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A Single, Powerful, Nonparametric Statistic for  

Continuous-data Telecommunications Parity Testing 
 

                                                                                                                 
 
                                       
Since the enactment of the Telecommunications Act of 1996, extensive expert testimony has justified use of 
the modified t statistic (Brownie et al., 1990) for performing two-sample hypothesis tests comparing Bell 
companies’ CLEC and ILEC performance measurement data (known as parity testing). However, Opdyke 
(Telecommunications Policy, 2004) demonstrated this statistic to be potentially manipulable and to have 
literally zero power to detect inferior CLEC service provision under a wide range of relevant data conditions. 
This article develops a single, nonparametric statistic that is easily implemented (i.e., not computationally 
intensive) and typically provides dramatic power gains over the modified t while simultaneously providing 
much better Type I error control. The statistic should be useful in a wide range of quality control settings. 
 
Key words: Telecommunications Act, ILEC, CLEC, Location-scale, Mean-variance, Maximum test 
 

 
Introduction 

 
The major goal of the Telecommunications 

Act of 1996, the most sweeping communications-
related public policy to be enacted by Congress in 
over half a century (since the Telecom Act of 1934 
– see http://www.fcc.gov/telecom.html) has been 
to deregulate local telephone service in the United 
States, making it a fully competitive economic 
market. To accomplish this, the Act takes a carrot-
stick approach: it allows the Bell companies (the 
incumbent local exchange carriers, or ILECs, now 
only   BellSouth,    Qwest,  SBC,  and Verizon)  to  
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enter into the previously deregulated long distance 
market, something they had been prohibited from 
doing because of their status as government 
regulated monopolies. This provides ILECs with 
the potentially lucrative opportunity to provide 
one-stop shopping telephone service to their 
customers, bundling all of their clients’ 
telecommunications needs into a single package 
from a single service provider.  

In return for this carrot, the Act’s stick 
requires that the ILECs first must do two things: 
(a) allow their competitors (competitive local 
exchange carriers, or CLECs, the large long 
distance telephone companies like Sprint, as well 
as numerous smaller companies) access to and use 
of their networks, in some cases to resell services 
at discounted wholesale rates, and (b) provide the 
CLECs’ customers with service “at least equal in 
quality to” the service they provide to their own 
customers (Telecommunications Act of 1996, Pub. 
LA. No. 104-104, 110 Stat. 56 (1996), at §251 (c) 
(2) (C); and see §251 (c) (2) (B) for the 14 point 
“COMPETITIVE CHECKLIST” of conditions 
that ILECs must satisfy to meet the at-least-equal 
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service provision standard). This at-least-equal 
service provision is the necessary enforcement 
mechanism for ensuring that network access (a) 
occurs in a meaningful way that truly promotes the 
goal of market competition.  

To explain by way of example, if it takes a 
week on average for a CLEC customer to have a 
line installed or repaired by the ILEC, but only a 
day on average for an ILEC customer to receive 
the same service, no customers would ever switch 
from the ILEC to any of the CLECs, and markets 
could never become competitive. The mechanism 
for properly enforcing the at-least-equal service 
provision depends on the appropriate utilization of 
the extensive operations support services (OSS) 
performance measurement data that ILECs record 
when providing service to both CLEC and ILEC 
customers (e.g., how fast is a phone line installed; 
how fast is a line repaired; how often are repairs 
made within a certain number of days or by a 
preset due date, etc.). This utilization has taken the 
form of monthly statistical parity testing – 
applying statistical tests to the monthly CLEC and 
ILEC service data to compare the two groups and 
make sure that service is, in fact, at least equal for 
CLEC customers (i.e., in parity). 

The specific statistical tests used in OSS parity 
testing depend on a number of factors, and 
foremost among these are the hypotheses being 
tested. The appropriate null and alternate 
hypotheses for OSS parity testing are listed below 
(1), in terms of both average service (the mean) 
and the variability of the service provided (the 
variance) (see Opdyke, 2004, p. 3-4, for a detailed 
explanation of why precisely these hypotheses are 
required in this setting). 
 
                Ho: C Iµ µ≤  AND 2 2

C Iσ σ≤     
                                   vs.                                   (1) 
                 Ha: C Iµ µ>  OR 2 2

C Iσ σ>  
 

A statistical test of this pair of joint 
hypotheses will determine, with a specified level 
of certainty, whether service to CLEC customers 
takes no longer on average than service to ILEC 
customers (i.e., C Iµ µ≤ ), and whether the 
variability of this service is no larger than that 
characterizing the service provided to ILEC 
customers (i.e., 2 2

C Iσ σ≤ ) (see the FCC’s Notice of 

Proposed Rulemaking, 04/16/98, APPENDIX B, 
p.B2, for some of the early impetus for testing 
both means and variances). If the statistical test 
determines, with a specified level of certainty, that 
both of these conditions hold, service is deemed to 
be at least equal, or in parity. If either condition is 
determined, with a specified level of certainty, to 
be violated, then service is considered out of 
parity, or in disparity.  

Findings of disparity carry consequences for 
the ILEC(s) in the form of fines paid to the 
CLECs, and sometimes to the relevant state(s). 
These fines, or remedies, can be large (US$ 
millions), and extensive and/or prolonged findings 
of disparity can lead to revocation of an ILEC’s 
approval to provide long distance service. 
Therefore the choice of appropriate, if not the best 
statistics for OSS parity testing is very important, 
not only for the individual firms involved, but also 
for the entire industry. And of course, the best 
statistics simply are those that, under a classical 
Neyman-Pearson hypothesis-testing paradigm, are 
most powerful under the widest range of relevant 
data conditions, given robust and reasonable Type 
I error control. 

In addition to the hypotheses being tested, the 
type of data being compared determines which 
statistical tests can and should be used. 
Telecommunications OSS performance metrics 
contain three types of data, and each is listed 
below with an example of a corresponding 
performance metric: 

 
• binary data – the percentage of repairs 

completed on time, or within a certain number 
of days 

• count data – the number of troubles on a 
telephone line within a specified time period 

• continuous data – the average time it takes to 
install a phone line 

 
For continuous data metrics, the modified t 
(Brownie et al., 1990) has been supported in 
extensive expert testimony proffered by both 
CLECs and ILECs, as well as in Opinions and 
Rulings by various regulatory bodies, as an 
appropriate statistic to test the relevant joint 
hypotheses above (see Opdyke, 2004, for 
extensive citations; all but one of the four major 
ILEC performance and remedy plans nationwide 
utilizes the modified t as a primary test statistic).  
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and degrees of freedom (df) = nI – 1. 
 However, Opdyke (2004) demonstrated, via an 
extensive simulation study and an analytic 
derivation, that because the modified t follows 
neither the standard normal nor the student’s t 
distribution as previously surmised in seven years’ 
of expert testimony (see Opdyke, 2004, for 
extensive citations), it potentially remains 
vulnerable to what has been termed gaming – 
intentional manipulation of its score to effectively 
mask disparity. But far more importantly, the 
modified t also was shown to be virtually 
powerless to detect inferior CLEC service 
provision under a wide range of relevant data 
conditions (i.e., larger CLEC variability under 
equal or better average service).  

