when 
δ  is not equal to zero; it has two parameters. 
The first is the degrees of freedom and equals 
N 2−  in the two independent-groups set-up 
([ 1 2N n n= + ] and the number of observations 

in a level is denoted by jn ). The second 

parameter is the noncentrality parameter  
 

1 2 2 1 1 2

1 2 1 2

n n n n
n n n n

µ µλ δ
σ
−⎛ ⎞= =⎜ ⎟+ +⎝ ⎠

. 

 
The noncentrality parameter controls the 
location of the noncentral t distribution. The 
mean of the noncentral t distribution is λ≈  
(Hedges, 1981); the accuracy of the 
approximation improves as N increases.  

To find a 95% (for example) CI for δ , one 
would first use the noncentral t distribution to 
find a 95% CI for λ . A CI for δ  can then be 
obtained by multiplying the limits of the interval 

for λ  by ( )1 2 1 2n n n n+ . The lower limit of 

the CI for λ  is the noncentrality parameter for 
the noncentral t distribution in which the 
calculated t statistic  

 

1 2 2 1

1 2

n n Y Y
t

n n S

⎛ ⎞−
= ⎜ ⎟+ ⎝ ⎠

 

 
is the .975 quantile. The upper limit of the 
interval for λ  is the noncentrality parameter for 
the noncentral t distribution in which the 
calculated t statistic is the .025 quantile of the 
distribution (see Steiger & Fouladi, 1997). 

The use of the noncentral t distribution is 
based on the assumption that the data are drawn 
from normal distributions. If this assumption is 
not true, there is no guarantee that the actual 
probability coverage for the interval will match 
the nominal probability coverage, as was 
demonstrated by Algina and Keselman (2003). 
In addition, as noted by Wilcox and Keselman 
(2003), when data are not normal, the usual 
population ES can be misleading because the 
(least squares) means and standard deviations 
can be affected by skewed data and by outliers. 
A better strategy, they maintain, is to replace the 

least squares values by robust estimates, such as 
trimmed means and Winsorized variances, and, 
accordingly, estimate a robust population ES. 

As an alternative to d, Algina and Keselman 
(2003) and Algina et al. (2005) (hereafter 
referred to as A&K) proposed  

 

t2 t1
R

W

Y Y
d

S

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
. 

 
(Remember, the .643 multiplier is not used.) 

The robust population ES is  
 

t2 t1
R

W

µ µδ
σ

⎛ ⎞−
= ⎜ ⎟

⎝ ⎠
, 

 
where tjµ  is the jth population 20% trimmed 

mean and Wσ  is the population analogue of 

WS . (See appendix 1.)  

As Algina and Keselman (2003) and Algina 
et al. (2005) indicated, an approximately correct 
CI for Rδ  can also be constructed by using the 

noncentral t distribution. However, as previously 
noted, this approach to forming intervals did not 
provide satisfactory probability coverage when 
data were obtained from nonnormal 
distributions. However, Algina et al. did find 
that probability coverage, under conditions of 
nonnormality, was generally reasonably good 
when critical values were obtained through a 
percentile bootstrap empirical sampling 
distribution, not from the noncentral t 
distribution.  

 
Adaptive Trimming Methods 

The theoretical background to the 
asymmetric trimming methods investigated by 
Keselman et al. (in press) is now discussed. 
Based on the work of Hogg (1974, 1982) and 
others, Reed and Stark (1996) defined seven 
adaptive location estimators based on measures 
of tail-length and skewness for a set of n 
observations. To define these estimators the 
measures of tail-length and skewness must first 
be defined. By adopting the notation of Hogg 
(1974, 1982) and Reed and Stark (1996), based 
on the ordered values, we let Lα =  the mean of 
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the smallest [ nα ] observations, where [ nα ] 
denote the greatest integer less than nα  and 

Uα = the mean of the largest [ ]nα  observations. 

When .05α = , and, therefore, ( ).05L  is the 

mean of the smallest [.05n] observations, B =  
the mean of the next largest .15n observations, 
C =  the mean of the next largest .30n 
observations, D =  the mean of the next largest 
.30n observations, and E =  the mean of the next 
largest .15n observations.  

Tail-length measures. Hogg (1974) defined 
two measures of tail-length, Q and 1Q , where 

 

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
.05 .05 .5 .5

1 .2 .2 .5 .5

Q U L U L  and 

Q U L U L .

= − −

= − −
 

 
Q and 1Q  can be used to classify symmetric 

distributions as light-tailed, medium-tailed or 
heavy-tailed. Q and 1Q  are location free 

statistics and, moreover, are uncorrelated with 
location statistics such as trimmed means (Reed 
& Stark, 1996, p. 12). According to Hogg and 
Reed and Stark, values of Q 2<  imply a light-
tailed distribution, ≤ ≤2.0 Q 2.6  a medium-
tailed distribution, 2.6 Q 3.2< ≤  a heavy-
tailed distribution and Q 3.2>  a very heavy-
tailed distribution. The cutoffs for 1Q  are: 

1Q 1.81<  (light-tailed), 11.81 Q 1.87≤ ≤  

(medium-tailed) and 1Q 1.87>  (heavy-tailed). 

Hogg (1982) introduced another measure of 
tail-length: 

 

( ) ( )( ) ( )3 .05 .05H U L E B= − − . 

 
With this measure, values of 3H 1.26<  

suggest that the tails of the distribution are 
similar to a uniform distribution, values of 1.26 
through 1.76 suggest a normal distribution and 
values greater than 1.76 suggest the tails are 
similar to those of a double exponential 
distribution. 
 
 

Measures of skewnesss 
Reed and Stark (1996) defined four 

measures of skewness as:  

( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

2 .05 .25 .25 .05

1 .05 .05

2 1 n

5 1 n

Q U T T L ,

H U D C L ,

SK Y YMD YMD Y  and 

SK Y YM YM Y ,

= − −

= − −

= − −

= − −

 

where YMD is the median, YM is the arithmetic 
mean, (.25)T  is the .25- trimmed mean ( Tα ) 

given below and ( )1Y  and ( )nY  are, respectively 

the first and last ordered observations. 
According to Reed (1998), the α -trimmed 
mean is defined as 
 

( ) ( ) ( )
n k

i k n k 1
i k 1

1
T Y k n Y Y

n 1 2α α
α

−

− +
= +

⎡ ⎤= + − +⎢ ⎥− ⎣ ⎦
∑ . 

