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Quasi-Maximum Likelihood Estimation For Latent Variable Models 
With Mixed Continuous And Polytomous Data 

 
Jens C. Eickhoff 

Department of Biostatistics & Medical Informatics 
University of Wisconsin – Madison 

 
 
Latent variable modeling is a multivariate technique commonly used in the social and behavioral 
sciences. The models used in such analysis relate all observed variables to latent common factors. In 
many situations, however, some outcome variables are in polytomous form while other outcomes are 
measured on a continuous scale. Maximum likelihood estimation for latent variable models with mixed 
polytomous and continuous outcomes is computationally intensive and may become difficult to 
implement in many applications. In this article, a computationally practical, yet efficient, Quasi-
Maximum Likelihood approach for latent variable models with mixed continuous and polytomous 
variables is proposed. Asymptotic properties of the estimator are discussed. Simulation studies are 
conducted to examine the empirical behavior and to compare it with existing methods. 
 
Key words: multivariate analysis, polytomous outcome variables, Quasi-ML estimation. 
 
 

Introduction 
 
The problem of analyzing concepts or variables 
which are not directly observable and can only 
be measured through related indicators arises 
frequently in practice. In these situations, latent 
variable modeling provides a useful statistical 
technique. Statistical methods for analyzing 
covariances and other relationships between 
latent and observed variables were historically 
originated in psychometrics in the form of factor 
analysis which has later been extended to the 
more general structural equation analysis 
(Bentler, 1995; Bollen, 1989; Jöreskog and 
Sörbom, 1996).  Today, latent variable models 
are extensively used in the behavioral and social 
sciences.  
 Most latent variable models are based 
on the assumption that the observed variables 
are continuous with a multivariate normal 
distribution.   However, in  many  studies  where 
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data are obtained based on questionnaires, some 
or all observed outcome variables are typically 
in polytomous form. For example, data are 
frequently collected based on questionnaires 
with Likert scales (e.g., ``disagree'', ``neutral'', 
``agree'') responses. Because of its importance in 
many applications, there has been much 
attention in latent variable modeling involving 
polytomous outcomes and it remains an active 
area of research. 
 Bock and Lieberman (1970) considered 
a maximum likelihood method for factor 
analysis models with dichotomous outcome 
variables and only one factor. However, direct 
maximum likelihood analysis for models 
involving higher dimensional latent variables 
becomes computationally impractical because it 
requires maximization over multiple intractable 
integrals. This led to the development of multi-
stage weighted least square estimation based on 
limited first and second-order sampling using 
polychoric and polyserial correlations (Muthén, 
1984; Lee & Poon, 1987). Multi-stage weighted 
least squares (WLS) estimation procedures for 
structural equation models with polytomous 
outcome variables have been implemented in 
popular psychometrical software packages 
including LISCOMP (Muthén, 1987), EQS 
(Bentler, 1995), LISREL/PRELIS (Jöreskog & 
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Sörbom, 1996), and Mplus (Muthén & Muthén, 
1998). These procedures, however, can 
experience problems of numerical instability, 
bias, non-convergence, and non-positive 
definiteness of weight matrices in situations of 
small sample sizes but large number of outcome 
variables (Reboussin & Liang, 1998). Sammel & 
Ryan (1997) and Shi & Lee (2000) used a Monte 
Carlo EM algorithm to perform maximum 
likelihood estimation in latent variables models 
with mixed discrete and continuous outcome 
variables. These procedures are computationally 
intensive as each E-step is approximated by 
Monte Carlo integration and no closed-form 
expressions are available in the M-steps. 
Moreover, many iterations are typically required 
to achieve convergence. 
 In this article, a computationally 
practical, yet efficient, Quasi-ML estimation 
procedure is proposed for factor analysis and 
structural equation models with mixed 
continuous and polytomous outcome variables. 
Asymptotic properties and standard error 
estimation are discussed. The Quasi-ML 
estimation can be easily implemented and does 
not require intensive computations. Simulation 
studies indicate that the proposed Quasi-ML 
estimator is substantially more efficient than 
traditional multi-stage WLS estimators, 
especially for models where the number of 
continuous outcome variables exceeds the 
number of polytomous outcomes. 
 This article is organized as follows. In 
the Methodology section, the general model and 
motivation for the proposed approach, as well as 
the Quasi-ML estimation procedure and the 
computation of asymptotic standard errors are 
described. The results of a simulation study, 
where the performance of the proposed Quasi-
ML estimation is compared with traditional 
multi-stage weighted least square estimation 
techniques, is presented in the Results section. 
Finally, a brief conclusion is given in the last 
section. 