Instead, Opdyke (2004) proposed the 
collective use of several other easily-implemented 
statistical procedures that typically provide 
dramatic power gains over the modified t. 
Selection of a specific statistic among those 
proposed depends on the relative sizes of the two 
samples being compared, and on whether the 
particular performance metric being tested is long-
tailed or short-tailed (this is the distributional 
characteristic known as kurtosis). Years of OSS 
data now exist since the Act was passed to 
establish such distributional characteristics as 
population parameters, not as unknowns requiring 
an additional statistical test. However, even though 
the FCC itself identified “data distribution, sample 
size and other characteristics inherent in the data” 
(FCC NPRM, 11/08/01, p. 37) as factors relevant 
to the choice of the statistical tests used in parity 
testing, one expressed concern regarding Opdyke’s 
(2004) approach is that the potential use of 
different statistics for different performance 
metrics (and sample sizes) is somehow too 
complex for implementation in parity testing.  

This article addresses this concern by building 
on the results and recommendations of Opdyke 
(2004) to develop a single, nonparametric, and 

generally powerful statistic for use with all 
continuous–data performance metrics. As shown 
below, the proposed statistic 1) maintains 
reasonable Type I error control; 2) is always either 
nearly as powerful as Opdyke’s (2004) multiple 
procedures, or almost as often, even more 
powerful; 3) typically provides dramatic power 
gains over the modified t; 4) is easily implemented 
and not computationally intensive; and 5) should 
be widely applicable and useful in other quality 
control settings as well. 
 

Methodology 
 
Previously Developed Alternatives to the  
modified t 
Under the data conditions relevant to OSS parity 
testing, Opdyke (2004) found that conditional 
statistical procedures combining either O’Brien’s 
(1988) generalized t test (OBt) or his generalized 
rank sum test (OBG) with either of two 
straightforward tests of variances (Shoemaker’s, 
2003, F1 test, or the modified Levene test of 
Brown and Forsythe, 1974) were by far the most 
powerful procedures of the over twenty statistics 
that were studied. Their combined use is 
conditioned on the relative sizes of the two sample 
means, as shown below: 

 
Table 1. Conditional Statistical Procedures, 
Opdyke (2004)  

Conditional 
statistical 
procedure 

if C IX X> , 
use… 

If C IX X≤  or OB fails 
to reject Ho:, use… 

OBtShoe         OBt Shoemaker’s F1 

OBtLev         OBt modified Levene 

OBGShoe         OBG Shoemaker’s F1 

OBGLev         OBG modified Levene 

(Note: see Appendix for the calculation of these 
statistics) 

Conditioning on the sample means as shown 
in Table 1 inflates the size of these tests, so an ad 
hoc p-value adjustment of p-value = (5/3 * p-
value) was used to maintain Type I error control 
(see Opdyke, 2004, for details). Even after such an 
adjustment, these tests maintain reasonable, if not 
impressive power under normal and short-tailed 
(uniform) data, and somewhat less power under 
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long-tailed (double exponential) data, although 
still far more power than the modified t under 
most of these conditions (Opdyke, 2004, p. 20-26).  

The conditions under which each of these four 
tests is most powerful and should be used are 
summarized in Table 2 below. Notably skewed 
data, however, first should be transformed, as 
required by one of the largest state PUCs and 
strongly endorsed by another of the largest state 
PUCs (CPUC Interim Opinion, 2001, Appendix J; 
CPUC Opinion (2002), Appendix J, Exhibit 3 p.2-
3; Before the Texas PUC – SBC Testimony, 
Dysart & Jarosz, 2004; and for optional use with 
some metrics, SBC Comments, 2002, p.48, 56). 

Unfortunately, all of the statistics examined 
for or used in OSS parity testing suffer from 
sometimes severe erosions in power under 
skewness (see Opdyke, 2004, for relevant 
simulation results; The California Public Utilities 
Commission also addresses this issue – CPUC 
Interim Opinion, 2001, p. 112-115, 136, 142, 145, 
& Appendix J, and CPUC Opinion, 2002, p. 74, 
84, & Appendix J). Because these metrics are 
widely cited as being lognormal (which is 
typically highly skewed – see CPUC Interim 
Opinion, 2001, Appendix J, and MCI Worldcom’s 
Performance Assurance Plan: The SiMPL Plan, by 
George S. Ford, Ph.D., p.5), a logarithmic 
transformation toward symmetry should provide at 
least some needed power to detect disparity 
without, in all practicality, causing distortions in 
the comparison of CLEC and ILEC service 
provision. 

Table 2. Conditional Statistical Procedures, 
Opdyke (2004) 

Sample 
sizes 

 
Normal 
& Short-

tailed 

Long-
tailed 

Skewed 

  OBt OBG  

Bal. Shoe OBtShoe OBGShoe Transform 

Unbal. Lev OBtLev OBGLev Transform 

Once transformed (if necessary), the 
performance metric is tested with one of the four 
combined procedures listed in Table 2. This is 
clear-cut if the sample sizes and distributional 
characteristics of the metrics being tested 
unambiguously fall neatly into these four cells (for 
example, if a metric is at least as short-tailed as the 

normal distribution, kurtosis = 3, and has very 
unbalanced sample sizes, use OBtLev).  

However, further simulations that parallel 
those of Opdyke (2004) are required to determine 
the tipping points defining exactly when to use 
each of these four statistics. Although these 
tipping point simulations would be straightforward 
to perform, one expressed concern about the use of 
Table 2 is that, the FCC’s advisory comment 
notwithstanding, having to (potentially) use 
different tests under different sample size and data 
conditions is somehow too complex for the 
implementation of parity testing. Although 
implementing Table 2 is far less complicated than 
at least one of the four major OSS performance 
and remedy plans (the BellSouth ‘truncated Z’ 
plan, which one FCC economist only half-jokingly 
refers to as “the balanced averaged disaggregated 
truncated adjusted modified Z plan”, Shiman, 
2002, p.283), it unarguably would be preferable if, 
all else equal (or close), one statistic could 
accomplish what the conditional use of the 
multiple statistics in Table 2 does. This is the 
motivation for this paper, and the development of 
the statistic presented below. 

A Single Statistic for Continuous-data Parity 
Testing 
 Maximum tests – statistics whose scores (p-
values) are the maximum (minimum) of two or 
more other statistics – have been devised and 
studied in a number of settings in the statistics 
literature with very favorable results. Neuhäuser et 
al. (2004) favorably compares a maximum test for 
the non-parametric two-sample location problem 
to multiple adaptive tests, finding the former to be 
most powerful under the widest range of data 
conditions. 
 Blair (2002) constructed a maximum test of 
location that is shown to be only slightly less 
powerful than each of its constituent tests under 
their respective ideal data conditions, but notably 
more powerful than each under their respective 
non-ideal data conditions (for additional studies 
using maximum tests, see Fleming & Harrington, 
1991, Freidlin & Gastwirth, 2000a, 2000b, 
Freidlin et al., 2002, Lee, 1996, Ryan et al., 1999, 
Tarone, 1981, Weichert & Hothorn, 2002, Willan, 
1988, & Yang et al., 2005). These findings 
demonstrate the general purpose of maximum tests 
– to trade-off minor power losses under ideal data 
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conditions for a more robust statistic with larger 
power gains across a wider range of possible (and 
usually unknown) data distributions. 

