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Testing For Aptitude-Treatment Interactions In Analysis Of Covariance And 
Randomized Block Designs Under Assumption Violations 

 
    Tim Moses                                  Alan Klockars 

Educational Testing Service                 University of Washington 
        Princeton, NJ 

 
 

 
This study compared the robustness of two analysis strategies designed to detect Aptitude-Treatment 
Interactions to two of their similarly-held assumptions, normality and residual variance homogeneity. The 
analysis strategies were the test of slope differences in analysis of covariance and the test of the Block-by-
Treatment interaction in randomized block analysis of variance. With equal sample sizes in the treatment 
groups the results showed that residual variance heterogeneity has little effect on either strategy but 
nonnormality makes the test of slope differences liberal and the test of the Block-by-Treatment interaction 
conservative. With unequal sample sizes in the treatment groups the often-reported sample size-variance 
heterogeneity pairing is problematic for both strategies. The findings suggest that the randomized block 
strategy can be characterized as an overly-conservative alternative to the test of slope differences with 
respect to robustness. 
 
Key words: Aptitude-treatment interactions, analysis of covariance, randomized block, nonnormality, 

variance heterogeneity, robustness 
 
 

Introduction 
 

One of the important issues in education is 
identifying when the effect of an instructional 
strategy depends on some individual difference 
variable (X) of the student. In their seminal 
work, Cronbach and Snow (1977) called these 
effects Aptitude-Treatment Interactions (ATIs). 
Two analysis approaches for identifying the 
presence of ATIs differ in terms of how they 
deal with an originally continuous X.  
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The first is a randomized block analysis 
of variance approach in which X is stratified into 
mutually exclusive subsets (Blocks). The second 
is a regression-based analysis of covariance 
approach in which the observed continuum of X 
is used. The question of interest is assessed with 
a test of the Block-by-Treatment interaction in 
the randomized block approach and a test of the 
homogeneity of regression coefficients in the 
analysis of covariance approach. 

The randomized block and the analysis 
of covariance approaches have been compared 
in terms of relative power and apparent 
popularity. When their assumptions are met, 
both approaches control Type I error to an 
acceptable level, while the analysis of 
covariance strategy has superior power 
(Klockars & Beretvas, 2001; Cronbach & Snow, 
1977; Pedhazur, 1997; Aiken & West, 1991). 
The power advantage is greatest when the 
randomized block strategy is based on a large 
number of blocks. In terms of popularity and 
familiarity for researchers, the randomized block 
strategy seems to have the advantage (Klockars 
& Beretvas, 2001; Keselman, Huberty, Lix, 
Olejnik, Cribbie, Donahue, Kowalchuk, 
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Lowman, Petoskey, Keselman, & Levin, 1998; 
Maxwell, O’Callaghan, & Delaney, 1993). The 
purpose of the current study is to compare the 
two strategies in terms of a different criterion, 
their relative robustness to violations of 
assumptions about the normality and between-
group variance homogeneity of the errors. 
 The two strategies make similar 
assumptions about the normality and variance 
homogeneity of the errors, but define error 
differently. In the randomized block design error 
is defined as the deviation of the scores from the 
mean of the Block-Treatment group. This mean 
reflects the outcome measure (Y) for all 
individuals in a treatment group who are 
categorized into the same block based on their X 
values. The error variance for the randomized 
block design is called the Subject/Block-by-
Treatment Mean Square or S/BT. In analysis of 
covariance, error is defined as the difference 
between the Y scores and the predicted value 
based on the X value of the subject. The 
predicted value is from the best fitting least 
squares line for the treatment group. The error 
variance for analysis of covariance is called the 
adjusted subject Mean Square or the residual 
variance. 

Research has considered the effects of 
nonnormality and variance heterogeneity on the 
robustness of the two strategies, but most of this 
work has been on the analysis of covariance 
strategy. None of this work has specifically 
compared the robustness of the two analysis 
strategies under the same assumption violations. 
This research suggests that the two assumption 
violations have different effects on the 
robustness of the analysis of covariance and 
randomized block strategies. 