 
(In this definition a proportion, α , has been 
trimmed from each tail) and the accompanying 

Winsorized variance 2S  is defined as 
 

( )( )

( ) ( ) ( )α α α

α
−

− +
= +

=
− −

⎡ ⎤− + − + −⎢ ⎥
⎣ ⎦
∑

2
2

n k
2 2 2

i k n k 1
i k 1

1
S

n 1 1 2

Y T k Y T k Y T

 
where k [ n] 1α= + . 

Based on the former definitions of tail-
length and skewness, Reed and Stark (1996, p. 
13) proposed a set of adaptive linear estimators 
“that have the capability of asymmetric 
trimming.” These authors defined a general 
scheme for their approach as follows: 
1.  Set the value for the total amount of trimming 
from the sample, α . 
1) Determine the proportion to be trimmed 

from the lower end of the sample ( lα ) by 

the following proportion: 

( )l X X XUW UW LWα α ⎡ ⎤= +⎣ ⎦ , where 

XUW  and XLW  are the numerator and 
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denominator portions of the previously 
defined selector statistics (i.e., tail-length 
and skewness). 

2) The upper trimming proportion is then given 
by u lα α α= − . 

Based on this general schema, Reed and 
Stark (1996) defined seven hinge estimators, 
which are trimmed means: 

( )
( )
( )
( )

( )
( )
( )

1 1 1

3 3 3

2 2 2

1 1 1

2 2 2

5 5 5

l Q Q Q

1 l Q Q Q

3 l H H H

2 l Q Q Q

1 l H H H

2 l SK SK SK

5 l SK SK SK

1. HQ UW UW LW ,

2. HQ UW UW LW ,

3. HH UW UW LW ,

4. HQ UW UW LW ,

5. HH UW UW LW ,

6. HSK UW UW LW , and

7. HSK UW UW LW .

α α

α α

α α

α α

α α

α α

α α

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +
⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +⎣ ⎦

⎡ ⎤= +
⎣ ⎦

⎡ ⎤= +
⎣ ⎦

 

 
Keselman et al. (in press), investigating 

Type I error rates and power of procedures for 
testing equality of two trimmed means when 
variances are not assumed to be equal, examined 
the Reed and Stark (1996) procedure with 
various values for α  because the literature 
varies on the amount of recommended 
(symmetric) trimming. Rosenberger and Gasko 
(1983) recommended 25% when sample sizes 
are small, though they thought generally 20% 
suffices. Wilcox (1997) also recommended 20%, 
and Mudholkar, Mudholkar and Srivastava 
(1991) suggested 15%. Ten percent has been 
considered by Hill and Dixon (1982), Huber 
(1977), Stigler (1977) and Staudte and Sheather 
(1990); results reported by Keselman, Wilcox, 
Othman and Fradette (2002) also support 10% 
trimming. 

Reed and Stark (1996) found, based on a 
simulation study, that .10T , .15T , 2HSK  and 

5HSK  were the most efficient estimators when 

the distribution was symmetric. When the 
distribution was asymmetric, they found that 
“HQ, 1HQ , 2HQ , 1HH , 2HSK  and 5HSK  

[were] consistently among the top four 

estimators, with 1HQ  and 2HQ  in the top 

three” (p. 661). 
According to Keselman et al. (in press), one 

can modify Reed and Stark’s (1996) tail-length 
and skewness measures for the multi-group 
problem and then apply the modified multi-
group measures to the hinge estimators. In 
particular, they indicated that each of the 
measures can be modified by taking weighted 
averages (in a manner analogous to the 
modifications of tail-length and symmetry 
measures suggested by Babu, Padmanaban and 
Puri, 1999) of each numerator and denominator 
term. For example, for the multi-group problem, 
where jn  represents the number of observations 

in each group, 1Q  and 2Q  can be defined as  

 

( ) ( )( ) ( ) ( )( )

( )( ) ( )( )

⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
= − −⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

1 j j j j.2 .2 .5 .5
j j j j

2 j (.25) j j (.25) j.05 .05
j j j j

Q n U L n n U L n ,

 and

Q n U T n n T L n .

 
The other measures would be similarly modified 
and these multi-group measures of tail-length 
and skewness are the measures that are applied 
to the general scheme proposed by Reed and 
Stark (1996). 

Based on these multi-group tail-length and 
skewness measures, and their application to the 
hinge estimators, Keselman et al. (in press) 
reported that over the 288 empirical values they 
collected for each method investigated, in which 
they varied the total percent of data trimmed, 
sample size, degree of variance heterogeneity, 
pairing of variances and group sizes and 
population shape, five methods resulted in 
exceptionally good control of Type I error rates 
(HH3, HQ2, HH1, HSK2 and HSK5). With 
regard to the power to detect nonnull treatment 
effects, they found that HH3 was uniformly 
more powerful than the remaining ones. 
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Robust Estimation 
In this study, the methods for constructing 

CIs for a robust ES, defined by using robust 
measures of central tendency and variability are 
investigated. It is important to note that α -
trimmed means and Winsorized variances can be 
defined in a number of different ways (Hogg, 
1974; Reed, 1998; Keselman et al., in press; 
Wilcox, 2003). Suppose jn  independent random 

observations 
j1j 2 j n jY , Y , ,Y…  are sampled from 

population j ( j 1, 2= ). Let 

( ) ( ) ( )j1 j 2 j n j
Y Y Y≤ ≤ ≤�  represent the ordered 

observations associated with the jth group. The 
approach taken by Reed (1998) is based on the 
work of Hogg (1974).  For Hogg, the α -
trimmed mean is 
 

( ) ( ) ( )

jn g

i
i g 1

m 1 h Yα
−

= +
= ∑ , 

 

where α  is usually selected so that jg n α⎡ ⎤= ⎣ ⎦  

and j j jh n 2g n 2[n ]α= − = − . The standard 

error of ( )m α  that Hogg suggests is based on 

the work of Tukey and McLaughlin (1963) and 
Huber (1970) and, according to these authors, is 
estimated by 
 

( ) ( ) ( )mS SS h h 1α α= − , 

 

where ( )SS α  is the Winsorized sum of 

squares, defined as 
 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )

α

α

α α

+

+

− − −

⎡ ⎤+ −
⎣ ⎦

⎡ ⎤+ − +
⎣ ⎦

⎡ ⎤ ⎡ ⎤+ − + + −
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

…

j j

2

g 1

2

g 2

2 2

n g 1 n g

g 1 Y m

Y m

Y m g 1 Y m .

