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Sample Size Calculation and Power Analysis of Time-Averaged Difference 
 

   Honghu Liu       Tongtong Wu 
          David Geffen School of Medicine        Department of Biostatistics 
             UCLA                                      UCLA   
    
 
 
Little research has been done on sample size and power analysis under repeated measures design. With 
detailed derivation, we have shown sample size calculation and power analysis equations for time-
averaged difference to allow unequal sample sizes between two groups for both continuous and binary 
measures and explored the relative importance of number of unique subjects and number of repeated 
measurements within each subject on statistical power through simulation. 
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Introduction 

 
Sample size calculation and power analysis are 
essentials of a statistical design in studies. As 
statistical significance is likely the desired 
results of investigators, proper sample size and 
sufficient statistical power are of primary 
importance of a study design (Cohen, 1988). 
Although a larger sample size yields higher 
power, one cannot have as large a sample size as 
one wants, since sample subjects are not free and 
the resources to recruit subjects are always 
limited. As a result, a good statistical design that 
can estimate the needed sample size to detect a 
desired effect size with sufficient power will be 
critical for the success of a study. 

Some research has been done for sample 
size calculation and power analysis regarding 
different designs with cross-sectional data, such 
as difference between correlations, sign-test 
(Dixon &   Massey,   1969),  difference  between  
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means with two group t-test or analysis of 
variance (ANOVA) (Machin, Campbell, Fayers, 
& Pinol, 1997), contingence tables (Agresti, 
1996), difference of proportions between two 
groups, F-test (Scheffé, 1959), multiple 
regressions and logistic regressions 
(Whittemore, 1981; Hsieh et al., 1998). 

However, little research has been done 
about sample size calculation and power 
analysis with repeated measures design, 
especially for unbalanced designs, which is 
widely used in biological, medical, health 
services research and other fields. For example, 
in research for diseases with low incidence and 
prevalence; designs where the non-diseased 
group is much larger than the diseased group to 
ensure a sufficient large sample size for 
multivariate modeling. 

Unbalanced repeated measures 
situations also emerge in cluster randomized 
trials (Eldridge et al., 2001). Diggle et al. (1994) 
proposed a basic sample size calculation formula 
for time-averaged difference (TAD) with both 
continuous and binary outcome measures for the 
situation only with equal sample size in each 
group. Fitzmaurice et al. (2004) proposed a two-
stage approach for sample size and power 
analyses of change in mean response over time 
for both continuous and binary outcomes. 

Statistical software and routines have 
made sample size calculation and power analysis 
process much easier and flexible for researchers. 
With statistical software, one can efficiently 
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examine designs with different parameters and 
select the best design to fit the need of a research 
project. Currently, there are many types of 
statistical software that can conduct sample size 
and power analyses. These include the general 
purpose software which contain power analysis 
routines such as: NCSS (NCSS, 2002), SPSS 
(SPSS Inc., 1999), and STATA (STATA Press, 
2003); general purpose software that can be used 
to calculate power (i.e., contain non-central 
distribution or simulation purpose) such as: SAS 
(SAS Institute Inc., 1999), S-Plus (MathSoft, 
1999), and XLISP-STAT (Wiley, 1990); and 
stand-alone power analysis software such as: 
NCSS-PASS 2002 (NCSS, 2002), nQuery 
advisor (Statistical Solutions, 2000), and 
PowerPack (Length, 1987). A comprehensive 
list       of        sample         size      and       power  
analysis software can be found at 
http://www.insp.mx/dinf/stat_list.html.
 Although a lot of software can conduct 
sample size and power analyses, they are 
basically all for data with different cross-
sectional designs. The only software that can 
conduct sample size and power analyses with 
repeated measures design is NCC-PASS 2002, 
which handles power analysis for repeated 
measures ANOVA design. There is, however, no 
software available for TAD with repeated 
measures design. 

In this article, a formula has been 
developed for sample size calculation and power 
analysis of TAD for both continuous and binary 
measures to allow unequal sample size between 
groups. In addition, the relative impact and 
equivalence of number of subjects and the 
number of repeated measures from each subject 
on statistical power was examined. Finally, a 
unique statistical software for conducting sample 
size and power analysis for TAD was created. 