Nonnormality seems to have a stronger 
impact on the robustness of the analysis of 
covariance strategy than on the robustness of the 
randomized block strategy. The analysis of 
covariance strategy becomes liberal when the 
error distribution is heavy-tailed and 
conservative when it is light-tailed (Conover & 
Iman, 1982; Headrick & Sawilowsky, 2000; 
Klockars & Moses, 2002). The randomized 
block strategy is mildly affected by all but the 
most extreme conditions of nonnormality 
(Milligan, Wong & Thompson, 1987; Keselman, 
Carriere, & Lix, 1995). 

The effect of variance heterogeneity on 
robustness depends on whether group sample 
sizes are equal. With equal sample sizes, 
variance heterogeneity has a negligible effect on 
the robustness of the analysis of covariance 
strategy (Dretzke, Levin & Serlin, 1982; 
Overton, 2001) and sometimes a negligible 
(Milligan, Wong & Thompson, 1987) or other 
times a liberal (Harwell, Rubinstein, Hayes & 
Olds, 1992) effect on the randomized block 
strategy. With unequal sample sizes, variance 
heterogeneity influences the robustness of the 
two strategies in the same way: when the group 
with the largest sample size has the smallest 
error variance (inverse pairing) both strategies 
are liberal, and when the group with the largest 
sample size has the largest error variance (direct 
pairing) both strategies are conservative. The 
current study considers the variance 
heterogeneity effect for equal and unequal 
sample sizes. 

Finally, the effect of combined 
nonnormality and variance heterogeneity is 
interactive for the analysis of covariance 
strategy and additive for the randomized block 
strategy. For the analysis of covariance strategy, 
the two assumption violations slightly correct 
for each other (Deshon & Alexander, 1996). For 
the randomized block strategy, the two 
assumption violations are not interactive so that 
robustness depends mostly on the extent of 
variance heterogeneity (Keselman, et al., 1995; 
Harwell, et al., 1992). 
 It is difficult to recommend either 
analysis of covariance or randomized block as 
the more robust strategy when the errors are 
nonnormal and heterogeneous. Comparisons of 
the two strategies have focused on power when 
their assumptions are met and their popularity 
among researchers. The research that has 
evaluated the impact of the assumption 
violations on robustness has not directly 
compared the robustness of the two strategies. 
The current study was motivated by these 
concerns. The major questions are 1) for 
combinations of nonnormality and variance 
heterogeneity, which strategy is more robust? 
and 2) how will the relative robustness of these 
two strategies compare to what is known about 
their relative power? 
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Methodology 
 

A Monte Carlo simulation study was conducted 
to investigate the relative robustness of the ATI 
analysis strategies. The null hypothesis of no 
ATI was true in all conditions. Empirical Type I 
error rates based on 10,000 iterations were 
generated for each condition. These empirical 
Type I error rates were then compared to the 
nominal Type I error rate of .05. Two treatment 
groups were used throughout the study. The 
following conditions were considered. 
 
Analysis strategies  
 The standard analysis of covariance test 
of regression slope heterogeneity (Slopes) and 
the randomized block Block-by-Treatment 
Interaction analyses were compared. The 
randomized block strategy was evaluated using 
two (RB2) and four (RB4) blocks of X using 
median and quartile splits of the X variable 
based on the total sample. While the creation of 
the X blocks using of the total sample can create 
slightly unequal sample sizes even though the 
treatment group sizes are intended to be equal, 
the use of the total sample was preferred over 
the excessively liberal strategy of creating the X 
blocks within each separate treatment group 
(Myers & Well, 1995).  
 
Assignment strategies  
 Two major strategies for assigning 
subjects to treatment conditions in randomized 
block and analysis of covariance are random 
assignment and assignment that utilizes subjects’ 
X scores (Lomax, 2001; Myers & Well, 1995). 
When subjects are randomly assigned to 
treatments without regard for X, the randomized 
block strategy creates X blocks after treatments 
are administered (post hoc blocking). When 
subjects are assigned to treatments based on 
their X score, the randomized block strategy first 
creates the desired number of blocks in the total 
sample and then randomly assigns equal 
numbers of subjects to each of the treatments 
from each of the blocks. The approach of 
assigning subjects to treatments based on X and 
using the analysis of covariance is called 
systematic assignment (Dalton & Overall, 1977), 
meaning that subjects are first ranked on X and 

then assigned to treatments in a systematic 
pattern (i.e. 12211221…). 