 

 
When allowing for different amounts of 
trimming in each tail of the distribution, Hogg 
(1974) defines the trimmed mean as 
 

( ) ( ) ( )

j 2

1

n g

1 1 i
i g 1

m , 1 h Yα α
−

= +

= ∑ , 

 

where 1 j 1g n α⎡ ⎤= ⎣ ⎦  and 2 j 2g nα⎡ ⎤= ⎣ ⎦  and 

j 1 2h n g g= − − . Hogg suggests that the 

standard deviation of ( )1 2m ,α α  can be 

estimated as 
 

( ) ( ) ( )
1 2 1 2m ,S SS , h h 1α α α α= − , 

 

where ( )1 2SS ,α α  can be calculated as  

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

+

+

− −

−

+

−

⎡ ⎤+ −
⎣ ⎦

⎡ ⎤+ − +
⎣ ⎦

⎡ ⎤+ − +
⎢ ⎥⎣ ⎦

⎡ ⎤+ −
⎢ ⎥⎣ ⎦

⎧ ⎫⎡ ⎤− +
⎣ ⎦⎪ ⎪

⎨ ⎬
⎡ ⎤−⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭−

…

1

1

j 2

j 2

1

j 2

2

1 1 2g 1

2

1 2g 2

2

1 2n g 1

2

2 1 2n g

2

1 1 2g 1

2 1 2n g

j

g 1 Y m ,

Y m ,

Y m ,

g 1 Y m ,

g Y m ,

g Y m ,

n

α α

α α

α α

α α

α α

α α

 

Based on the preceding, our robust estimate 
of ES for asymmetrically trimmed data is 
defined as  

 

( ) ( )
( ) ( )

1 1 2 2 1 2
R

1 1 2 2 1 2

m , m ,
d

SS , SS ,

N 2

α α α α
α α α α

−
=

+
−

, 

 
 

where ( )j 1 2m ,α α  and ( )j 1 2SS ,α α  are the jth 

asymmetrically trimmed mean and sum of 
squares, respectively. (See Appendix 2.)  
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Methodology 
 

Probability coverage for seven ES statistics 
(based on seven hinge estimators: HQ, HQ1, 
HH3, HQ2, HH1, HSK2, and HSK5) was 
estimated for all combinations of the following 
four factors: (a) four values of total trimming, 
namely 10%, 15%, 20% and 25%, (b) 
population distribution (four cases from the 
family of g and h distributions), (c) sample size: 

1 2n n 20,  40,  60,  80,  and 100= = , and 

(d) population ES ( RPES δ= ) of 0, .2, .5, .8, 

1.1, and 1.2. The A&K statistic was also 
included, where the values of symmetric 
trimming investigated were 5%, 10%, 15% and 
20%.  

The data were generated from the family of 
g and h distributions (Hoaglin, 1985). 
Specifically, it was chosen to investigate four g 
and h distributions: 
 
(a) g h 0= = , the standard normal distribution 

( 1 2 0γ γ= = ), 

(b) g 0 and h .225= = , a long-tailed 

distribution ( 1 20, 154.84γ γ= = ), 

(c) g .76 and h .098= = − , a distribution 
with skew and kurtosis equal to that for an 
exponential distribution ( 1 22, 6γ γ= = ), and 

(d) g .225 and h .225= = , a long-tailed 

skewed distribution ( 1 24.90, 4673.80γ γ= = ). 

To generate data from a g and h distribution, 
standard unit normal variables ijZ  were 

converted to g and h distributed random 
variables via  

 

( ) 2
ij ij

ij

exp gZ 1 hZ
Y exp

g 2

− ⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
when both g and h were non-zero. When g was 

zero,
2
ij

ij ij

hZ
Y Z exp

2

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. The ijZ  scores were 

generated by using RANNOR from SAS (1999). 
In particular, the following method to generate 
our data was used: 

1. The original ijY  data (for both groups) 

were generated from a desired 
population distribution (e.g., 
g .225 and h .225= = ). (NOTE: 

The original i2Y  data are not yet 

transformed) 

2. A bootstrap sample ( *
ijY ) was obtained 

from the original sample by sampling 

1n  observations with replacement from 

i1Y  and 2n  observations with 

replacement from i2Y . 

3. With the bootstrap data, we determined 

1α  and 2α  for the desired total 

trimming percentage (e.g., 15%) for 
each of the seven hinge estimators. 

4. The bootstrapped data for group 2 ( *
i2Y ) 

were then transformed according to 
*
i2 W RY σ δ+ × , where Wσ  depended on 

the hinge estimator, the total % of 
trimming, and the population distribution 
under investigation. For a particular 
population distribution and total % of 

trimming, Wσ  was determined prior to 

conducting the study. That is, 
1,000,000 observations were first 
generated from the population 
distribution in question and then the 
population trimming strategy was 
determined for each of the hinge 
estimators under the desired total % of 
trimming. The Wσ  values for the seven 

different hinge estimators were then 
determined by computing the 
Winsorized standard deviation of the 
1,000,000 observations, using the 
trimming strategies of each of the 
estimators.  

5. The transformed bootstrap data was 
then used to compute the trimmed 

means ( t1Y∗  and t2Y∗ ) and the pooled 

Winsorized standard deviation ( WS∗ ) 

for each of the 7 different hinge 
estimator methods, based on the 
trimming strategies previously 
determined.  
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6. For each estimator, the following was 

computed * t2 t1
R

W

Y Y
d

S

∗ ∗

∗

−
= . 

7. Steps 1 through 6 were repeated 600 
times. 

8. For each hinge estimator, the 600 

bootstrap ES estimates ( *
Rd ) were 

ranked and the upper and lower limits 
of the CIs were determined in the 
following manner. Letting l .025B,=  
rounded to the nearest integer, and 
u B l= − , an estimate of the .025 and 
.975 quantiles of the distribution of  Rd  

is 
( l 1)

*
Rd

+
and 

(u)

*
Rd .  