 
Methodology 

 
Consider a multivariate mixed-type variable 
situation with 1p  continuous and 2p  
polytomous outcome variables and n 

observations. Let ),,(
11 ′= ipii yyy �  denote the 

set of continuous outcome variables and 
),,(

21 ′= ipii zzz �  denote the set of polytomous 

outcome variables, each with )(kc  categories 

),,1( 2pk �= , measured on the ith individual. 
To motivate the model, assume that the set of 
continuous and polytomous outcome variables 
can be explained by a smaller number of 

)( 21 ppqq +<  unobserved latent 

variables ),.( 1 ′= qiii fff � . For ease of notation, 

a measurement or confirmatory factor analysis 
model is considered as follows. The notation can 
be easily extended to utilize the more general 
structural equation model framework. The 
standard linear measurement model for the 
continuous outcome variables for the ith 
observation can be expressed as 

 
,,,1, nify iii �=ε++µ= Λ                (1)    

 

 
where iε  is a vector of measurement errors and 
the parameters µ  and Λ  contain some restricted 
elements. It is assumed that  
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ffi
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where the elements of ,, ff Σµ and Ψ  are 

unrestricted, free parameters. Furthermore, it is 
assumed that, conditional on ,if  the elements of 

iy  are independent, i.e., Ψ  is set to be a 
diagonal matrix. Likewise, for the polytomous 
outcome variables, it is assumed that conditional 
on ,if  the elements of iz  are independent and 

that each kiz , ),,1( 2pk �=  relates to the latent 
variables through a probit response  probability 
function, i.e.,  

 
),()|( ikkijki ffczP

j
β′+α=≤ Φ          (2) 

 

 
for category jc , 1)(,,1 −= kcj �  and 

1)(1 −
α<<α

kckk � . The intercept and slope 

parameters, 
jkα  and kβ , describe the 
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measurement properties of the kth polytomous 
outcome variable. 
 The model described by (1) and (2) 
contains the factor indeterminacy inherent in this 
type of latent variable models. That is, the same 
model can be expressed using transformed 
parameters and factors. To remove this 
indeterminacy, the following standard 
identification form (Wall & Amemiya, 2000) for 
sub-model (1) is used, 
 

,,,1,
0

nif
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y ii
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y
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where yµ  is a 1)( 1 ×− qp  vector and yΛ  is a 

qqp ×− )( 1  matrix with unrestricted parameters. 

If 1pq > , additional measurement parameters in 
sub-model (2) are restricted. Note that this is an 
interpretable and meaningful identification 
parameterization which allows for assessing 
latent variable characteristics because 
parameters corresponding to the latent variables, 
i.e.,  fµ  and ,fΣ remain unrestricted. This is 

particularly useful in multi-group analysis 
situations where the main interest lies in the 
comparison of latent variable characteristics 
between different sampling groups, e.g., sex, 
gender, etc. 

 
Quasi-Maximum Likelihood Estimation 
 Let Y ),,( 1 nyy �=  and Z ),,( 1 nzz �=  
denote the observed data matrices from a 
random sample of the underlying population. 
Furthermore, denote the model parameters as, 
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and 

( )
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( ) .) vec(,

,) vec(,
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The log-likelihood function based on the 
observed data is given by 

 
( , , | Y, Z)

log (Y; , ) log (Z | Y; , ).
y z f

y f z f

l

p p

θ θ θ
θ θ θ θ= +

  (3) 

 