The consideration of analysis and 
assignment strategy resulted in six strategies to 
be   investigated:  analysis   of   covariance with 
random assignment, analysis of covariance with 
systematic assignment, RB2 and RB4 with 
random assignment (post hoc blocking) and RB2 
and RB4 with assignment from the blocks. 

 
Normality  
 Three shapes were used for X and the 
errors of Y, including a normal shape (skew=0, 
kurtosis=0), a skewed and heavy-tailed shape 
(skew=1, kurtosis=10) and an extremely skewed 
and heavy-tailed shape (skew=3, kurtosis=50). 
The shapes were generated with Fleishman’s 
(1978) method (described below). 

 
Variance Heterogeneity 
  Between-group variance heterogeneity 
was created to obtain a specified residual 
variance ratio of the treatment groups’ residual 
variances based on the groups’ deviations from 
their own regression lines. The variance 
heterogeneity considered in this study 
corresponds to how variance heterogeneity 
occurs in observed datasets (Oswald, Saad, & 
Sackett, 2000), meaning that groups differed 
more on their X-Y correlations and Y variances 
than on their X variances. The three considered 
residual variance ratios for the groups were 1/1, 
3/1 and 15/1. For the conditions of unequal 
sample size, the residual variances were directly 
and inversely paired with the treatment group 
sample sizes.  
 To assess the correspondence of the 
considered levels of residual variance 
heterogeneity from treatment group regression 
lines to levels of variance heterogeneity from 
Block-by-Treatment Y means, Tables 1 and 2 
give the ratios of the largest-to-smallest 
variances for the Block-by-Treatment cells of 
the RB2 and RB4 designs for all levels of 
assumption violations considered in this study. 
As analytical methods for deriving Y variances 
after forming categories on a correlated X 
variable are valid only for symmetric 
distributions (Maxwell & Delaney, 1993), the 
approach taken to produce the ratios in Tables 1 
and 2 was simply to generate each distribution 
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and residual variance heterogeneity combination 
in a total sample of 100,000 observations and 
then compute Y variances for the randomized 
block  designs  based on  random  assignment  to  
treatment conditions (note that the variance 
ratios based on assignment from the X blocks 
are almost exactly equal). 

Data were simulated so that the 
correlation was either .3 or .7 for one group. For 
the second group, the correlation was somewhat 
different from .3 or .7 so that, combined with a 
different Y variance, this second group’s slope 
was equal the first group’s slope while a desired 
level of variance heterogeneity was obtained. 
 
Sample Size  

Forty or eighty subjects per treatment 
group were used. The conditions of unequal 
sample size used forty subjects in one group and 
eighty in the other.  

 
Data Generation Method 
 The following data generation method 
was used to create X and Y variables of desired 
distributions, variances and correlations while 
allowing for different assignment strategies to 
the treatment conditions. 
  
1) N values of one standard normal variate, Z, 
were generated, where N was the total sample 
size based on two treatment groups that were 
intended to be of equal sample size. 
 
2) X was created as a transformation of Z using 
Fleishman’s (1978) method for generating 
nonnormal variables: 
  
 X = a + bZ + cZ2 + dZ3  (1) 
 
 The constants (a, b, c, and d) determined 
the first (mean), second (variance), third (skew) 
and fourth (kurtosis) moments of X. The values 
of the constants were derived to obtain the three 
distributions of interest in this study, where each  
 
 
 
 
 
 
 

distribution had a mean and variance of 0 and 1, 
respectively. The constants and resulting 
distributions are listed in Table 3. 
 
3) An error variable for Y (E) was generated 
exactly as X was in steps 1 and 2. E had the 
same distribution as X. 
 
4) Equal numbers of Xs and Es were randomly 
assigned to treatment groups 1 and 2. Depending 
on the particular strategy being studied, this 
involved either random assignment from the 
total available dataset (analysis of covariance 
and randomized block with post hoc blocking), 
random assignment from blocks of X 
(randomized block with assignment from the X 
blocks) or systematic assignment of the ranked 
X values to treatment groups (analysis of 
covariance with systematic assignment). The 
assignment strategies were the same in the 
unequal sample size conditions as in the equal 
sample size conditions, but after assignment one 
treatment group’s sample size was reduced by 
½, approximating an experimental study with 
massive loss of subjects from one of the two 
treatment groups.  
 