9. Finally, steps 1 through 8 were repeated 
5000 times. 

The nominal confidence level for all intervals 
was .95.  

 
Results 

 
Table 1 contains average probability coverage 
rates for the seven hinge estimator methods as 
well as A&K for setting intervals around the 
PES for the effects investigated. Bradley’s 
(1978) liberal criterion will be used to judge the 
robustness of the methods. 

Coverage probabilities within the interval 
.925-.975 are deemed well controlled, while 
those outside this range are regarded as 
substantially affected by an investigated 
effect(s). Values outside the interval will be 
demarcated with boldface type in the tables. The 
grand mean coverage probabilities were 
obtained over 480 conditions and most apparent 
is that the empirical values are not only 
contained in Bradley’s interval, but, moreover, 
are actually quite close to the nominal .95 value, 
with the largest deviation between nominal and 
empirical values equaling .004. Indeed, the 
range of empirical values extends from .946 to 
.949. Similarly, none of the remaining Table 1 
values fell outside the Bradley liberal criterion. 

Thus, by this standard of robustness, all 
hinge estimator methods for setting intervals 
around the robust PES can be regarded as not 
adversely affected by the effects of percentage 
of trimming, sample size, PES, and shape of 

distribution. Indeed, the number of times each of 
the methods’ empirical values fell outside the 
liberal interval were tabulated and it was found 
that, over the 3840 estimates (480 conditions X 
8 procedures), only 56 were not contained in the 
interval (less than 1.5% of the values!). 

Not surprisingly, 51 of these values occurred 
when n 20= ; the remaining five values 
occurred when n 40.=  From this tabulation it 
was also found that, of the hinge estimator 
procedures, only HSK2 and HSK5 never had a 
value outside the Bradley interval. However, if  
the n 20=  results are excluded, then HQ, HQ1, 
and HH3 can be added to this list of procedures 
that never had a value over the 480 conditions 
outside the Bradley interval. Also noteworthy is 
that all 480 of the A&K values were in the 
Bradley interval. 

Nonetheless, one can observe from the 
tabled values that there are variations in 
coverage probabilities due to the investigated 
effects. That is, it appears that coverage 
probabilities were closer to .95 when the: (a) 
percentage of total trimming was at least 20% 
(for A&K the empirical estimates were equal 
across percentages of symmetric trimming), (b) 
sample size was at least 80 per group, and (c) 
nonnormal distribution was not 
g .76 and h .098= = − . 

Accordingly, exemplars of these empirical 
coverage probabilities are presented in Tables 2-
5, where the four tables are for the four 
distributions investigated. When PES 0= , all 
empirical coverage probabilities (not tabled) 
were contained within Bradley’s (1978) interval 
across all sample size and population 
distributions investigated. In Tables 2-5, 28 of 
the 1152 empirical values ( 2.4%)�  were not 
contained in the .925-.975 interval. Twenty-five 
of the affected values occurred when data were 
obtained from the g .76 and h .098= = −  

distribution and when n 20=  (Table 4). 
The remaining three liberal values also 

occurred when n 20=  but in these instances 
the data were g .225 and h .225= =  
distributed. One should also notice that 
empirical values for the A&K procedure were 
always  in  Bradley’s  (1978) interval  across  the  
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Table 1. Summary Data for Estimated Coverage Probabilities for Nominal 95% Bootstrap 
Intervals 
 
Condition A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
Grand Mean  .949 .947 .948 .947 .947 .946 .948 .948 
% Trimming         
10  .943 .945 .944 .944 .942 .948 .948 
15  .946 .949 .946 .947 .946 .949 .948 
20  .949 .949 .948 .948 .947 .948 .948 
25  .949 .949 .948 .949 .948 .947 .948 
5 (Symmetric) .949        
10 (Symmetric) .949        
15 (Symmetric) .949        
20 (Symmetric) .949        
Sample Size         
20 .950 .939 .943 .937 .938 .936 .948 .949 
40 .951 .948 .950 .948 .948 .946 .949 .949 
60 .946 .949 .949 .949 .949 .948 .947 .947 
80 .950 .950 .950 .949 .950 .950 .948 .948 
100 .948 .950 .949 .950 .950 .950 .947 .947 
PES         
0 .946 .945 .945 .945 .947 .946 .946 .946 
0.2 .947 .946 .947 .946 .948 .947 .948 .948 
0.5 .949 .946 .947 .946 .947 .946 .947 .947 
0.8 .949 .948 .949 .947 .947 .946 .948 .948 
1.1 .951 .949 .950 .948 .948 .946 .949 .949 
1.4 .953 .948 .949 .947 .947 .944 .949 .948 
Distribution         
g=0/h=0 .947 .946 .946 .946 .947 .947 .946 .947 
g=0/h=.225 .951 .944 .946 .944 .941 .936 .946 .944 
g=.76/h=-.098 .947 .950 .950 .949 .950 .950 .950 .951 
g=.225/h=.225 .951 .949 .950 .948 .951 .951 .950 .950 

Notes: Based on definitions of tail-length and skewness, Reed and Stark (1996, p. 13) defined 
seven hinge estimators that have the capability of asymmetric trimming: HQ, HQ1, HH3, HQ2, 
HH1, HSK2, HSK5; Sample Size ( 1 2n n= ); PES-Population Effect Size; g X /h Y= =  

specifies a particular g and h distribution with specific values of skewness and kurtosis. 
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Table 2. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals 
( g 0 & h 0= = ). 
 