 
Methodology 

 
Sample size Calculation and Power Analysis 
 Sample size calculation and power 
analysis are usually done through statistical 
testing of the difference under a specific design 
when the null or alternative hypothesis is true. 
Although there are many factors that influence 
sample size and power of a design, the essential 
factors that have direct impact on sample size 

and statistical power are type I error ( 0H may be 

rejected when it is true and its probability is 
denoted by α ), type II error ( 0H may be 

accepted when it is false and its probability is 
denoted by β ), effect size (difference to be 

tested and it is usually denoted by ∆ ) and 
variation of the outcome measure of each group 
(for example, standard deviation )σ . Sample 
size and power are functions of these factors. 
Sample size and power analysis formulas link all 
of them together. For example, the sample size 
calculation formula for a two group mean 
comparison can be written as a function of the 
above factors:  
  

)/11/())//()(( 2
2/112 rSzzn +∆+= −− αβ , 

 
where 2n  is the sample size for group2, S is the 
common standard deviation of the two groups,  
r 10 ≤< r  is a parameter that controls the ratio 
between the sample sizes of group 1 and group 2 
(i.e., rnn /21 = ). β−1z  is the normal deviate for  

the desired power, 2/1 α−z   is the normal deviate 

for  the  significance level (two-sided test) and 
∆   is the difference to be detected.  
 For given levels of a type I error, a type 
II error and an effect size, sample size and 
statistical power are positively related: the larger 
the sample size, the higher the statistical power. 
Type I error is negatively related to sample size: 
the smaller Type I error, the larger sample size 
that is required to detect the effect size for a 
given statistical power. The larger type II error, 
the smaller power and thus one will need smaller 
sample size to detect a given effect size.    
 
Repeated Measures Design 
Time-Averaged Difference (TAD) 
 In many biomedical or clinical studies, 
researchers use the experimental design that 
takes multiple measurements on the same 
subjects over time or under different conditions. 
By using this kind of repeated measures design, 
treatment effects can be measured on “units” 
that are similar and precision can be determined 
by variation within same subject. Although the 
analyses become more complicated because 
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measurements from the same individual are no 
longer independent, the repeated measures 
design can avoid the bias from a single snapshot 
and is very popular in biological and medical 
research.  

Suppose there are two groups, group 1 
and group 2, and one would like to compare the 
means of an outcome, which could vary from 
time to time or under different situations 
between the two groups. With cross-sectional 
design, one will directly compare the means of 
the outcome between the groups with one single 
measure from each subject, which may not 
reflect the true value of the individual. 

For example, it is known that an 
individual’s blood pressure is sensitive to many 
temporary factors, such as mood, the amount of 
time slept the night before and the degree of 
physical exercise/movement right before taking 
the measurement. This is why the mean blood 
pressure of a patient is always examined from 
multiple measurements to determine his/her true 
blood pressure level. If only a single blood 
measurement is taken from each individual, then 
comparing mean blood pressure between two 
groups could be invalid as there is large 
variation among the individual measures for a 
given patient. To increase precision, the best 
way to conduct this is to obtain multiple 
measurements from each individual and to 
compare the time-averaged difference between 
the two groups (Diggle, 1994).  
 
Notations 
 Suppose that there is a measurement for 
each individual )(ijgy , where 2,1=g  indicating  

which group, kmi ,...,1= (with )2,1=k  

indicating the number of individuals in each 
group, and nj ,...,1=  indicating the number of 
repeated measures from each individual subject. 
Then TAD will be defined as:  
 

)*/)(())*/)(( 2
1 1 1 1

)(21)(1

1 2

mnymnyd
m

i

n

j
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i
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j
ijij∑∑ ∑∑−=

= = = =
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The following notations will be used to define 
the different quantities used in sample size 
calculation and power analysis for TAD:  
 

1. α : Type I error rate 
2. β : Type II error rate  
3. d:   Smallest meaningful TAD 

difference to be detected 
4. σ : Measurement deviation (assume to 

be equal for the two groups) 
5. n:  Number of repeated observations per 

subject 
6. ρ : Correlation between measures 

within an individual 
7. 21 ,mm : Number of subjects in group 1 

and group 2, respectively 
8. 21 mmM += : Total number of subjects 

in the design 
9. Mm /1=π : Proportion of number of 

subjects within group 1 ( 5.0=π gives 
equal sample size. 

MmMm )1(, 21 ππ −== ) 
 
Using the above notations, the next two sections 
will derive the sample size calculation formula 
for TAD between two groups with the flexibility 
of possible unequal sample size from each group 
for continuous and binary measures, 
respectively. 
 
Continuous responses 
 Consider the problem of comparing 
the time-averaged difference of a continuous 
response between two groups. Supposed the 
model is of the following form: 
 

njMixY ijij �� ,1;,,1,10 ==++= εββ  

 
where x indicates the treatment assignment, 

1=x for group 1 and 0=x for group 2. To 
test if the time-averaged difference is zero is 
equivalent to test 0: 10 =βH  vs. 0: 11 ≠βH . 