5) Y was created as a function of X and E:  
  
 Y= σYk[ρkX + (1- ρk

 2).5E] (2),  
 
where ρk was the desired X-Y correlation and 
σYk is the desired standard deviation of Y for 
treatment group k. The values ρk and σYk were 
determined for both treatment groups such that 
the two groups had the desired residual variance 
ratio and the null hypothesis of no slope 
differences was true. The values used are 
summarized in Table 4. 
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Table 1 Simulated ratios of largest-to-smallest Y variances in the Block-by-Treatment cells of the 
randomized block designs (XY correlation = .3, N=100,000). 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis RB2 RB2 RB2 
0 0 1.0/1 2.9/1 14.5/1 
1 10 1.0/1 3.0/1 14.9/1 
3 50 1.1/1 

RB4 
1.1/1 
1.1/1 
1.3/1 3.0/1 

RB4 
3.1/1 
3.2/1 
3.4/1 14.3/1 

RB4 
15.4/1 
16.3/1 
15.3/1 

 
 
 
Table 2 Simulated ratios of largest-to-smallest Y variances in the Block-by-Treatment cells of the 
randomized block designs (XY correlation = .7, N=100,000). 

 
 
Table 3 Fleishman constants used to generate the variables 
Skew Kurtosis  a b c (=-a) d 
0 0  0 1 0 0 
1 10  -.08772 .56426 .08772 .12621 
3 50  -.17038 -.04789 .17038 .26005 

 
 

Residual Variance Ratio Distribution of X 
and E 1/1 3/1 15/1 

Skew Kurtosis RB2 RB2 RB2 
0 0 1.0/1 2.5/1 11.6/1 
1 10 1.3/1 2.7/1 11.7/1 
3 50 1.8/1 

RB4 
1.2/1 
1.9/1 
3.4/1 2.8/1 

RB4 
3.2/1 
3.8/1 
4.8/1 10.7/1 

RB4 
15.1/1 
16.9/1 
17.5/1 

 
Table 4 Correlations and standard deviations used to create levels of residual variance heterogeneity. 

Residual 
Variance Ratio 

ρk for Group 1 σYk for Group 1 ρk for Group 2 σYk for Group 2 

Low X-Y Relationship 
1/1 0.3 1 0.3 1 
1/3 0.3 1 0.171871 1.679143 
1/15 0.3 1 0.080933 3.706751 

 
High X-Y Relationship 

1/1 0.7 1 0.7 1 
1/3 0.7 1 0.492773 1.421127 
1/15 0.7 1 0.24535 2.853069  
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Programming 
The programming for this study was 

done in SAS, using the CALL RANNOR (SAS 
Institute Inc., 1999a) routine for creating 
standard normal deviates and the PROC GLM 
(SAS Institute Inc., 1999b) function with Type 
III Sums of Squares for implementing the 
analysis strategies. 

 
Assessing the Type I Error Rates 
 To identify the conditions with the 
strongest influence on Type I error, ANOVAs of 
the six manipulated variables and their two, 
three, four, five and six-way interactions were 
used. These ANOVAs were conducted 
separately for the equal and unequal sample size 
conditions. For equal sample sizes, the six 
independent variables (and their number of 
levels) were analysis strategy (3), assignment 
strategy (2), nonnormality (3), residual variance 
ratio (3), sample size (2) and overall X-Y 
correlation (2). For unequal sample sizes, the six 
independent variables (and their number of 
levels) were analysis strategy (3), assignment 
strategy (2), nonnormality (3), residual variance 
ratio (3), sample size-residual variance pairing 
(direct or inverse, 2) and overall X-Y correlation 
(2). Due to the stability of the empirical error 
rates, the two ANOVAs captured 100% of the 
variation in Type I error. Representative tables 
that illustrated the most important effects from 
the ANOVAs are also provided. The Type I 
error  rates   in  these tables  were  considered  as  
 
 

 
 

meaningfully different from the nominal .05 rate 
based on the criterion of +/- 2 standard errors 
range (.046-.054). Note that the +/- 2 standard 
error range is almost identical to Bradley’s 
(1978) conservative range (.045-.055). 
 