 
Because ),;|(log fzp θθYZ involves multiple 

integration which cannot be evaluated in closed 
form, direct maximization of this log-likelihood 
function is impractical. Various approaches have 
been proposed to overcome this computational 
burden. Sammel & Ryan (1997) and Shi & Lee 
(2000) proposed utilizing a Monte Carlo EM 
estimation approach. However, the EM 
algorithm is known to be slow and may require 
many iterations to achieve convergence. 
Moreover, the M-step in these approaches 
requires iterative procedures which might be 
time consuming, especially in models involving 
many polytomous outcomes. 
 The Quasi-ML approach (Besag, 1975) 
has become a popular tool in situations where 
the true likelihood function is computationally 
intractable but can be approximated by a 
function that is easier is evaluate. Quasi-ML 
methods may not always yield efficient 
estimators but they are usually consistent as long 
as the first derivatives of the quasi likelihood 
function has mean 0 at the true parameter values 
(Le Cessie & Houwelingen, 1994). In the 
following, a Quasi-ML approach is proposed 
where the second term of the right hand side of 
the log-likelihood function in (3) is 
approximated by a function which is 
computationally easy to evaluate. Specifically, 
the Quasi- log-likelihood for the ith observation 
is expressed as 
 

∑
=

θθ+θθ=
2

1

),,;|(),;(log
p

k
fzikifyi

p
i yzpypl  

 
where ),;( fyiyp θθ  is a multivariate normal 

density function with mean 
 

))(,(),( ′′µ+µµ′=θθµ fyyffy Λ  

 
and covariance matrix 
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Standard evaluation of the conditional 
distribution, iki yz | , leads to 
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where 1)(1 −≤≤ kck  and 
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The total Quasi log-likelihood is then the sum of 

the p
il ’s, i.e.,  
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   (4) 
 

where y  is the sample mean, and yS  is the 

empirical covariance matrix of 
),,(

11 ′= ipii yyy � . Note that for a model with 

several continuous outcomes but only one 
polytomous outcome variable, the Quasi-log-
likelihood function (4) is identical with the log-
likelihood function (3). 
 

The Quasi-ML estimator )ˆ,ˆ,ˆ( fzy θθθ  is obtained 

by solving 
 

1 1

( , , )

( , , )
( , , ) 0.

( , , )

y z f

pn n
i y z f

i y z f
i i y z f

S

l
s

θ θ θ

θ θ θ
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θ θ θ= =

∂
= = =
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(5) 
 
Explicit solutions for solving (5) are not 
available and therefore an iterative procedure is 
required. Because the number of parameters in 
(4) is usually relatively large, a derivative free 
optimization procedure as the Nelder-Mead 
simplex algorithm may not be computationally 
efficient. On the other hand, using an efficient 
optimization procedure such as the Newton-
Raphson algorithm requires evaluation the first 
partial derivatives and the Hessian matrix which 
might be, due to the complexity of the objective 
function in (4), a tedious task. A good 
compromise is using a quasi Newton-Raphson 
algorithm with numerical derivatives which is 
easy to implement and numerically stable. 

 
Standard Errors 
 For the computation of confidence 
intervals for the Quasi-ML parameter estimates, 
standard error estimates are required. A 
sandwich estimator can be used to estimate 
standard errors of Quasi-ML parameter 
estimates. It follows from the delta theorem that, 
under mild regularity conditions (see, e.g., Stuart 
and Ord, 1991), the distribution of 

)ˆ,ˆ,ˆ( ′θ−θθ−θθ−θ ffzzyyn  converges to a 

),0( ∆N  distribution with  
11 IDI −−= n∆ , 

where 
( )

( ).),,(

,),,(cov
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SE

S

θθθ=

θθθ=

I

D
 

 
Estimates of D and I can be obtained by 
computing 
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and 
 

∑
= ′θθθ∂

θθθ∂
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n

i fzy
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Î . 

 

(7) 
 
Expressions (6) and (7) can be obtained using 
the numerical first and second order derivatives 
in the last iteration step of the quasi Newton-
Raphson algorithm used to solve (5). 
 