Although the relevant characteristic of the 
distributions of continuous-data OSS performance 
metrics is, for all intents and purposes, known 
because so many years of data now exist to 
establish the kurtosis as a population parameter 
and not a statistical estimate based on samples, a 
maximum test still could be useful here for several 
reasons: 1) using only one statistical test 
unarguably would be more straightforward to 
implement than (potentially) relying on the four 
statistics in Table 2 and choosing between them 
based on a matrix of sample sizes and performance 
metric kurtoses; 2) the expected power losses 
compared to Opdyke’s (2004) individual tests may 
be small or negligible; and 3) under some 
conditions, depending on the constituent tests 
used, the maximum statistic may be even more 
powerful than those tests recommended in Opdyke 
(2004) and shown in Table 2. 

To construct a maximum test here, it must be 
recognized that maximum tests are conditional 
statistical procedures, and the additional variance 
introduced by such conditioning will inflate the 
test’s size over that of its constituent statistics (and 
if left unadjusted, probably over the nominal level 
of the test as shown in Blair, 2002). But the 
constituent statistics in Table 2 are already 
conditional statistical procedures. Consequently, 
the ad hoc p-value adjustment used below for the 
purpose of maintaining validity must be large 
enough to take this double conditioning into 
account (this actually is triple conditioning 
because O’Brien’s tests themselves are conditional 
statistical procedures). The adjustment is simply a 
multiplication of the p-values by constant factors 
(β’s). The p-value of the maximum test – OBMax 
– is defined in (2): 
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where 

  2.8,β β β β= = = =OBtShoe OBtLev OBGShoe OBGLev  
 

and 1.8β =tsv , and tsvp  is the p-value 
corresponding to the separate-variance t test with 
Satterthwaite’s (1946) degrees of freedom (see 
Appendix for corresponding formulae). Under the 
relevant data conditions, the behavior of OBMax is 
compared to that of its constituent tests and the 
modified t test in the simulation study described 
below. It is also compared with two other maximum 
tests – OBMax3 and TVMax – as defined in (2) and 
(3) below (TVMax for t test, Variance tests, and 
Maximum test). 

       3
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where 1 3.0,  and 1.6modLev ShoeF tsvβ β β= = =               
 
Although preferable to ad hoc adjustments based 
on simulations, analytic derivation of the 
asymptotic distribution of OBMax, and maximum 
tests in general, is non-trivial, as Yang et al. 
(2005) show under even stronger distributional 
assumptions than can be made with respect to the 
Table 1 statistics. Derivation of the asymptotic 
distribution of OBMax is the topic of continuing 
research (Opdyke, 2005). 
 
Level and Power Simulation Study 
 The level and power simulations in this article 
parallel those conducted in Opdyke (2004). Eleven 
tests were studied: each of the four conditional 
statistical procedures listed in Table 1 – OBtShoe, 
OBtLev, OBGShoe, and OBGLev; the separate-
variance t test (with Satterthwaite’s, 1946, degrees 
of freedom – df) (tsv); the modified t test (with df 
= nI – 1, as in Brownie et al., 1990, Comments of 
SBC, 2002, p.57, and CPUC Opinion, 2001, 
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Appendix C, p. 2.) (tmod); OBMax as defined 
above in (1); OBMax3 and TVMax as defined 
above in (2) and (3), respectively; and two tests of 
stochastic dominance described below. All of the 
conditional statistics using O’Brien’s (1988) tests 
are referenced to the F distribution, rather than 
Blair’s (1991) critical values, even though doing 
so would normally violate the nominal level of the 
test under some conditions, because the p-value 
adjustment used here explicitly takes this size 
inflation into account (see Opdyke, 2004, 2005, 
for further details).  

The data was generated from the normal, 
uniform, double exponential, and lognormal 
distributions for four different pairs of sample 
sizes (nC = nI = 30; nC = 30 & nI = 300; nC = 30 & 
nI = 3000; and nC = nI = 300), seven different 
variance ratios ( 2 2/C Iσ σ =  0.50, 0.75, 1.00, 1.25, 
1.50, 1.75, 2.00), and seven different location 
shifts 

 

2 ,  ,  0.5 ,  ,  0.5 ,

        ,  2
C I I I I I I I I I

I I I I

µ µ σ µ σ µ σ µ µ σ
µ σ µ σ

= − − − +⎛ ⎞
⎜ ⎟+ +⎝ ⎠

, 

making 784 scenarios. N = 20,000 simulations 
were run for each scenario, except for scenarios 
with nC = 30 & nI = 3000, which used N = 5,000.  

The normal distribution was chosen as a 
universal basis for comparison; the uniform and 
double exponential distributions were chosen as 
examples of short-tailed and long-tailed 
distributions, respectively, to examine the possible 
effects of kurtosis on the tests; and the lognormal 
distribution was chosen to examine the possible 
effects of skewness on the tests, and because 
continuous data OSS performance metrics have 
been cited widely as often being approximately 
lognormal. nC = nI = 30 was chosen because many 
performance and remedy plans require or allow for 
the use of permutation tests if at least one of the 
two samples has less than 30 observations (see 
The Qwest Performance Assurance Plan, Revised 
11/22/2000, p.4-5; SBC Comments, 2002, p. 55, 
and 13 state Performance Remedy Plans – 
Attachment 17, p.4-5; and Performance Assurance 
Plan – Verizon New York Inc., Redlined Version 
January 2003, Appendix D, p.3-4.), and nC = nI = 
300 was chosen to examine rates of convergence 
under equal sample sizes (Pesarin’s, 2000, 
combined permutation test, however, appears to 
have greater power for the relevant joint 
hypotheses here than the naïve Monte Carlo 

permutation test currently implemented by these 
performance and remedy plans, and at least two 
companies produce preprogrammed software that 
automatically performs this test – DataMineIt, 
http://www.DataMineIt.com, and Methodologica, 
http://www.methodologica.it/npctest.html).  

The extremely unbalanced sample size pairs of 
nC = 30 & nI = 300 and nC = 30 & nI = 3000 were 
chosen because such large sample size ratios 
actually are not uncommon in OSS performance 
metric data. Also, the number of ILEC phone lines 
and customers typically dwarf those corresponding 
to most individual CLECs. Thus, it is important to 
test the behavior of these statistics under these 
extreme conditions, even though most simulation 
studies would focus on smaller and/or more 
balanced sample sizes. nC is very rarely, if ever, 
larger than nI and thus, only cases involving (nI / 
nC) ≥ 1.0 were examined in this study (Opdyke, 
2005, examines nI < nC also). Two nominal levels 
were used for all the simulations: α = 0.05 and α = 
0.10, bringing the total number of scenarios to 
1,568. These two levels bracket the vast majority 
of the levels used in OSS parity testing. (SBC 
Comments, 2002, p.49-52; CPUC Opinion, 2002, 
Appendix J, Exhibit 3, p.4; and Performance 
Assurance Plan – Verizon New York Inc., 
Redlined Version January 2003, Appendix D, p.1). 