Without showing details of derivation, Diggle 
et al. (1994) have shown the sample size in the 
situation when group 1 and group 2 have the 
same sample size. With step by step 
derivation, here it is shown generally to the 
cases that the sample sizes of two groups 
could be unequal. Assume that the within 
subject correlation  
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( , )   fo r  an y   ij ikC o rr y y j kρ= ≠  

 
and  
 

2)( σ=ijyVar . 

 
Without lost generality, it is assumed that the 
smallest meaningful difference 0>d , and let 
the power of the test be β−1 . Under 0H : 
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The above model can be written in matrix form: 

εβ += 'XYi  

where 
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The variance-covariance matrix (compound 
symmetry) can be written as  
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The estimates of regression coefficients of such 
a model are 
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and the estimates of variance estimate are 
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By definition, it is known that 

0 1 1 / 2 1
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it is assumed that 0, therefore, the second term can 
be ingored
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Therefore,  

)ˆ( 1

2/11 βαβ
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or 
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In other words, given power β−1 , the total 
sample size needed to detect the smallest 
meaningful difference 0>d is 
 

22

22
12/1

)1(

])1(1[)(
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M
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ρβα
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−++
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where s is the estimate of standard deviation. 
When mmm == 21 , the above formula 
becomes the same as that shown in Diggle et al. 
(1994) for balanced design: 
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Given sample size,   
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Therefore, the power of the test can be written 
as: 
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 Binary responses 

 Suppose a binary response variable is to 
be compared between group 1and group 2. 
Assume  
 

1

2

 in group 1
Pr( 1)

 in group 2ij

p
Y

p

⎧
= = ⎨

⎩
 

  
 To test if the proportions of responses 
being 1of the two groups are equal, the 
following model is considered 
 

0 1( | ) Pr( 1| ) ,

1, , ; 1,

ij ij ij ij ijE Y x Y x x
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where x indicates the treatment assignment, 

1=x for group 1 and 0=x for group 2. this test 
will be equivalent to test 0: 10 =βH  vs. 

0: 11 ≠βH . Without showing the details, 
Diggle et al (1994) have shown the sample size 
in the situation when group 1 and group 2 have 
the same sample size. With step by step 
derivation, here it is generalized to the case that 
the sample size could be different between the 
two groups.  
            Suppose 021 >−= ppd  and the 

power of the test is β−1 . Under 0H , the 

estimate of 2σ  is  
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where 11 1 pq −=  and 22 1 pq −= . Under 1H , 

the estimate of 2σ  is  
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The variance estimator of 1β̂  is  
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and it is denoted as 

01 ,ˆˆ
Hβσ when replacing 

2σ  by 2
0σ̂ , and 
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Hβσ when replacing 2σ  by 

2
1σ̂ .  

 
The power of the test is:  
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Therefore, 
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i.e., 
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In other words, given power β−1 , the total 
sample size needed to detect the smallest 
meaningful difference 0>d is 
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When 21 mm = , the above formula is the same 
as shown in Diggle et al. (1994) for balanced 
design. Given sample size, the power of the test 
can be calculated using the following equation: 
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The Relative Impact of Number of Subjects and 
Number of Repeated Measures on Power 
 As the cost and the amount of effort to 
recruit subjects or to increase the number of 
repeated measurements for each participant is 
often different, it will be useful for investigators 
to know the relative impact of number of 
subjects and number of repeated measures on 
statistical power for testing TAD. The relative 
importance of the total number of subjects M 
and number of repeated measures n, which have 
nonlinear effects on the power, is now 
investigated. For easy derivation, let’s examine 
the situation of continuous measure.  

First, if the within subject correlation is 
0=ρ , then it can be seen that the number of 

subjects M and number of repeated measures n 
will have exactly the same impact on statistical 
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power. Using formula (3) and plugging in 
0=ρ , the power then becomes: 
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It can be explained that when 0=ρ  all the 
observations are independent and thus there is 
no distinction between the repeated 
measurements   and   different subjects. Second,  
when 1=ρ , the number of repeated measures 
has no more impact on power because it just 
repeats the same observations over again. This 
can be seen by plugging in 1=ρ  in formula (3): 
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To examine the impacts of M and n on 

the power when 10 << ρ , the amounts that 
need to be increased on M and n to achieve the 
same power are calculated. With other factors 
fixed and for a given n and M, how much does n 
need to be increased to achieve the same impact 
on power when increasing M by 1?  Recall the 
power function is 
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With other factors fixed, all that is required is to 
make the term, 
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a constant to achieve the same power. Let 'n  be 
the new n  that will have the same impact on 
power as M increased by 1. Then the following 
equation can be solved 
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and the following equation is obtained: 
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Thus increasing n by the amount, 
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is the same as increasing M by 1. This amount of 
increment depends on M, n and ρ . For 

example, if 5.0=ρ , then n needs to increase by 

)/()1( nMnn −+ ; if 05.0=ρ  n needs to 

increase by )05.095.0/()05.095.0( nMnn −+  
in order to have the same impact on power as M 
increased by 1.  