Results 
 
Equal Sample Sizes 
 Table 5 presents the ten effects with the 
largest mean squares from the ANOVA of the 
error rates for equal sample sizes in the 
treatment groups. These ten effects accounted 
for 84.6% of the variation in Type I error rates. 
The two strongest effects were the analysis 
strategy and the analysis*normality interaction, 
accounting for 72.3% of the variation in Type I 
error. The assignment strategy’s main effect and 
interactions with analysis, analysis*normality 
were also visible, but to a much smaller extent. 
Residual variance heterogeneity, XY correlation 
and sample size had small main effects. 
 Tables 6 and 7 illustrate the results of 
Type I error effects for equal treatment group 
sample sizes. These tables present the empirical 
Type I error rates for three analysis strategies 
across normality and residual variance 
heterogeneity ratios for the treatment group 
sample sizes of 40 and the overall XY 
correlation of .3. Table 6 shows the results for 
random assignment to treatment conditions. 
Table 7 shows the results when X was used to 
assign subjects to treatment conditions. 

Table 5 The Ten Effects with the Largest Mean Squares, Equal Sample Sizes 
Source Sum of Squares  

(multiplied by 1,000) 
df Mean Square 

(multiplied by 1,000) 
Analysis 5.644 2 2.822 
Analysis*Normality 5.350 4 1.338 
Analysis*Assignment .456 2 .228 
Analysis*N .342 2 .171 
Correlation .148 1 .148 
Assignment .117 1 .117 
N .115 1 .115 
ResVarHet .204 2 .102 
Analysis*Normality*Assignment .335 4 .084 
Correlation*Normality .143 2 .072  
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 The most visible effect shown in Tables 
6 and 7 is the effect of nonnormality on the 
analysis strategies. For the analysis of 
covariance strategy, increased nonnormality 
made Type I error liberal. For the randomized 
block strategies, increased nonnormality made 
Type I error conservative. The effect of 
nonnormality on the strategies was slightly 
larger when assignment to treatments used X 
(Table 7) than when assignment to treatments 
was random (Table 6). The effect of residual 
variance heterogeneity was very small when 
subjects are randomly assigned to treatments 
(Table 6), though RB4 was significantly liberal 
in two of the four sample size-correlation 
conditions where residual variance heterogeneity 
was most extreme. When subjects were assigned 
to treatments based on X, residual variance 
heterogeneity seemed to increase the liberalness 
of the analysis of covariance test when there was 
nonnormality. The results shown in Tables 6 and 
7 were similar for the higher sample size and 
XY correlation. 
 

Unequal Sample Sizes 
 Table 8 presents the ten effects with the 
largest mean squares from the ANOVA of the 
error rates for unequal sample sizes in the 
treatment groups. The mean squares were much 
larger when sample sizes were unequal, 
indicating that variations in Type I error are 
much greater for unequal sample sizes than for 
equal sample sizes. The ten effects in Table 8 
accounted for 98.9% of the variation in Type I 
error rates. The two strongest effects were the 
residual variance-sample size pairing (direct or 
inverse) and this pairing in interaction with the 
levels of residual variance heterogeneity, 80.5% 
of the variation in Type I error. Many of the 
remaining ten effects in Table 8 also involved 
interactions with the residual variance-sample 
size pairing and the levels of residual    variance    
heterogeneity. The main effects and interactions 
with analysis strategy accounted for less than 
8% of total variability in Type I error, 
suggesting small but visible differences in the 
robustness of the three analysis strategies. The 
effects of assignment strategy, overall XY 

 
 
Table 6 Type I Error Rates for Treatment Groups of 40, an XY correlation of .3, and Random Assignment 
to Treatment Conditions. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .047 .048 .052 .046 .046 .051 .051 .051 .054 
1 10 .054 .046 .051 .054 .045* .051 .055* .052 .056* 
3 50 .068* .044* .044* .058* .042* .042* .066* .036* .038* 

* Outside the +/- 2 standard error range (.046 to .054). 
 