Two other tests also were included in the 
simulations: Rosenbaum’s (1954) test, which 
counts the number of observations in one sample 
beyond the maximum of the other as a test of Ho: 
F(x) ≡ G(x) against the alternative of stochastic 
dominance; and the (one-sided) Kolmogorov-
Smirnov statistic (using Goodman’s, 1954, Chi-
square approximation – see Siegel & Castellan, 
1988, p.148), for a non-parametric test of Ho: F(x) 
≡ G(x) against general (one-sided) alternatives. 
Although neither is designed specifically to test 
the joint hypotheses relevant to the OSS parity 
testing setting, and thus may have less power, they 
are included for several reasons: (1) as a basis for 
comparison to the other tests; (2) because 
researchers often turn to these types of tests when 
confronted with the joint hypotheses relevant to 
the parity testing context and examined in this 
simulation study; and (3) because the 
Kolmogorov-Smirnov statistic has been described 
as being “able to detect not only differences in 
average but differences in dispersion between the 
two samples as well.” (Matlack, 1980, p. 359). 
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Results 
 
This simulation study generated 11 x 1,568 = 
17,248 level and power results, all of which are 
available from the author upon request in a 
Microsoft Excel® workbook (along with a 
SAS/GRAPH® program for convenient 
visualization). The key results are summarized in 
the tables and selected graphs below. 

Under symmetry, the p-value adjustments 
used in OBMax as defined in (3) provide 
reasonable Type I error control for the relevant 
range of test levels; as shown in Table 3, 
violations of the nominal level are modest in size 
and infrequent (14 of 288 symmetric-data null 
hypothesis scenarios; violations occur if the 
observed level is equal to or greater than the one-
tailed 95% critical value of the simulation, based 
on the common Wald approximation of the 
binomial distribution to the normal distribution, 
which is very accurate for such large numbers of 
simulations and α ≥ 0.05 – see Evans et al., 1993, 
p. 39, and Cochran, 1977, p. 58).  

Even better level control is possible by 
increasing the adjustment factors – say, by 
increasing the OB β’s from 2.8 to 3.0 – but the 
price paid for this is a loss of power. The 
adjustment factors used – 2.8 for the OB tests and 
1.8 for the separate-variance t test – are reasonable 
as they produce relatively minor level violations, 
and relatively minor power losses when OBMax is 
compared to its constituent tests. However, nearly 
as often as not, OBMax actually provides power 
gains over the conditional use of the Table 2 
statistics (graphs of these comparisons are 
available from the author upon request). OBMax’s 
largest power loss is only slightly over 0.10, and 
these minor power losses typically occur under 
simultaneously small CLEC samples, large CLEC 
variance increases, and decreases in the CLEC 
mean (relative to the ILEC mean). 

Its largest power gain, however, exceeds 0.2, 
and these power gains occur under simultaneously 
small CLEC samples, typically equal or smaller 
CLEC variances, and small increases in the CLEC 
mean. The reason for this increased sensitivity to 
detect small location shifts is the inclusion of the 
separate-variance t test among the constituent tests 
of OBMax. Including this test mitigates power 
losses in the one fairly narrow range of conditions 
where the modified t test has a relatively slight, 

but still noticeable power advantage over the 
Table 2 constituent tests: for normal and short-
tailed data, under simultaneously small CLEC 
samples, typically equal or smaller CLEC 
variances, and small increases in the CLEC mean. 
Including the separate-variance t test as a 
constituent test of OBMax shrinks this loss of 
power relative to the modified t (under only these 
fairly narrow conditions) typically by a factor of 
one half, so that the largest power loss remains 
less than 0.1 (Figure 3). 

Far more important to note, however, is that 
under all other data conditions the power of 
OBMax is never less than that of the modified t, 
and typically dramatically larger (sometimes a 
gain of 1.0! - see Figures 3, 4, and 6). The power 
differences between OBMax and the modified t 
that are shown in Figure 3 are summarized in 
Table 4 below, although the Figures more 
accurately and thoroughly convey the story. 
Figures 5 and 6 show how dramatically OBMax 
dominates the modified t as sample sizes increase. 
This demonstration of the reasonable power of 
OBMax, under all symmetric alternatives, should 
dispel a) expressed concerns in this setting 
regarding the lack of power of composite tests of 
location and scale (Mallows, 2002, p. 260); b) 
admittedly premature conclusions in this setting 
about the lack of power of relevant rank-based 
tests (Mallows, 2002, p. 260), which is what the 
OBG tests are; and c) findings of less (and 
concerns of too little) power in this setting under 
unbalanced sample sizes (Gastwirth & Miao, 
2002, p. 273). 
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Table 3. Symmetric Data Level Violations of OBMax 

2
Cσ  Cµ  Sample sizes Distribution 

Nominal level 
of test (α)  

Actual size 

2
Iσ  Iµ  nC = nI = 30 Normal 0.05 0.0578 
2
Iσ  Iµ  nC = 30,  nI = 3000 Normal 0.05 0.0532 
2
Iσ  Iµ  nC = nI = 300 Normal 0.05 0.0561 
2
Iσ  Iµ  nC = 300,  nI = 300 Uniform 0.05 0.0546 
2
Iσ  Iµ  nC = nI = 30 Double exponential 0.05 0.0574 
2
Iσ  Iµ  nC = 30,  nI = 300 Double exponential 0.05 0.0538 
2
Iσ  Iµ  nC = 30,  nI = 3000 Double exponential 0.05 0.0556 
2
Iσ  Iµ  nC = nI = 300 Double exponential 0.05 0.0596 
2
Iσ  Iµ  nC = nI = 30 Normal 0.10 0.1115 
2
Iσ  Iµ  nC = nI = 300 Normal 0.10 0.1073 
2
Iσ  Iµ  nC = nI = 30 Uniform 0.10 0.1048 
2
Iσ  Iµ  nC = nI = 300 Uniform 0.10 0.1044 
2
Iσ  Iµ  nC = nI = 30 Double exponential 0.10 0.1116 
2
Iσ  Iµ  nC = nI = 300 Double exponential 0.10 0.1095 

 

 
 
Not surprisingly, OBMax is very similar to 

OBMax3 and TVMax in terms of both Type I 
error control and power, except that, under small 
CLEC and large ILEC samples, OBMax has 
greater power than TVMax to detect slight CLEC 
location shifts, especially under leptokurtotic data 
(the largest power advantages are about 0.08, 0.10, 
and 0.14 for uniform, normal, and double 
exponential data, respectively). OBMax3 is more 
powerful than TVMax, exhibiting the same slight 
power loss compared to OBMax only under 
leptokurtotic data (where the largest loss is only 
about 0.08). Because OBMax is unambiguously 
more powerful, it is recommended over the other 
two tests under symmetry. Under asymmetry, 
however, OBMax violates the nominal level of the 
test under a specific combination of conditions, for 
which the OBG rank tests perform poorly (a. large 
and equal sample sizes; b. equal means; and c. a 
much smaller CLEC variance). Therefore if 
skewed data is not or cannot be reliably 
transformed toward symmetry for some reason,  

 
 
 

 
OBMax3 is one good alternative to OBMax. 
OBMax3 has slightly less power, but it always 
maintains validity, even under skewed data. In 
fact, it maintains validity far better than does the 
modified t under skewed data. 