To examine which variable, M or n, has 
a larger impact on the power, it is required that 
one checks which variable needs to increase 
more to get the same power. The larger amount 
that needs to increase, the lower impact the 
variable has on statistical power. Set (9) equal to 
1 and obtain the following equation. 
 

0)1(2 =−−+ Mnn ρρ                                (10) 
        
This is a quadratic function of n, and thus it has 
two roots 
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 Because n is always greater than 0, the 
positive root is taken. To say that the amount (9) 
is greater than 1, is equivalent to stating that 
equation (10) is greater than 0, or n is greater 
than n*, the root of (10). In other words, the 
impact of n on power is smaller than the impact 
of M when n is greater than n*. Based on (11), 
one can see that n* depends on both M and ρ  
nonlinearly. Figure 1 below shows the non-
linear relationship among M, n and ρ .  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 This 3-D figure reveals that the 
threshold n* will increase when M increases but 
for a same M value, the threshold will be larger 
when ρ  smaller. Figure 2 and Figure 3 are 
special slides of the 3-D figure of Figure 1. 
Figure 2 shows the relationship between the 
threshold n* and ρ  for M=300 and Figure 3 
shows the relationship between the threshold n* 
and M for ρ =0.4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. The Relationship of n*, ρ  and M. 
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%SP_TAD Software, Syntax and Parameters     

To implement the algorithm for 
calculating the sample sizes or power for time-
averaged difference, we have written a statistical 
macro procedure %SP_TAD, where SP stands 
for sample and power, TAD stands for time 
averaged difference in SAS/MACRO.  
          The syntax of the macro is simple and 
straightforward. To use this macro, one simply 
needs to invoke the macro with specific values 
for the parameters required. Here is the list of 
parameters that need to be specified:   
 
(1) type-------continuous (=1) or binary (=2) 
responses. This sets up the tone of the type of 
the outcome measure to be analyzed. The 
following parameters of (2) to (9) must be 
provided for continuous responses: 
(2) alpha----Type I error rate 
(3) beta----- Type II error rate 
 

 
 
(4) d--------Smallest meaningful difference to be 
detected 
(5) sigma----Measurement deviation (for 
continuous responses) 
(6) n--------Number of repeated observations per 
subject 
(7) rho------Correlation among each subject 
(8) pi--------Proportion of number of subjects 
within group 1 
(9) M--------Total number subjects 

For binary outcome, sigma is not 
needed. Instead, two more parameters need to be 
provided: 
 (10) pa-------Pr(Y_ij=1) in group 1 
 (11) pb-------Pr(Y_ij=1) in group 2 
 
To run the macro, one needs simply to issue: 
 
%sp_tad(type=, alpha=, beta=, d=, sigma=, n=, 
rho=, pi=, pa=, pb=, M=); 
        

 
Figure 2. The Relationship of n* and ρ , with M = 300 fixed. 

 
 
 

Figure 3. The Relationship of n* and M, with ρ  = 0.4 fixed. 
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where pa and pb should be left as blank for 
continuous outcome, and sigma should be left  
blank for binary outcome. Beta and M should 
not be provided at the same time.  To calculate 
required sample size, beta must be provided.  To 
calculate power, M must be provided. Type is 1 
or 2, where 1 stands for continuous responses 
and 2 stands for binary responses. The software 
code is available upon request from the author.  
 
Application 
 Repeated measures design has wide 
applications in social, biological, medical and 
health service research. To avoid possible bias 
from snapshot of data collection at one time 
point and to reduce the cost of collecting data 
from different subjects, repeated measures data 
are often collected. Through a real example, this 
section demonstrates the input, output and the 
functionality of the %SP_TAD software and 
how the procedure works with continuous 
outcome measures. For binary outcome 
measures, the process will be similar.  
      For continuous measures, an example of 
a patient’s diastolic blood pressure between a 
treatment and control group is examined 
(generally, diastolic blood pressure below 85 is 
considered “normal”). The level of a person’s 
blood pressure could be affected by many 
temporary factors, such as the amount of time 
that the person slept last night, the person’s 
mood, physical activity right before taking blood 
pressure measurement, etc. Thus, a one time 
snapshot of blood pressure will likely not be 
accurate. To accurately estimate the level of 
blood pressure of a patient or a group of 
patients, means of multiple measurements of 
blood pressure from a patient are usually used.   