 
Table 7 Type I Error Rates for Treatment Groups of 40, an XY correlation of .3, and Assignment to 
Treatment Conditions Utilizing X. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .050 .050 .051 .052 .050 .051 .053 .052 .056* 
1 10 .056* .046 .043* .061* .050 .045* .071* .053 .051 
3 50 .069* .041* .034* .076* .040* .034* .088* .039* .033* 

* Outside the +/- 2 standard error range (.046 to .054). 
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correlation, sample size and normality effects 
were very small when group sample sizes were 
unequal. 
 Tables 9 and 10 illustrate the effects of 
directly-paired sample sizes and residual 
variance ratios where the overall XY correlation 
was .3 and the assignment strategy was either 
random (Table 9) or based on X (Table 10). 
With equal residual variances (a residual 
variance ratio of 1/1), the slope test became 
liberal, RB2 became conservative and RB4 was 
not seriously affected. With residual variance 
heterogeneity, all Type I error rates became 
extremely conservative. The most conservative 
strategy was RB4. The RB2 and the analysis of 
covariance strategies had similar Type I error 
rates when distributions were normal. The 
combination of nonnormality and residual 
variance heterogeneity was visibly interactive 
for the analysis of covariance strategy, which 
became slightly less conservative as 
distributions became more nonnormal. In 
contrast, the   effect  of  nonnormality  was  very 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

small for RB2 and RB4. The error rates in 
Tables 9 and 10 are similar, suggesting that the 
assignment strategy used makes little difference 
when sample sizes are unequal. 
 Tables 11 and 12 illustrate the effects of 
inversely-paired sample sizes and residual 
variances. With no residual variance 
heterogeneity, nonnormality made the analysis 
of covariance test liberal, RB2 conservative, and 
had little effect on RB4. As residual variances 
became different all three analysis strategies 
became liberal, where the randomized block 
strategy based on four blocks (RB4) was the 
most liberal and the analysis of covariance and 
RB2 strategies had similarly-liberal Type I error 
rates. The combination of nonnormality and 
residual variance heterogeneity made all three 
strategies slightly less liberal than residual 
variance heterogeneity with normality. The error 
rates in Tables 11 and 12 are very similar, 
suggesting that assignment strategy makes little 
difference when sample sizes are unequal (like 
the results of direct pairing). 
 
 

 
 
 
 
 
 

Table 8 The Ten Effects with the Largest Mean Squares, Unequal Sample Sizes 
Source Sum of Squares  

(multiplied by 1,000) 
df Mean Square 

(multiplied by 1,000) 
Pairing 340.380 1 340.380 
Pairing*ResVarHet 230.011 2 115.006 
ResVarHet 55.485 2 27.743 
Analysis*Pairing 23.954 2 11.977 
Analysis 13.601 2 6.800 
Analysis*Pairing*ResVarHet 18.513 4 4.628 
Analysis*ResVarHet 11.645 4 2.911 
Pairing*Normality .447 2 2.236 
Pairing*Correlation .622 1 .622 
Pairing*ResVarHet*Normality 2.362 4 .591  
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Table 9 Type I Error Rates for the Direct Pairing of Sample Size (80, 40) and Residual Variance, an XY 
correlation of .3, and Random Assignment to Treatment Conditions. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .050 .050 .050 .021* .021* .012* .008* .008* .003* 
1 10 .050 .049 .051 .025* .022* .015* .015* .006* .003* 
3 50 .060* .045* .050 .040* .020* .016* .026* .006* .002* 

* Outside the +/- 2 standard error range (.046 to .054). 
 
 
Table 10 Type I Error Rates for the Direct Pairing of Sample Size (80, 40) and Residual Variance, an XY 
correlation of .3, and Assignment to Treatment Conditions Utilizing X. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .046 .049 .051 .023* .019* .012* .009* .008* .004* 
1 10 .050 .047 .051 .030* .020* .013* .014* .008* .003* 
3 50 .062* .045* .052 .042* .022* .017* .032* .006* .002* 

* Outside the +/- 2 standard error range (.046 to .054). 
 
 
Table 11 Type I Error Rates for the Inverse Pairing of Sample Size (40, 80) and Residual Variance, an XY 
correlation of .3, and Random Assignment to Treatment Conditions. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .049 .053 .050 .099* .097* .138* .149* .149* .245* 
1 10 .049 .045* .052 .097* .094* .128* .143* .147* .238* 
3 50 .060* .043* .050 .092* .085* .114* .114* .138* .210* 

* Outside the +/- 2 standard error range (.046 to .054). 
 
 
Table 12 Type I Error Rates for the Inverse Pairing of Sample Size (40, 80) and Residual Variance, an XY 
correlation of .3, and Assignment to Treatment Conditions Utilizing X. 