However, an even better alternative appears to 
be OBMax2, as presented in the preliminary 
results of Opdyke (2005). OBMax2 = OBMax3 if 

a) 2 2≤C Is s , b) ( )0.5≤ +c I IX X s , and c) the null 

hypothesis of symmetry is rejected by the test of 
D’Agostino et al. (1990) at α = 0.01; otherwise, 
OBMax2 = OBMax. OBMax2 maintains most of 
the power gains of OBMax over OBMax3, while 
also maintaining validity very well under skewed 
data – again, far better than does the modified t, as 
shown in Table 5 below (note that when nC > nI, 
which rarely if ever occurs with OSS data, all β’s 
for OBMax2 utilize an additional adjustment: 

( )2.7min 2.5,  logβ β ⎡ ⎤= + ⎣ ⎦X X C In n  – see Opdyke, 

2005, for further details). 
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Figure 1. OBMax rejection rate: Empirical Level and Power (α = 0.05) 
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Figure 2. modified t  rejection rate: Empirical Level and Power (α = 0.05) 
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Figure 3. OBMax Power minus modified t  Power (α = 0.05) 
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Figure 4. All Alternate Hypothesis Simulations with a Power Difference (309 of 444): 
     OBMax Power minus modified t  Power (α = 0.05) 
 

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Power Difference

P
ro

b
ab

il
it

y

 

U
ni

fo
rm

  

N
or

m
al

 

D
ou

bl
e 

E
xp

on
en

tia
l 

nC = 30 
nI = 30 

nC = 30 
nI = 300 

nC = 30 
nI = 3000 

nC = 300 
nI = 300 

VarC / VarI = 0.50 0.75 1.00 1.25 1.50 1.75 2.00 

σI  shift  σI  shift  σI  shift  

19% 81% 
many 
near 
zero 

many much larger than zero 



382 J.D. OPDYKE 

Figure 5. Alternate Hypothesis Simulations of nC = nI = 30 with a Power Difference (90 of 111): OBMax 
Power minus modified t  Power (α=0.05) 
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Figure 6. Alternate Hypothesis Simulations of nC = nI = 300 with a Power Difference (52 of 111): OBMax 
Power minus modified t  Power (α=0.05) 
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Table 4. modified t  vs. OBMax: Dominant Test, and Corresponding Power Gains Under Symmetry (α = 
0.05) by Magnitude of Mean Difference and Variance Difference 

C Iµ µ>  (small difference) 2 /σ µ  
Small  nC  ( = 30) Large  nC 

C Iµ µ>   
(large difference) C Iµ µ≤  

2 2
C Iσ σ>  

Usually OBMax 
  Max = 0.223 
  Mean = 0.038 
  Median = 0.028 

EQUAL EQUAL 

Always OBMax 
  Max = 1.000 
  Mean = 0.431 
  Median = 0.361 

2 2
C Iσ σ≤  

Usually tmod 
  Max = 0.051 
  Mean = 0.015 
  Median = 0.006 

EQUAL EQUAL Ho: 

 
 
OBMax vs. the modified t: Where does it matter in 
terms of remedies? 

As shown in Figures 3-6 above, OBMax often 
provides dramatic power gains over the modified t, 
making it much more effective at identifying 
disparity when it truly exists. A very important 
point to note here is that the narrow conditions 
under which the modified t has a slight power 
advantage – small sample sizes and small location 
shifts (and a typically smaller or equal CLEC 
variance) – are exactly those that are the least 
important in terms of the size of the resulting 
remedies. Under most performance and remedy 
plans, the formulae for calculating remedies are 
proportionate functions of the number of lines or 
customers affected, as well as the magnitude of the 
degree to which service is out of parity (i.e., how 
much worse CLEC service is relative to ILEC 
service). Small sample sizes, and small deviations 
from parity, together imply the smallest remedies. 
Small power losses under these conditions (always 
less than 0.1 under symmetry, and no more than 
0.2 under asymmetry when using OBMax2) will 
result in missed remedies that should be quite 
small, and perhaps even negligible, relative to 
overall remedies.  

In contrast, under all other conditions of 
disparity, where both sample sizes and deviations 
from parity are much larger, the typically dramatic  
 

power gains of OBMax over the modified t will 
translate into much larger remedies that the 
modified t will fail to identify. The relative (if not 
absolute) size of these remedies missed by the 
modified t will dwarf any missed by OBMax when 
both sample sizes and location shifts are small. 
Thus, not only are the power gains of OBMax over 
the modified t much larger and more common than 
the losses, but also much more important in terms 
of the magnitude of the remedies that should be 
identified by the statistical test used. 
Consequently, from both a statistical and remedy-
impact perspective, OBMax is dramatically better 
than the modified t at identifying disparate service 
provision to CLEC customers, and thus, is far 
more effectively used in parity testing to enforce 
the at-least-equal service provision of the Act. 
This makes OBMax is a better tool for achieving 
the Act’s major objective: moving local telephone 
service from regulation to full competition and, 
once achieved, preventing backsliding to disparity 
into the future. 

In other quality control settings, too, OBMax 
should be useful and widely applicable as 
discussed below, but the questions of how, and 
how much, the use of OBMax matters in OSS 
parity testing are examined next. 
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Table 5. Worst Level Violations of modified t vs OBMax2 Under Asymmetry (Opdyke, 2005) 

Statistic 2
Cσ  Cµ  nC nI Distribution α Actual Size Violation 

OBMax2 2
Iσ  µ σ−I I  300 30 Exponential 0.05 0.0553 0.0053 

OBMax2 2
Iσ  2µ σ−I I  300 30 Exponential 0.05 0.0566 0.0066 

OBMax2 2
Iσ  Iµ  300 30 Exponential 0.05 0.0665 0.0165 

OBMax2 0.75 2
Iσ  Iµ  300 30 Lognormal 0.05 0.0581 0.0081 

OBMax2 2
Iσ  Iµ  300 30 Lognormal 0.05 0.0623 0.0123 

OBMax2 2
Iσ  Iµ  300 30 Exponential 0.10 0.1053 0.0053 

OBMax2 2
Iσ  Iµ  300 30 Lognormal 0.10 0.1073 0.0073 

modt 2
Iσ  Iµ  30 30 Lognormal 0.05 0.0992 0.0492 

modt 2
Iσ  Iµ  300 30 Exponential 0.05 0.1003 0.0503 

modt 0.50 2
Iσ  Iµ  300 30 Lognormal 0.05 0.1034 0.0534 

modt 2
Iσ  Iµ  300 30 Lognormal 0.05 0.1082 0.0582 

modt 0.75 2
Iσ  Iµ  300 30 Lognormal 0.05 0.1089 0.0589 

modt 2
Iσ  Iµ  30 30 Lognormal 0.10 0.1451 0.0451 

modt 2
Iσ  Iµ  300 30 Exponential 0.10 0.1477 0.0477 

modt 0.50 2
Iσ  Iµ  300 30 Lognormal 0.10 0.1544 0.0544 

modt 0.75 2
Iσ  Iµ  300 30 Lognormal 0.10 0.1630 0.0630 

modt 2
Iσ  Iµ  300 30 Lognormal 0.10 0.1649 0.0649 

 
 
OBMax vs. the modified t: How Does It Matter, 
and How to Decide? 