Starting Values 
 As the quasi Newton-Raphson algorithm 
used to solve (5) is an iterative procedure, 
starting values for the model parameters are 
required. One way to obtain starting values is to 
treat the sub-models (1) and (2) separately. 
Specifically, starting values for the parameters 
corresponding to sub-model (1) can be 
computed using standard estimation procedures 
for fitting latent variable models with continuous 
outcomes (Bollen, 1989). These estimates can be 
used to estimate factor scores, i.e.  
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where ,
~

,
~ ΨΛ y  and yµ~  are parameter estimates 

obtained using standard estimation procedures 
for latent variables models with continuous 
outcomes. The latent variable if  of sub-model 

(2) can then be replaced by the factor scores if
~

 
and standard probit regression can be performed 
to obtain starting values for 

z
θ . 

 
Results 

 
The purpose of this simulation study is to 
compare the performance of the proposed Quasi-
ML estimation approach with the traditional 
multi-stage WLS estimation approach which is 
currently considered the gold standard of fitting 
mixed latent variable models with continuous 
and polytomous outcomes. In the following, a 
confirmatory factor analysis model models with 
three continuous outcome variables and various 

numbers of polytomous outcome variables are 
considered. It is assumed that each polytomous 
outcome variable has three categories. Sub-
model (1) is given by 
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,,1 ni �= and ,3,2,1, =ε kki  are iid with 

),0( 2ψN  distribution. The parameters 
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σ and 2ψ  are 

unrestricted parameters with the true values 

1
32

=µ=µ yy , 8.021 =λ=λ , 122
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21, =σ ff , and .36.02 =ψ   

 
Sub-model (2), which corresponds to the 
polytomous outcome variables, each with three 
categories, is given by, 
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where ,,, 121 kkk βαα and 2kβ  are unrestricted 

parameters with true values 8.0
1

=αk , 

6.1
2

=αk , 6.01 =βk , and 6.02 −=βk . To 

facilitate generalization of the simulation results, 
the following three conditions on the number of 
polytomous outcome variables in the 
confirmatory factor models are considered: 
 

(C1): Number of polytomous outcomes: 1 

(C2): Number of polytomous outcomes: 3 

(C3): Number of polytomous outcomes: 6 
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Note that under experimental condition (C1), the 
Quasi-ML estimates are equivalent to the ML 
estimates. In order to compare the Quasi-ML 
estimation approach with the multi-stage WLS 
estimation approach, the model part 
corresponding to the polytomous outcome 
variables is first re-parameterized to the 
threshold model. This can be achieved by 
standardizing the intercept parameters  

21
, kk αα  

to 11/
11

* =ββ′−α=α fkk Σ ,  21/
22

* =ββ′−α=α fkk Σ , 

and     the     slope    parameters    21 , kk ββ  

to 75.01/1
*

1 =ββ′−β=β fkk Σ  and  

75.01/2
*

2 −=ββ′−β=β fkk Σ , respectively. 

 The computation of the multi-stage 
WLS procedure was performed by using 
LISREL 8 and PRELIS 2. The Quasi-ML 
estimates were computed using R version 1.8.1. 

 
 
 
 The sample sizes considered were 

100=n , 500=n , and 000,1=n . For each n and 
experimental condition (C1), (C2), and (C3), 

000,1  simulations  on  samples  were  generated. 
The starting values for the Quasi-ML approach 
were   computed   as   described  in  the previous 
section. Non-convergence was experienced in 
some cases for the multi-stage WLS approach 
when 100=n , especially for the model with 3 
continuous and 6 polytomous outcomes (C3). 
For 500=n , the multi-stage WLS estimation 
procedure became numerically more stable. 
There were no convergence difficulties 
experienced for the Quasi-ML estimation for all 
sample sizes. 
 Figure 1 presents boxplots for the two 

estimators of the variance parameter 2
2f

σ  when 

500=n , depicting the empirical distribution 

around the true parameter value 0.12
2

=σ f  under  

Figure 1: Boxpots for Quasi-ML and Multi-Stage WLS Estimators of 2
2f

σ  under 

Experimental Conditions (C1) – (C3) ( 500=n ) 
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experimental conditions (C1) – (C3). The 
general pattern given in Figure 1 can also been 
seen in boxplots for the other parameters and 
sample sizes. Table 1 gives the empirical bias 
and root mean squared error (RMSE) of the two 
estimators for the latent variable covariance 