Residual Variance Ratio Distribution of X 
and E 

1/1 3/1 15/1 
Skew Kurtosis Slopes RB2 RB4 Slopes RB2 RB4 Slopes RB2 RB4 
0 0 .049 .048 .052 .102* .099* .142* .160* .152* .248* 
1 10 .054 .047 .050 .097* .100* .127* .147* .153* .240* 
3 50 .061* .048 .052 .092* .081* .111* .131* .145* .215* 

* Outside the +/- 2 standard error range (.046 to .054). 
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Conclusion 
 
The purpose of the current study was to compare 
the robustness of two standard analysis 
strategies for detecting Aptitude-Treatment 
Interactions when two of their commonly-held 
assumptions were violated (nonnormal 
distributions and heterogeneous variances). The 
two strategies were the test for slope 
heterogeneity in analysis of covariance and the 
test of the Block-by-Treatment Interaction in 
randomized block analysis of variance. In 
addition, the strategies were evaluated based on 
two different assignment strategies, random 
assignment and assignment that utilized X.  

The findings supported and extended the 
findings of previous studies that considered 
either the randomized block strategy (Milligan, 
Wong & Thompson, 1987; Keselman, Carrier & 
Lix, 1995; Harwell, Rubinstein, Hayes & Olds, 
1992) or the analysis of covariance strategy 
(Conovar & Iman, 1982; Headrick & 
Sawilowsky, 2000; Klockars & Moses, 2002; 
Dretzke, Levin & Serlin, 1982; Overton, 2001; 
Deshon & Alexander, 1996; Conerly & 
Mansfield, 1988) separately. With equal sample 
sizes, the effect of nonnormality was much 
stronger than the effect of residual variance 
heterogeneity, causing the analysis of covariance 
strategy to get significantly liberal and the 
randomized block strategy to get significantly 
conservative. The effect of nonnormality was 
stronger when assignment to treatment groups 
was based on X than when assignment was 
random. With unequal sample sizes, the effect of 
residual variance heterogeneity was much 
stronger than the effect of nonnormality, causing 
the analysis strategies to get significantly 
conservative when residual variances were 
directly paired with sample sizes and liberal 
when residual variances were inversely paired 
with sample sizes. For unequal sample sizes the 
assignment strategy did not matter. Finally, for 
unequal sample sizes the combination of 
nonnormality and heterogeneous residual 
variances was interactive for the analysis of 
covariance strategy and slightly additive for the 
randomized block strategy. These findings 
suggest how the issue of robustness can 
contribute to several years of discussion on the 
relative merits of the randomized block and 

analysis of covariance strategies (Cox, 1957; 
Feldt, 1958; Cronbach & Snow, 1977; Aiken & 
West, 1991; Pedhazur, 1997; Lomax, 2001; 
Myers & Well, 1995; Klockars & Beretvas, 
2001). 
 The magnitude of the effects of 
assumption violations on the robustness of the 
analysis strategies for equal sample sizes was 
somewhat smaller than expected. While heavy-
tailed distributions did inflate the Type I error 
for the slope test, the inflation was rather small 
(up to about .09) given the extremely nonnormal 
distributions used. Two factors that kept Type I 
error from fluctuating too widely for extreme 
nonnormality were the assignment strategies, 
which made the treatment groups similar in the 
X distributions and therefore spread the extreme 
observations fairly evenly across the groups, and 
the use of a data generation method that created 
Y’s nonnormality rather indirectly through 
adding nonnormality to X and E. Consistent 
with previous studies that used a similar data 
generation method (Conover & Iman, 1982; Luh 
& Gou, 2000), nonnormality has to be extreme 
and fairly unrealistic (Micceri, 1989) in order to 
see its effects on robustness with this data 
generation method.  

The small effect of variance 
heterogeneity for the randomized block strategy 
with two blocks and equal sample sizes was 
surprising given the many studies that discuss 
the strong influence variance heterogeneity has 
on standard tests of means (Lix, Keselman, & 
Keselman, 1996) and interactions (Harwell, 
Rubinstein, Hayes, & Olds, 1992). However, 
many studies of the variance heterogeneity 
assumption focus much more on unequal sample 
sizes than on equal sample sizes (e.g. Milligan, 
Wong & Thompson, 1987; Keselman, Carriere 
& Lix, 1995), giving the impression that unequal 
sample sizes almost always accompany variance 
heterogeneity. For example, Milligan et al’s 
study focuses almost completely on the effect of 
variance heterogeneity and unequal sample 
sizes, giving only a very quick mention of 
finding a negligible effect of heterogeneous 
variances when sample sizes were equal (p. 
469). It is possible that the variance 
heterogeneity created from given levels of 
residual variance heterogeneity (Tables 1 and 2) 
was not large enough to impact the randomized 
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block strategy with two blocks and equal sample 
sizes. In contrast to the randomized block 
strategy with two blocks, the randomized block 
strategy with four blocks resulted in greater 
levels of variance heterogeneity and did get 
liberal even when sample sizes were equal. 