The Act was designed so that, with respect to 
enforcing the central requirement of at-least-equal 
service provision to CLEC customers, everything 
hinges on the performance metric data, and the 
inferences made about it based on statistical tests. 
The consequences of OSS parity testing results 
that indicate disparity undeniably can be large, in 
terms of both remedies paid by ILECs to CLECs 
and, in the case of backsliding or prolonged and 
extensive disparity, the possible revocation of an 
ILEC’s long-distance approval (which carries even 
larger, long-term financial consequences for both 
ILECs and CLECs). 

Although not all performance metrics have 
statistical tests applied to them (a minority are 
comparisons of CLEC service against a fixed 
benchmark), and continuous data metrics are only 
a subset of all those subject to statistical parity 
testing, they still include some of the biggest 
metrics – i.e., those containing the most data 
reflecting the largest numbers of customers and 

phone lines (e.g., average time-to-install). 
Therefore, a statistic used to test these metrics that 
fails to identify actual disparity under a wide range 
of conditions not only distorts the simple and 
crucial incentive structure clearly and explicitly 
intended by the Act, but also misses sizeable 
remedies that would have been identified by a 
more powerful statistic – in this case, OBMax (or 
OBMax2). 

Therefore, given the results of this study 
comparing OBMax to the modified t, one might 
ask when using actual OSS data, what is the 
magnitude of this distortion caused by the 
modified t?  How much does it matter in terms of 
remedies, which is the bottom line in this setting?  
Although it is possible to approximately answer 
this question empirically, and the answer could 
very well be a sizeable amount, it is actually the 
wrong question to ask here for several reasons. 
First, it can never be known absolutely whether 
service provision to CLEC customers is truly 
inferior because only monthly samples are being 
considered, not entire populations. It could be, due 
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to random variation, that CLEC service is not 
really inferior, but that the given samples make it 
appear so (in statistical parlance, this is a Type I 
error). The reverse also can occur (a Type II 
error). What statistical tests provides is a scientific 
basis for making an inference, based on the 
samples that merely represent the true underlying 
service levels, with a specified degree of certainty 
(for example, if α = 0.05, one can be [1 – α] = 95% 
certain that an inference of parity is correct). 

This guess or hypothesis about whether 
service is or is not in parity is the best that can be 
done, so a researcher can never evaluate the 
statistical properties of competing tests based 
(solely) on real data samples. The researcher must 
know the true answer in the data ahead of time, 
which is only possible with simulated data (as 
used in this study), and then see which statistic 
gets it right most often under the widest range of 
relevant data conditions. Then it will be known 
that, if applied to actual data samples that are 
based on truly disparate service levels, a statistic 
that is proven to be more powerful under well-
constructed simulations will be more powerful 
under actual data and correctly detect the disparity 
more often. 

That said, a general idea may be obtained as to 
how much remedies will be affected when using 
OBMax vs. the modified t by applying each to, 
say, six months of actual data and comparing the 
resulting remedies (such a comparison obviously 
would need to be based on identical remedy 
formulae, with distance-beyond-parity directly or 
indirectly based on p-values and α; if Z-scores are 
familiar or in current use, then the inverse standard 
normal function can be used, e.g., Φ(p-value) – 
Φ(α) = distance beyond parity). If there are much 
larger remedies resulting from the use of OBMax, 
then it will be known that its greater power is 
driving this result. 

However, even if no appreciable difference in 
remedies is observed (which would be surprising), 
the question ‘How much are remedies actually 
affected?’ is not the key question that needs to be 
answered because it ignores the important issue of 
a deterrent effect. If no appreciable difference in 
remedies is observed, that just means that 
scenarios under which OBMax is more powerful 
are not exhibited in the data being examined. But 
there is no telling that these types of inferior 
service scenarios will not crop up in the future (or 

have not cropped up at different times in the past). 
Because the modified t will definitely miss them if 
they do crop up, why would it ever be used over 
the more powerful statistic, OBMax? The answer 
is, it should not, and under a scientifically 
responsible implementation of applied statistics, it 
would not. 

Thus, in evaluating which statistic to use for 
OSS parity testing and considering the remedy-
impact of using OBMax instead of the modified t, 
the driving question is not, How much will actual 
remedies differ under OBMax vs. the modified t? 
(although the answer to this probably is 
noticeably, if not a great deal.); instead, the 
relevant question is, Under conditions that we 
know to be disparate, which statistic has greater 
power to correctly identify the disparity?  This 
question cannot be answered by using actual data 
and comparing the remedies resulting from the use 
of each of these two statistics (although this 
comparison may be interesting), but rather, by the 
simulation study conducted in this paper. And the 
answer this study provides is that OBMax does 
have more power under a wider range of relevant 
data conditions, and these power gains are often 
dramatic. The general applicability of OBMax in 
other settings is discussed briefly below. 
 
General Utility of OBMax (OBMax2) 

OBMax, and OBMax2, are useful in any 
context where one-sided tests of the first two 
moments are the primary or exclusive concern, 
and the researcher needs to test for effects in either 
or both moments (in other words, when the 
researcher needs to test (1) above). For these joint 
hypotheses, just as shown in Opdyke (2004) for 
OBMax’s constituent tests, OBMax outperforms a 
test of stochastic dominance and a widely-used 
nonparametric distributional test against general 
alternatives. The Rosenbaum (1954) statistic 
maintains validity, but generally has much less 
power than OBMax, especially if the CLEC mean 
is smaller than the ILEC mean, when it often has 
absolutely no power to detect a larger CLEC 
variance (which is consistent with its design). The 
latter finding also holds for the one-sided 
Kolmogorov-Smirnov statistic which, although 
occasionally more powerful than OBMax, often 
severely violates the nominal level when means 
are identical but the CLEC variance is smaller 
(which is consistent with its design, if not the 



386 J.D. OPDYKE 

relevant joint hypotheses examined here). Thus, 
OBMax is far superior to statistical tests that many 
researchers commonly turn to, at least initially, 
when faced with testing the joint hypotheses of (1) 
above. Among the settings in which these 
hypotheses are central is, of course, OSS parity 
testing; possibly the network access rules aimed at 
similar telecom deregulation efforts in other 
countries (Ure, 2003, p. 42-43); possibly the open 
access energy transmission regulations established 
by the Federal Energy Regulatory Commission 
(Gastwirth & Miao, 2002, p. 278); and numerous 
industrial settings with the need to address the 
quality control issues of accuracy and/or precision 
in manufacturing and other processes (Opdyke, 
2005). Some important issues warranting further 
inquiry are listed below.  
 
Further Research 

Most of the points below are listed in Opdyke 
(2004) and remain important issues for further 
inquiry in this setting. 

• In regulatory telecommunications, almost 
always nCLEC << nILEC, so scenarios of 
 nCLEC > nILEC were not studied in this paper. 
However, they are addressed in the further 
development of OBMax2 in Opdyke (2005). 

• Although typically much more powerful than 
the modified t, even under skewed data, 
OBMax2 still has low power under asymmetry, 
and exploring ways to increase it is worthy of 
further study (Opdyke, 2005). 

• Although the nominal test levels examined in 
this study (α = 0.05 and α = 0.10) bracket the 
vast majority of the test levels used in 
telecommunications OSS parity testing, (SBC 
Comments, 2002, p.49-52; CPUC Opinion, 
2002, Appendix J, Exhibit 3, p.4; and 
Performance Assurance Plan – Verizon New 
York Inc., Redlined Version January 2003, 
Appendix D, p.1) other settings may require 
very different nominal levels (e.g., α = 0.20 or 
α = 0.01). Generalizing from the findings of 
this study to such conditions would not be 
advisable without further simulation. 