parameters    2
1f

σ , 
22 , ffσ ,  and  2

2f
σ .   The   cases  

where the multi-stage WLS estimator didn’t 
converge were excluded when computing the 
empirical bias and RMSE. 
 The results indicate that the Quasi-ML 
estimator and the multi-stage WLS estimator are 
both unbiased for all coefficients and sample 
sizes. Under experimental conditions (C1) and 
(C2), the Quasi-ML estimate exhibit 
considerable less variability than the multi-stage 
WLS estimates.  As the number of polytomous 
outcome variables increases this difference in 
RMSE between the two estimators becomes 
smaller. However, even under experimental 
condition (C3) (3 continuous and 6 polytomous 
outcomes), the Quasi-ML  estimates still exhibit 

 

 
 
 
slightly less variability than the multi-stage 
WLS estimates. 
 Table 2 presents the empirical coverage 
probabilities of the nominal 95% confidence 
intervals for the Quasi-ML estimates of the 

latent   variable    covariance    parameters   2
1f

σ ,  

22 , ffσ , and 2
2f

σ . The intervals were obtained by 

taking an estimate 96.1±  times the 
corresponding estimated standard error. For all 
sample sizes, the constructed intervals give an 
empirical coverage close to the nominal level. 
Similar results were obtained for the other model 
parameters. Overall, the results indicate that the 
Quasi-ML standard errors can be used for valid 
statistical inference on the model parameters. 
 

Conclusion 
 
Multivariate polytomous data are common in 
psychosocial research. Consequently, there has 
been   recently an   increased   interest  in   latent  
 

Table 1: Empirical Bias and Root Mean Squared Error for Quasi-ML and Multi-Stage 

WLS Estimators for 2
2f

σ  under Experimental Conditions (C1) – (C3) 

 
Experimental Condition n  Quasi-MLE Multi-Stage WLS 

 
 

(C1) 

100 
 

500 
 

1,000 
 

Bias 
RMSE 
Bias 
RMSE 
Bias 
RMSE 

0.044 
0.142 
0.016 
0.090 
0.010 
0.052 

0.054 
0.220 
0.015 
0.156 
0.008 
0.120 

 
 

(C2) 

100 
 

500 
 

1,000 
 

Bias 
RMSE 
Bias 
RMSE 
Bias 
RMSE 

-0.010 
0.166 
0.026 
0.110 
-0.009 
0.079 

-0.012 
0.238 
0.023 
0.165 
0.011 
0.118 

 
 

(C3) 

100 
 

500 
 

1,000 
 

Bias 
RMSE 
Bias 
RMSE 
Bias 
RMSE 

-0.081 
0.199 
0.009 
0.131 
0.003 
0.102 

0.022 
0.244 
-0.007 
0.155 
-0.001 
0.129  



QUASI-MAXIMUM LIKELIHOOD ESTIMATION 480 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
variable modeling involving polytomous 
outcome variables. 
 The parameter estimation of these types 
of models is computationally challenging. 
Traditional estimation techniques include multi-
stage WLS procedures. However, it has been 
demonstrated that multi-stage WLS procedures 
can experience serious numerical problems, 
especially in situations of low prevalence, small 
sample sizes, or when fitting models with a large 
number of outcome variables. 
 Maximum likelihood estimation 
procedures have been proposed utilizing various 
types of EM algorithms (Sammel & Ryan, 1997; 
Shi & Lee, 2000). These procedures are 
numerically stable, yet computationally very 
intensive. In this article, a Quasi-ML method is 
proposed for parameter estimation of latent 
variable models with mixed continuous and 
polytomous     variables.    The     procedure    is 
computationally practical and can be easily 
implemented into standard statistical software 
(e.g., R, Splus, etc). 
 Simulation studies indicate that the 
proposed Quasi-ML estimator tends to be more 
efficient than traditional multi-stage WLS 
estimator, especially for models where the 
number  of   polytomous   outcome   variables  is 
smaller than the number of continuous outcome 
variables. The Quasi-ML estimation of standard 
errors showed no substantial bias which 
warrants the performance of valid statistical 
inference. In summary, the proposed Quasi-ML 
estimation procedure appears to be efficient, 
computationally feasible, and a practical 
approach for latent variable models involving 
both continuous and polytomous outcomes. 
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