The explanations of the effects of the 
assumption violations on the analysis strategies 
are fairly well-known. Nonnormality makes 
treatment group slope estimates differ because 
of high-leverage observations that are extreme 
on both X and Y, resulting in inflated 
numerators of the F ratio. In addition, the 
standard errors of the slopes are smaller than 
they should be because the denominators of 
these standard errors use the sum of squares of 
X, which gets large as observations get more 
extreme. As the XY correlation increases, so 
does nonnormality’s liberal effect on the test of 
slopes. For randomized block’s tests of means, 
nonnormal Y’s inflate standard deviations and 
standard errors, resulting in conservative tests. 
Nonnormal distributions can also affect mean 
estimates as well. In general, nonnormality has a 
stronger influence on sums of squares (standard 
deviations and standard errors) and sums of 
products (covariances) than it does on sums of 
raw data (means). 

The effects of heterogeneous variances 
for equal and unequal sample sizes are also 
straightforward. The randomized block and 
analysis of covariance F tests use denominators 
that pool within-group variability across the 
groups. When sample sizes are equal, this 
pooling reasonably weights each group’s 
variance equally. When sample sizes are 
unequal, the variance of the larger group gets 
weighted more heavily than that of the smaller 
group, which can over or underestimate random 
error and lead to conservative or liberal tests, 
respectively. 
 Given the effects of the assumption 
violations on the standard analysis strategies, 
many alternative strategies have been proposed. 
In fact, this study was motivated by a view of 
the randomized block strategy as an alternative 
strategy to the analyses of covariance strategy 
that might be more robust to nonnormal 
distributions. Other alternatives to the slope test 
include parametric alternative tests for 
heterogeneous residual variances (Deshon & 

Alexander, 1996; Overton, 2001; Dretzke, Levin 
& Serlin, 1982), ranking strategies for 
nonnormality (Conover & Iman, 1982; Headrick 
& Sawilowsky, 2000; Klockars & Moses, 2002), 
and combinations of strategies designed for 
addressing combinations of assumption 
violations (Luh & Guo, 2000, 2002). Given 
researchers’ noted tendency to favor more 
familiar analysis strategies, the randomized 
block strategy was a practically-important 
method to evaluate. The findings of this study 
show that the randomized block strategy suffers 
from its own problems with respect to 
robustness. Given its relatively low power 
(Klockars & Beretvas, 2001) the randomized 
block strategy is probably best viewed as an 
overly conservative alternative to the slope 
strategy, along the same lines as ranked analysis 
of covariance. The low power of the randomized 
block test makes its recommendation difficult, 
especially given the complaints of low power in 
interaction studies (Aguinis & Pierce, 1998). 
 One interesting extension of this study 
would be to evaluate applications of alternative 
strategies that can address assumption violations 
within both the randomized block framework 
and the analysis of covariance framework. A 
combination of approaches like 
trimming/winsorizing observations or trimming 
test statistics for nonnormality and using a 
parametric alternative test that does not pool 
treatment group variances for variance 
heterogeneity has been shown to be effective for 
improving the robustness and power of tests of 
means (Keselman, Wilcox, Othman, Fradette, 
2002; Luh & Guo, 1999; Keselman, Othman, 
Wilcox & Fradette, 2004). Some of these 
combinations of alternative strategies are 
applicable to tests of interactions. Along these 
same lines, some ways to trim observations and 
test statistics for nonnormality and also to use 
similar parametric alternative tests for 
heterogeneous residual variances have been 
considered for the analysis of covariance slope 
test (Luh & Guo, 2000, 2002). The relative 
effectiveness of these combinations of 
alternative strategies for analysis of covariance 
and randomized block strategies under the same 
degrees of assumption violations would be 
interesting to evaluate. 
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