• The one major exception to the above point 
regarding nominal test levels is the BellSouth 
performance and remedy plan. As previously 
mentioned, instead of solely using the modified 

t for continuous data performance metrics, this 
plan relies primarily on a statistic dubbed the 
truncated Z for which a balancing critical value 
is used as the nominal level of the hypothesis 
test. This critical value purports to balance or 
equalize the probability of Type I and Type II 
error (i.e., incorrect inferences of disparity and 
parity, respectively). This statistic, however, 
may remain insensitive to, i.e., have little 
power to detect, larger CLEC variance for two 
reasons:  first, the formula used to determine 
the balancing critical value is admittedly 
essentially unaffected by differences in 
variances (BellSouth Comments, 2002, 
Attachment 2 (Part 4), Exhibit No. EJM-1, 
Appendix C, p.C-9); second, the statistical test 
scores that are truncated and combined to 
obtain the truncated Z score are simply scores 
of modified t tests adjusted for skewness 
(BellSouth Comments, 2002, Attachment 2 
(Part 3), Exhibit No. EJM-1, Appendix A, p.A-
5, with correction from Attachment 2 (Part 2), 
Appendix D – Technical Description, p. 37). It 
is not at all clear that a combined statistic based 
on such truncated t-scores has much or any 
power to detect differences in variances, and a 
thorough simulation study like the one 
completed in this paper would be useful to 
allay or confirm these suspicions. 

• Although not the focus of this study, some 
performance and remedy plans use the general 
form of the modified t statistic as the basis for 
modifications to statistical tests designed for 
binary data, like that based on the common 
Wald approximation to the normal distribution 
(Comments of SBC, 2002, p. 59). In light of 
Opdyke’s (2004) findings, and all of the 
problems inherent in using the modified t 
statistic with continuous data performance 
metrics, such modifications should be viewed 
with skepticism until subjected to careful 
analytic scrutiny and empirical simulation. No 
objections to using the modified t for 
continuous data OSS parity testing were raised. 
Mulrow (2002) raised no objection to using the 
modified t for continuous data OSS parity 
testing, although concern was expressed about 
making modified t–like changes to the Wald 
approximation test for binary data: “This does 
not seem right to me” (p.280). Instead of this 
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test, Mulrow (2002) advocated the use of 
Fisher’s exact test. It is a viable and easily 
implemented alternative already in wide usage 
in OSS parity testing, although sometimes only 
for small(er) samples (SBC Performance 
Remedy Plan – Attachment 17, p. 3). Yet, it 
can be used for large samples as well because, 
even as a conditional exact test, it can be 
implemented very quickly with modern 
statistical software packages (e.g., SAS®). 
Agresti and Caffo (2000) provided a simple and 
effective, although not exact test for both small 
and large samples, and even better (more 
powerful), if slightly more complex 
alternatives, are the unconditional exact tests of 
Berger and Boos (1994) (available at 
http://www4.stat.ncsu.edu/~berger/tables.html) 
and Skipka et al. (2004) (Berger, 1996; Kopit 
& Berger, 1998). These all are carefully studied 
and well designed tests for binary data: there is 
no need to turn to unverified methods of 
questionable utility in this setting. 

• Although not the focus of this study, some 
performance and remedy plans rely on a normal 
approximation Z-test for comparing CLEC and 
ILEC sample rates from count data 
performance metrics, even when those rates are 
very small (e.g., trouble report rate) and almost 
certainly highly non-normal (SBC Performance 
Remedy Plan – Attachment 17, p.3-4; 
Ameritech Michigan – Performance Remedy 
Plan – Attachment A, p. 2; and SBC 
Performance Remedy Plan – Version 3.0 
SBC/SNET FCC 20 Business Rules – 
Attachment A-3, p.A-88). Yet, powerful and 
easily-implemented tests for comparing two 
Poisson means have been developed, and may 
be far superior statistically for such 
comparisons (Krishnamoorthy & Thomson, 
2004). Examination of these metrics’ 
distributions, and a straightforward simulation 
study, would adequately address this question. 

 
Unheeded Warnings 

As mentioned in Opdyke (2004), it is 
important to note that not everyone has supported 
the use of the modified t in this (and other) 
settings, although dissension has been 
conspicuously rare in the OSS parity testing arena. 
O’Brien (1993), in his discussion of Blair & 

Sawilowsky’s (1993) empirical study unfavorably 
comparing the modified t to O’Brien’s (1988) OBt 
and OBG statistics, points out that the Type I error 
rates of the modified t statistic will severely 
violate the nominal level of the test under a variety 
of conditions. Within the parity testing arena, over 
five years ago GTE voiced a lone, cautionary, and 
seemingly prescient dissent, given the findings of 
this current study, regarding use of the modified t 
in OSS parity testing:  

The modified Z-test [t test] should not be used 
since it follows no standard formulation of the 
test statistic. In the absence of a rigorous 
derivation, its sampling properties and 
maintained hypotheses are unknown. It has been 
asserted that the modified Z-test [t test] is a joint 
test of the equality of the means and variances of 
the two distributions; however no rigorous 
derivation has been provided. … It would 
clearly be foolish to accept a new and unknown 
test statistic without further documentation and 
consideration. (COMMENTS OF GTE, Before 
the Michigan Public Service Comm., 11/20/98, 
Attachment B, p.15-16) 

(Opdyke, 2004, has since provided an analytic 
derivation of the asymptotic distribution of the 
modified t: as stated previously, it is not standard 
normal or student’s t distributed, although it has 
been described as such in the expert testimony of 
Dysart & Jarosz, 2004 which, on pages 27-29, 
egregiously misquotes the derivation and major 
findings of Opdyke, 2004.) 

Meanwhile, others have hedged their bets. 
While being deposed as an expert witness for 
AT&T and other CLECs, Dr. Gerald Ford was 
asked:  
 

DO YOU BELIEVE THE MODIFIED Z-
TEST SHOULD BE REPLACED WITH 
THESE PROPOSED ALTERNATIVES? 
 

No. The development of the particulars of the 
performance plan took many months of hard 
work by some very smart people. It was only 
after considerable analysis and debate that the 
Modified Z-test [modified t test] was selected 
as the best test statistic for the performance 
plan. …I see no reason to alter the test 
procedures of the existing plan without strong 
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evidence that the other tests represent an 
improvement. 
 

SO YOU BELIEVE THE MODIFIED Z-
TEST [modified t test]  SHOULD BE USED? 
 

Yes, at least until some strong evidence is 
provided to indicate an alternative test is 
preferred. (Before the Texas PUC, Rebuttal 
Testimony of Dr. Gerald Ford for the CLEC 
Coalition, 08/23/04, p.36) 

The goal of this article, with its development of a 
single, nonparametric, yet generally powerful 
statistic for continuous-data OSS parity testing, 
has been to provide the “further documentation 
and consideration” implicitly requested by GTE 
(1998), as well as the “strong evidence” of  “an 
improvement” over the modified t  that Ford 
(2004) implicitly requested much more recently. 