Test 
PES n Trimming 

A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
0.2 20 5% .942        

  10% .943 .935 .935 .935 .938 .937 .939 .940 
  15% .944 .940 .941 .939 .942 .942 .941 .942 
  20% .945 .942 .943 .941 .944 .944 .942 .942 
  25%  .942 .942 .942 .944 .944 .942 .942 
 60 5% .940        
  10% .939 .945 .944 .945 .945 .945 .944 .944 
  15% .940 .946 .945 .945 .945 .945 .945 .945 
  20% .938 .946 .945 .946 .946 .946 .944 .945 
  25%  .945 .946 .945 .946 .946 .945 .946 
 100 5% .948        
  10% .949 .945 .944 .946 .946 .946 .945 .945 
  15% .948 .947 .946 .947 .947 .947 .946 .945 
  20% .947 .946 .945 .945 .947 .947 .946 .946 
  25%  .945 .945 .945 .946 .946 .946 .946 

0.8 20 5% .946        
  10% .950 .939 .939 .939 .940 .940 .943 .944 
  15% .951 .946 .947 .943 .946 .946 .946 .946 
  20% .953 .951 .951 .950 .950 .949 .949 .951 
  25%  .949 .950 .948 .952 .952 .950 .952 
 60 5% .943        
  10% .943 .947 .949 .949 .950 .950 .949 .949 
  15% .943 .949 .950 .950 .949 .949 .947 .947 
  20% .947 .951 .951 .950 .951 .951 .950 .951 
  25%  .950 .949 .950 .953 .953 .951 .952 
 100 5% .944        
  10% .944 .949 .949 .949 .949 .949 .949 .949 
  15% .945 .949 .949 .948 .948 .948 .947 .947 
  20% .945 .950 .950 .949 .949 .950 .949 .949 
  25%  .949 .948 .948 .948 .948 .947 .948 

1.4 20 5% .943        
  10% .951 .939 .939 .939 .940 .940 .942 .943 
  15% .952 .946 .950 .944 .947 .947 .949 .949 
  20% .954 .951 .948 .952 .952 .951 .954 .953 
  25%  .950 .951 .950 .954 .953 .953 .955 
 60 5% .945        
  10% .946 .947 .948 .947 .950 .951 .948 .947 
  15% .946 .948 .947 .948 .949 .949 .948 .947 
  20% .945 .951 .950 .949 .948 .948 .948 .948 
  25%  .950 .950 .949 .950 .950 .950 .950 
 100 5% .946        
  10% .949 .948 .949 .949 .949 .949 .948 .948 
  15% .949 .950 .950 .950 .949 .949 .948 .949 
  20% .950 .949 .951 .950 .950 .950 .947 .948 
  25%  .949 .949 .949 .949 .948 .950 .950  
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Table 3. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals 
( g 0 & h .225= = ). 
 

Test 
PES N Trimming 

A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
0.2 20 5% .944        

  10% .950 .936 .937 .937 .934 .933 .942 .942 
  15% .949 .935 .946 .933 .943 .942 .946 .947 
  20% .946 .944 .947 .943 .946 .945 .946 .947 
  25%  .947 .947 .944 .948 .947 .945 .948 
 60 5% .942        
  10% .943 .948 .948 .948 .953 .952 .948 .948 
  15% .941 .950 .950 .950 .950 .951 .950 .949 
  20% .940 .948 .949 .948 .949 .948 .946 .946 
  25%  .949 .949 .948 .950 .950 .945 .947 
 100 5% .950        
  10% .951 .951 .950 .950 .949 .950 .946 .947 
  15% .950 .949 .948 .949 .948 .948 .948 .948 
  20% .950 .949 .948 .947 .949 .950 .949 .949 
  25%  .948 .947 .947 .949 .948 .949 .946 

0.8 20 5% .949        
  10% .959 .937 .937 .937 .935 .934 .946 .948 
  15% .958 .943 .953 .940 .944 .943 .952 .951 
  20% .958 .952 .953 .949 .950 .950 .955 .955 
  25%  .953 .953 .952 .954 .953 .955 .957 
 60 5% .953        
  10% .948 .949 .949 .947 .952 .952 .951 .951 
  15% .946 .951 .956 .951 .950 .952 .953 .952 
  20% .948 .957 .952 .955 .953 .953 .950 .950 
  25%  .954 .951 .954 .953 .953 .950 .952 
 100 5% .950        
  10% .946 .954 .955 .955 .958 .959 .953 .954 
  15% .944 .955 .954 .956 .953 .955 .953 .953 
  20% .947 .953 .950 .953 .953 .953 .951 .950 
  25%  .952 .951 .952 .951 .951 .943 .951 

1.4 20 5% .952        
  10% .965 .934 .933 .933 .929 .928 .948 .947 
  15% .963 .941 .958 .938 .939 .937 .954 .952 
  20% .963 .954 .946 .946 .943 .942 .957 .957 
  25%  .950 .948 .946 .949 .948 .962 .958 
 60 5% .960        
  10% .955 .950 .947 .945 .954 .951 .956 .957 
  15% .951 .949 .959 .948 .950 .951 .954 .954 
  20% .949 .960 .953 .957 .954 .953 .952 .953 
  25%  .959 .953 .955 .954 .954 .950 .953 
 100 5% .956        
  10% .955 .957 .956 .956 .959 .959 .954 .954 
  15% .953 .954 .951 .953 .957 .957 .951 .952 
  20% .950 .956 .952 .952 .954 .954 .953 .953 
  25%  .954 .954 .954 .954 .955 .935 .951  
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Table 4. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals 
( g .76 & h .098= = − ). 
 

Test 
PES N Trimming 

A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
0.2 20 5% .940        

  10% .946 .927 .927 .927 .926 .926 .943 .943 
  15% .947 .932 .941 .932 .930 .929 .946 .946 
  20% .947 .941 .942 .939 .935 .932 .945 .946 
  25%  .943 .944 .942 .940 .935 .945 .945 
 60 5% .936        
  10% .938 .944 .948 .944 .944 .938 .947 .948 
  15% .938 .948 .947 .949 .945 .944 .946 .947 
  20% .938 .948 .949 .949 .949 .946 .948 .947 
  25%  .947 .949 .949 .948 .947 .949 .949 
 100 5% .948        
  10% .944 .950 .949 .950 .947 .946 .949 .948 
  15% .948 .949 .950 .950 .949 .948 .949 .949 
  20% .949 .950 .949 .948 .951 .949 .948 .947 
  25%  .950 .948 .948 .950 .949 .947 .948 