Suppose that a design is required to 
examine the difference of diastolic blood 
pressure between the treatment and control 
groups. To avoid bias from one time snapshot, 
five repeated measures of blood readings were 
taken from each patient within a week (one 
reading each day). Based on previous studies, 
intra-class correlation at the level of 0.4, type I 
error 0.05 and type II error 0.15 and a common 
standard deviation of 15 was used. Assume that 
a difference in mean blood pressure as small as 
10 points between the   treatment and control 
groups is desired. Since the treatment is more 

expensive than the control and more controls 
than treatment participants is desired, with a 
ratio of 3:2. Using these parameters, the 
calculation with the following syntax can be 
established: 
 
%sp_tad(type=1, alpha=0.05, beta=0.15, d=10, 
sigma=15, n=5, rho=0.4, pi=0.6, pa=, pb=, M=); 
 

Execute the procedure and the answer is 
158 in treatment group and 105 in control group. 
Assume that the control group had a mean 
diastolic blood pressure 88. Then, the given 
sample size of 158 in the treatment group and 
105 in the control group with 5 repeated 
measurements from each patient will allow one 
to detect a mean diastolic blood pressure of the 
treatment as low as 78.  
          For the same question, assume 158 
patients in treatment group and 105 patients in 
the control group with 5 repeated measures of 
blood pressure. With a type I error 0.05, what 
kind of power will is needed to detect a 
difference in mean blood pressure of as small as 
10 points? Using the same procedure, these 
parameters can be instituted and the macro with 
the following syntax can be executed:  
 
%sp_tad(type=1, alpha=0.05, beta=, d=10, 
sigma=15, n=5, rho=0.4, pi=0.6, pa=, pb=, 
M=263); 
 
The answer for power will be 85%. 
 

Conclusion 
 
Time-averaged difference of repeated measures 
data has wide applications in many fields of 
research. TAD provides the opportunity to 
examine the difference in means between groups 
with higher precision using repeated 
measurements from each subject. This article 
deals with sample size and power analyses 
issues for time-averaged difference of repeated 
measures design. It presents the details of 
derivation of the general sample size calculation 
and power analysis formula for TAD with 
unequal sample size between two groups. 
Allowing unequal sample size will enable 
researchers to have the opportunity to choose an 
unbalanced design so that smaller number of 
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subjects could be used for the group that is either 
more expensive, hard to recruit or with limited 
number of available subjects. 

Repeated measures data points also arise 
from cluster randomized trials, where it typically 
has repeated individuals within randomized 
clusters. There is growing literature on the topic 
starting with initial work involving balanced 
equally sized groups, but is now extending to 
more complex situations, of which unequal 
group sizes is also a possible scenario (Eldridge, 
2001).         
           Repeated measures data has two 
dimensions of sample sizes: the number of 
different individuals and the number of repeated 
measurements from each individual. As shown 
in the article, because data from different 
individuals are independent, the number of 
different subjects seems to have a larger effect 
on power than the number of repeated 
measurements from the same subject. However, 
there is a threshold of the number of repeated 
measures, which will yield a larger impact by 
increasing the number of repeated measures than 
by increasing the number of subjects on 
statistical power. However, increasing the 
number of subjects by 1 means to increase the 
number of observations by n (the new subject 
gets n repeated measurements as others) and 
increasing the number of repeated measures by 1 
means to increase the number of observations by 
M (every subject increases one repeated 
measurement). Thus, when ρ is very small (i.e. 
about zero), one will need a larger n to exceed 
n*, the threshold, in order to have a larger 
impact of increment of n than M on power.  
 In most of the situations, n is not large 
and much smaller than M, thus likely M will 
have larger impact than n. For the two extreme 
cases where 0=ρ  or 1=ρ , the impact of the 
increase of the number of repeated measures will 
be the same as the increase of the number of 
individuals in each group ( 0=ρ ) or there will 
be no impact of increasing the number of 
repeated measures ( 1=ρ ) on power. 
 The software created is easy to use and 
can handle both continuous outcome measure 
and dichotomous outcome measure by issuing a 
value of “1” or “0” for the parameter “type”. For  

the same software, one can also estimate the 
underlying statistical power for a given sample 
size with a given type I error, type II error, 
variation and effect size.    
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