 
Conclusion 

 
As summarized in Opdyke (2004), under the 
Telecommunications Act of 1996, ILECs are 
required to provide CLEC customers with local 
telephone service “at least equal in quality to” that 
which they provide to their own customers if they 
are to be allowed into the long distance telephone 
market (Telecommunications Act of 1996, Pub. 
LA. No. 104-104, 110 Stat. 56 (1996), at §251 (c) 
(2) (C)). The goal of this carrot-stick approach – 
the carrot being the potentially lucrative long 
distance market, and the stick being this 
requirement of at-least-equal service provision – is 
to promote competition in the newly deregulated 
local telephone markets. Implementing and 
enforcing the at-least-equal service provision 
requirement has taken the form of OSS parity 
testing – statistically testing the service data 
represented in thousands of operations support 
services performance metrics to ensure that the 
service provided to CLEC customers is, in fact, at 
least equal.  

Results from these statistical tests indicating 
average service and/or service variability that is 
not at least equal, i.e., findings of disparity, 
typically require an ILEC to pay fines (sometimes 
US$ millions) to the CLEC(s), and sometimes to 
the state(s); disparity that is consistent and 
widespread over time (i.e., backsliding) can serve 
as cause for the revocation of an ILEC’s approval 

to provide long distance service. These stakes are 
high, not only for individual firms but also for the 
entire industry, so choosing the correct, if not the 
best statistics to use in OSS parity testing is a very 
important decision. 

To date, the modified t statistic (Brownie et 
al., 1990) has been approved and used in OSS 
parity testing across the country. It is used on 
continuous-data performance metrics as a test of 
whether average service and/or service variability 
are at least equal for CLEC customers compared to 
their ILEC counterparts. However, Opdyke (2004) 
demonstrated that the modified t is an ineffective 
and misleading choice for this purpose in this 
setting. It remains potentially vulnerable to 
gaming – intentional manipulation of its score to 
mask disparity – but far more importantly, it 
remains absolutely powerless to detect inferior 
CLEC service provision under a wide range of 
relevant data conditions. Opdyke (2004) proposed 
the use of several other easily implemented 
conditional statistical procedures that are not 
vulnerable to gaming and typically provide 
dramatic power gains over the modified t. The 
selection of which among them to use, however, 
depends on the relative sizes of the two data 
samples and a distributional characteristic (the 
kurtosis) of the specific performance metric being 
tested. Although this is arguably straightforward, a 
single test that could accomplish the same thing 
would be preferable, and the development of such 
a statistic is the motivation for this article. 

In this article, an easily-implemented 
maximum test – OBMax – was developed based 
on the multiple statistics proposed by Opdyke 
(2004). OBMax maintains reasonable Type I error 
control and is always either nearly as powerful as 
its constituent tests, or almost as often as not, even 
more powerful. More importantly, it typically 
provides dramatic power gains over the modified t. 
The one set of narrow conditions under which the 
modified t has a slight power advantage (always 
less than 0.1 under symmetry) are exactly those 
under which consequent fines or remedies 
imposed on ILECs will be the smallest – small 
CLEC sample sizes and small location shifts (and 
equal or close-to-equal variances). 

In contrast, the typically dramatic power gains 
of OBMax over the modified t under most other 
conditions of disparity (sometimes gains of even 
1.0!) translate into the appropriate identification of 
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vastly larger amounts of remedies that the 
modified t will miss. From both a statistical and 
remedy-impact perspective, therefore, OBMax is 
superior at detecting disparity, and thus, at 
enforcing the at-least-equal service provision of 
the Telecommunications Act of 1996. It 
consequently is an unambiguously better statistic 
than the modified t for use in OSS parity testing to 
achieve the major objective of the Act: the 
movement of local telephone service from 
regulation to full market competition. 
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Appendix 
 

OBt and OBG: O’Brien’s OBt test involves 
running the following ordinary least squares 
regression on pooled data including both samples:  

                    2
0 1 2i i i iy x xβ β β ε= + + + ,             (6) 

where y is a dummy variable indicating inclusion 
in the CLEC sample, and x is the performance 
metric variable. If the parameter on the quadratic 
term (β2) is (positively) statistically significant at 
the 0.25 level, use the critical value of the overall 
equation to reject or fail to reject the null 
hypothesis; if it is not, use the critical value of the 
overall equation of the following ordinary least 
squares regression instead:  

                          0 1i i iy xβ β ε= + +                    (7) 

O’Brien’s OBG test is identical to the OBt test 
except that the pooled-sample ranks of x are used 

in the regressions instead of the x data values 
themselves. 
 

Modified Levene test: The modified Levene test 
requires a simple data transformation: take the 
absolute value of each data point’s deviation from 
its respective sample median (as per Brown and 
Forsythe, 1974), and then calculate the usual one-
way ANOVA statistic using these transformed 
values (as per Levene, 1960). The resulting 
statistic (8) is referenced to the F distribution as 
usual.  

Let = − �ij ij iz x x  where �ix is sample i’s median (8)   
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where =∑i ij iz z n  and  ⋅⋅ =∑∑ ij iz z n  

However, because this test is designed as a two-
tailed test, and the hypotheses being tested in this 
setting are one-tailed, the p-value resulting from 
this test, when used conditionally with O’Brien’s 
tests as in Table 1, must be subtracted from 1.0 if 
the CLEC sample variance is less than the ILEC 
sample variance. Or, if one does not need to 
calculate a p-value that is be known to be larger 
than α (as when the CLEC sample variance is 
smaller), the calculation simply can be skipped. 
 

Shoemaker’s F1 test: Shoemaker’s F1 test is simply 
the usual ratio of sample variances referenced to 
the F distribution, but using different degrees of 
freedom:   

 
2 2

,∼

C IC I df dfs s F                                               (9) 

where            4
4

ˆ 1
2

ˆ 3
i

i i
i

n
df n

n
µ
σ

⎛ ⎞−= −⎜ ⎟−⎝ ⎠
   

where i = C, I corresponds to the two samples, and 

4µ  and 4σ  are estimated from the two samples 
when pooled:  

                ( ) ( )
2

4

4 1 2
1 1

ˆ
in

ij i
i j

x x n nµ
= =

= − +∑∑            (10) 
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      ( ) ( )( ) ( )
2

4 2 2
1 1 2 2 1 2ˆ 1 1n s n s n nσ ⎡ ⎤= − + − +

⎣ ⎦
  (11) 

 
Shoemaker (2003) notes that the biased estimate 
for 4σ  is used for improved accuracy. 
 
Separate-variance t test:  The separate-variance t 
test, also known as the Welch or Behrens-Fisher t 
test, is presented below: 
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Satterwaith’s (1946) degrees of freedom for tsv is:   
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If df is not an integer, it should be rounded down 
to the next smallest integer (Zar, 1999, p. 129) 
 
Test of D’Agostino et al. (1990):  The test of 
D’Agostino et al. (1990) is calculated as follows: 
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 ,    ( ) ( )
1

2ln 1 0,1φ= + + ∼gZ E F F  

                                                 (~ standard normal) 
 
For one-tailed testing of skewness to the left, 

check ( )1
Pr ≤ gZ Z ; for skewness to the right, 

check ( )1
Pr ≥ gZ Z . See Zar (1999), p. 115-116, 

for further details. 
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