0.8 20 5% .934        
  10% .948 .909 .914 .909 .905 .895 .940 .941 
  15% .948 .921 .934 .922 .912 .906 .948 .949 
  20% .950 .934 .939 .935 .921 .909 .948 .949 
  25%  .939 .942 .941 .926 .917 .951 .948 
 60 5% .949        
  10% .949 .946 .947 .946 .941 .933 .948 .948 
  15% .944 .948 .947 .951 .946 .941 .947 .947 
  20% .944 .950 .950 .951 .949 .943 .945 .941 
  25%  .951 .951 .951 .947 .947 .945 .941 
 100 5% .946        
  10% .948 .952 .950 .951 .954 .948 .946 .947 
  15% .945 .949 .949 .950 .951 .952 .946 .944 
  20% .946 .948 .947 .947 .947 .949 .944 .936 
  25%  .947 .948 .946 .949 .949 .941 .937 

1.4 20 5% .929        
  10% .957 .903 .907 .903 .892 .878 .942 .943 
  15% .953 .912 .932 .913 .905 .894 .955 .954 
  20% .956 .931 .939 .931 .917 .898 .956 .952 
  25%  .938 .945 .938 .924 .911 .948 .942 
 60 5% .955        
  10% .953 .943 .951 .942 .939 .921 .944 .946 
  15% .950 .952 .951 .953 .944 .938 .948 .943 
  20% .949 .953 .952 .953 .948 .940 .944 .933 
  25%  .951 .954 .952 .950 .946 .939 .932 
 100 5% .953        
  10% .952 .951 .951 .949 .946 .935 .953 .953 
  15% .952 .950 .950 .951 .949 .945 .952 .945 
  20% .951 .950 .951 .953 .952 .944 .948 .932 
  25%  .947 .953 .950 .947 .948 .936 .931  
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Table 5. Estimated Coverage Probabilities for Nominal 95% Bootstrap Intervals 
( g .225 & h .225= = ). 
 

Test 
PES N Trimming 

A&K HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
0.2 20 5% .946        

  10% .951 .929 .930 .930 .932 .931 .943 .944 
  15% .950 .931 .944 .930 .941 .940 .946 .947 
  20% .949 .941 .946 .938 .946 .944 .948 .949 
  25%  .947 .947 .945 .949 .948 .946 .947 
 60 5% .944        
  10% .942 .946 .946 .945 .948 .948 .948 .948 
  15% .942 .947 .948 .949 .951 .951 .947 .948 
  20% .939 .949 .950 .950 .953 .953 .947 .947 
  25%  .950 .950 .950 .952 .952 .946 .946 
 100 5% .948        
  10% .950 .950 .951 .952 .952 .953 .947 .948 
  15% .949 .951 .948 .950 .952 .952 .948 .948 
  20% .950 .950 .949 .949 .950 .951 .950 .950 
  25%  .950 .947 .948 .948 .948 .950 .950 

0.8 20 5% .950        
  10% .957 .926 .928 .928 .932 .931 .943 .944 
  15% .956 .934 .950 .934 .944 .943 .949 .951 
  20% .956 .947 .951 .942 .949 .947 .953 .953 
  25%  .948 .948 .946 .954 .952 .955 .955 
 60 5% .955        
  10% .949 .949 .949 .947 .950 .950 .951 .951 
  15% .947 .950 .955 .952 .955 .957 .948 .948 
  20% .945 .957 .953 .957 .954 .957 .952 .952 
  25%  .956 .953 .955 .956 .954 .953 .952 
 100 5% .949        
  10% .949 .954 .956 .956 .956 .955 .951 .951 
  15% .946 .956 .952 .954 .954 .956 .950 .951 
  20% .948 .954 .951 .953 .951 .954 .950 .951 
  25%  .951 .950 .949 .951 .951 .950 .950 

1.4 20 5% .950        
  10% .965 .924 .926 .926 .924 .923 .946 .947 
  15% .964 .930 .955 .927 .939 .940 .954 .952 
  20% .963 .950 .948 .939 .946 .944 .958 .955 
  25%  .953 .945 .943 .953 .950 .957 .959 
 60 5% .961        
  10% .955 .949 .948 .944 .951 .949 .953 .953 
  15% .952 .951 .961 .949 .956 .958 .952 .952 
  20% .951 .960 .958 .961 .955 .958 .951 .949 
  25%  .963 .956 .956 .957 .958 .953 .951 
 100 5% .958        
  10% .957 .957 .957 .955 .957 .958 .954 .954 
  15% .952 .957 .955 .957 .956 .958 .952 .953 
  20% .952 .956 .955 .956 .953 .956 .953 .952 
  25%  .954 .954 .956 .956 .956 .951 .952  
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Table 6. Ranks 
 

N Test PES=0 PES=.2 PES=.5 PES=.8 PES=1.1 PES=1.4 Total 
20 HQ 1  2 5 6 3 6 23 
  HQ1 5 5 9 8  7 9 43 
  HH3 0 0 3 3 4 3  13 
  HQ2 6 4 8 7 4 5  34 
  HH1 4 3 7 6 6  5 31 
  HSK2 7  8 12  10 10 8 55 
  HSK5 12 9 13 10 10 7 61 
  Total 35 31 57 50 44 43 260 
                  

40 HQ 5  11 10 7 7 8  48 
  HQ1 9 15 12 10 11 13 70 
  HH3 7  13 13 5 10 10 58 
  HQ2 8 5  7 9 8 11 48 
  HH1 9 6  6 5 9 8 43 
  HSK2 6  12 15 10 13 11 67 
  HSK5 7 12  15 9 9 8 60 
  Total 51 74 78 55 67 69 394 
                  

60 HQ 14 14 8 12 8 10 66 
  HQ1 13 15 12 14 10 11  75 
  HH3 13 15 9 10 8 6 61 
  HQ2 12 14 10 10 9 10 65 
  HH1 10 13 8 9 11 8  59 
  HSK2 9 10 3 14  7 9 52 
  HSK5 11 13 4  13  9 8 58 
  Total 82 94 54 82 62 62 436 
                  

80 HQ 7 12 13 9  10 9 60 
  HQ1 3 16  12  11  13  10  65 
  HH3 8 16 15 11 8  11 69 
  HQ2 14 9 8 10 12  14  67 
  HH1 11 8  6 10 9 9 53 
  HSK2 2 16 16  8 12 13  67 
  HSK5 4 14 14 9 11 12 64 
  Total 49 91 84 68 75 78 445 
                  

100 HQ 12 16 12 14 9  9 72 
  HQ1 12 14  11 15 13  14 79 
  HH3 13 14  13 12 10 11 73 
  HQ2 16 15 11 12 10 9 73 
  HH1 16 14 10 11 9 7 67 
  HSK2 14 11  1 11 12 11 60 
  HSK5 13 11  1 12 13 12  62 
  Total 96 95 59 87 76 73 486 
                  
  GT 313 385 332 342 324 325 2021  
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three tables. (This is expected given the findings 
we previously enumerated.) One additional point 
important to mention is that the HSK2 and 
HSK5 hinge estimators methods as well as the 
A&K method resulted in well controlled 
coverage probabilities for the conditions where 
the affected procedures did not; that is, their 
coverage probabilities were not affected even 
though sample size was small ( 1 2n n 20= = ) 

and data were g .76 and h .098= = −  
distributed, for any percentage of total trimming. 

Based on the preceding descriptions of our 
results, it would be difficult to try to pick out the 
‘best’ one, two, or three methods for CIs around 
the robust PES. Indeed, Table 1 summary results 
indicate that all empirical values for all 
procedures were contained in the .925-.975 
interval and accordingly, based on these results 
and the generally robust findings reported in 
Tables 2-5 (and those not tabled), specific 
recommendations would be challenging, and 
perhaps somewhat arbitrary, to make. 
Nonetheless, applied researchers usually like 
guidance from quantitative researchers regarding 
our recommendation of ‘best’ choice of 
procedure for their analyses. Accordingly, an 
even finer examination of our data was made. 

In our second phase of analyses, the three 
hinge estimator methods for setting intervals 
having coverage probabilities closest to .95 were 
located; this was done for each combination of 
sample size, population distribution, total 
percentage of trimming and PES. Hinge 
estimator methods having identical empirical 
coverage probabilities received the same rank 
(either 1-closest, 2-next closest, or 3-third 
closest). Preferred ranks were given to 
deviations that were above .95 as opposed to 
below .95. Thus, if procedure ‘A’ resulted in a 
.951 coverage probability while procedure ‘B’  

 
 

 
 

had coverage probability of .949, procedure A 
received the better rank -- the preference was for  
conservative rather than liberal values. Finally, 
any value that did not fall into a stringent 
criterion [( 12  for 1 .95ασ α−± − = ) i.e., .945-

.955] was excluded from ranking.  
Accordingly, in Table 6 the total number of 

top three rankings as a function of sample size 
and PES for the seven hinge estimator ES 
intervals are presented. What one can also see 
from Table 6 is that: (a) the total number of top 
three rankings, not surprisingly, increased with 
the size of sample; for 

1 2n n 20,  40,  60, 80,  and 100= = , the 

total number of top three rankings was 260, 394, 
436, 445, and 486, respectively; (b) the 
procedures were most disparate (range=48) from 
one another in terms of accuracy (i.e., number of 
top three rankings) when 

1 2n n 20 and 40 = = and were much more 

similar to one another when 

1 2n n 60, 80, and 100= = ; and (c) the 

number of top three rankings increased with PES 
up until PES .2=  and then remained almost 
the same for PES .5-1.4=  Finally, the 
numbers presented in Table 6 and summarized 
in Table 7 indicate that HQ1 had the greatest 
number (332) of top three rankings while HSK2 
and HSK5 had the second and third most top 
three rankings (301 and 305, respectively). 

 
Discussion 

 
Algina and Keselman (2003) and Algina et al. 
(2005) compared two estimates of ES and 
associated CIs in an independent two-groups 
design, in which either least squares or robust 
estimators were used and where the critical 
values  used   in  computing   the   interval  were  
 
 

Table 7. Total Number of Top Three Rankings for Each Test 
 

HQ HQ1 HH3 HQ2 HH1 HSK2 HSK5 
269 332 274 287 253 301 305  
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based on either a theoretical or bootstrap 
distribution. The procedures were compared 
under different conditions of nonnormality and 
for various sample sizes and magnitudes of PES. 
It was found that probability coverage for the CI 
was only controlled when the interval used 
robust estimators (i.e., trimmed means and 
Winsorized variances) and the critical values of 
the interval were obtained via a bootstrap 
empirical distribution. The authors used a priori 
2 100α× % symmetric trimming to remove the 
biasing effects of skewed data and/or outlying 
values and only investigated .20α = . 

In an unrelated study, Keselman et al. (in 
press) found that tests for treatment group 
equality based on asymmetrically obtained 
trimmed means and Winsorized variances, 
resulted in exceptionally good Type I error 
control and power to detect effects in nonnormal 
heterogeneous one-way models. Consequently, 
it is believed that it would be possible to obtain 
more accurate probability coverage for intervals 
of ES in nonnormal models if the ES statistic 
was based on asymmetrically trimmed data. 
Accordingly, a Monte Carlo investigation was 
conducted to probe this hypothesis, varying 
population shape, magnitude of PES, sample 
size, and total percentage of trimming.  

The results from the investigation clearly 
suggest that coverage probabilities for robust ES 
intervals were very well controlled under the 
conditions of nonnormality that were 
investigated. That is, only 56 of the 3840 
empirical coverage probabilities (less than 1.5% 
of the values) did not fall within Bradley’s 
(1978) criterion of .925-.975. And, these liberal 
values (i.e., intervals were too narrow), almost 
exclusively occurred when sample size was at 
the minimum value ( 1 2n n 20= = ) 

investigated. However, coverage probabilities, 
with the exception of two cases, were always 
within the Bradley interval once sample size 
reached our medium sample size condition 
( 1 2n n 60= = ). Thus, based on these findings, 

any of the hinge estimators for setting a CI 
around a robust parameter of ES are 
recommended. 

Nonetheless, in the interest of trying to 
separate the procedures in order to provide a 
more specific recommendation for researchers 

intending to set an interval around an ES statistic 
in a two-groups paradigm, a comparison of the 
hinge estimator ES intervals with a more 
stringent criterion was made, a criterion where a 
procedure would be judged robust if the 
empirical estimate did not fall outside a .944-
.956 interval ( 12  for 1 .95ασ α−± − = ). Based 

on this more stringent criterion, the three hinge 
estimator methods were located having 
empirical coverage probabilities closest to .95. 
Specifically, it was found that HQ1, HSK2, and 
HSK5 had, respectively, the highest number of 
top three rankings: 332, 301, and 305. 
Accordingly, from the set of seven hinge 
estimator ES interval estimation procedures, any 
one of these three methods are recommended. 
Keselman et al. (in press) also recommended 
these three procedures for comparing treatment 
group trimmed means. Furthermore, the results 
suggest that, in general, one needs to have group 
sizes larger than 20 and that one can obtain good 
coverage with as little as 15% total trimming. 
The reader should remember however, that the 
differences between the empirical probabilities 
among these methods generally occurred in the 
third decimal place, and therefore, as stated, any 
of the seven hinge estimator approaches to 
setting an interval around the PES would be 
satisfactory, and in particular, much better than 
the usual approach of setting an interval around 
the nonrobust PES.  

It was also found that a priori symmetric 
trimming provided very accurate probability 
coverage. All empirical coverage probabilities 
were within the Bradley (1978) liberal interval. 
Based on the summary values presented in Table 
1, one can also note that the average 
probabilities are very tightly bunched around the 
target value of .95. Additionally, it is worth 
noting that, on average, researchers can obtain a 
very precise interval when adopting 5% 
symmetric trimming. Accordingly, the choice 
between a priori fixed trimming and asymmetric 
trimming methods might rest on ones comfort 
quotient for fixing the trimming rate prior to an 
examination of the data versus letting the data 
determine whether data should be trimmed in 
each tail of the data distribution and by what 
amount. 
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The comments provided by Keselman et al. 
(in press) regarding the choice of a best method 
of analysis are echoed. First, it needs to be 
repeated that no one method will be universally 
best. It could be that, at times, probability 
coverage for the classical method (i.e., Cohen’s 
ES statistic) could provide a reasonable CI for 
ES. And as Wilcox and Keselman (2003) had 
noted, there is no way of knowing a priori 
which approach will be best. As they 
recommend, one could compute both 
approaches, that is, the classical approach and 
one of the robust methods enumerated in this 
paper. When the conclusions are the same, one 
can be comfortable with this common finding, 
otherwise, a robust approach to setting a CI for 
ES is recommended. 

Keselman et al. noted that researchers 
should always carefully examine graphs of their 
data before proceeding with a particular method 
of analysis. Indeed, as many others have 
previously noted, a careful examination of 
outlying values can provide researchers with 
insights into the phenomenon under 
investigation. 
 It is reiterated that the parameterδ has a 
serious shortcoming because it is defined by 
using the usual population mean and standard 
deviation. These least squares parameters are not 
robust.  While there are several criteria for 
assessing robustness of a parameter: qualitative 
robustness, quantitative robustness, and 
infinitesimal robustness (see Wilcox, 2005, 
Section 2.1 for a description of these criteria), 
the general notion is that a parameter is not 
robust if a small change in the population 
distribution can strongly affect the parameter. It 
can be shown that the least squares mean and 
variance are not robust (see, for example, 
Staudte and Sheather, 1990) when judged by any 
one of these three criteria. Accordingly, many 
authors, including us, subscribe to the position 
that inferences pertaining to robust parameters 
are more valid than inferences pertaining to the 
usual least squares parameters when dealing 
with populations that are nonnormal (e.g., 
Hampel, Ronchetti, Rousseeuw & Stahel, 1986; 
Huber, 1981; Staudte & Sheather, 1990; Wilcox 
& Keselman, 2003).  

 By itself, Cohen’s δ , or any other ES 
(i.e.,δR ) for that matter, has little value in 

assessing whether or not a mean difference is 
large or small. What is required is experience in 
applying the ES. For example, as part of a 
review of the power of studies in abnormal and 
social psychology, Cohen (1962) suggested 
0.25, 0.50, and 1.00 as small, medium, and large 

s,δ  respectively. In defense of these values, 
Cohen argued that the values “were chosen to 
seem reasonable.” (p. 146) and cited three 
research studies on group differences in IQ 
research as justification for these guidelines. 
Cohen was clearly aware of the provisional 
nature of these guidelines and subsequently 
(Cohen, 1969) modified the guidelines to 0.20, 
0.5, and 0.80, as small, medium, and large s,δ  
respectively, and again emphasized that he 
regarded these to be reasonable based on his 
experience with research in the behavioral 
sciences.  Cohen’s guidelines, and his 
justification for them, illustrate an important 
point: Understanding of an ES measure will 
increase through experience with that measure. 
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Appendix 1 
 

One question that might be asked about Rδ  is 

whether it is necessary to multiply 
 

t2 t1
R

µ µδ
σ
−=
W

 

 
 
 
 
 
 
 
 

by .643 to obtain a robust parameter. The answer 
is, of course, no. When the multiplier is not 
used, the difference between the trimmed means 
is divided by the Winsorized standard deviation. 
By contrast, when using the multiplier, the 
difference between the trimmed means is 
divided by a rescaled Winsorized standard 

deviation ( )Wi.e., .643σ . 

 The same multiplier would be applied to the 
sample ES and, as a result, regardless of 
whether the multiplier is used, coverage 
probability is the same. Therefore, our results 
have relevance to researchers who prefer to 
include the multiplier and researchers who 
prefer to exclude the multiplier. Incorporating 
the multiplier requires a different value for 
different levels of trimming. The multipliers for 
10%, 15%, and 25% trimming would be 

1 .824 , 1 .734,  1 .537 , respectively. 
 

Appendix 2 
 

Huber (1972) and Hogg (1974) noted that the 
best way of conceptualizing the unknown 

parameter ( )1 1,θ α α  is that it is the population 

counterpart of ( )1 1m ,α α . Hogg (1974, p. 920) 

indicated that in the one-sample case the statistic 

1 21 2 1 2 m( , )[ ( , ) ( , )] / s α αα α θ α α−m  has an 

approximate t-distribution with h -1 degrees of 
freedom if trimming is reasonably symmetric 
about the mode of a unimodal skewed 
distribution. Moreover, he noted that, even for 
fairly skewed situations, the distribution of this 
statistic will “probably be closer to this 
approximating distribution than the ratio 

m( )[ ( ) ] / s αα θ−m , which is the statistic based 

on a symmetrically trimmed mean. (p. 920)”. 
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