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A Bayesian Subset Analysis Of Sensory Evaluation Data 
 

Balgobin Nandram 
Department of Mathematical Sciences 

Worcester Polytechnic Institute 
 
 
In social sciences it is easy to carry out sensory experiments using say a J-point hedonic scale. One major 
problem with the J-point hedonic scale is that a conversion from the category scales to numeric scores 
might not be sensible because the panelists generally view increments on the hedonic scale as 
psychologically unequal. In the current problem several products are rated by a set of panelists on the J-
point hedonic scale. One objective is to select the best subset of products and to assess the quality of the 
products by estimating the mean and standard deviation response for the selected products. A priori 
information about which subset is the best is incorporated, and a stochastic ordering is modified to select 
the best subset of the products. The method introduced in this article is sampling based, and it uses Monte 
Carlo integration with rejection sampling. The methodology is applied to select the best set of entrees in a 
military ration, and then to estimate the probability of at least a neutral response for the judged best 
entrees. A comparison is made with the method, which converts the category scales to numeric scores. 
 
Key words: Bayes factor; composition method; stochastic ordering; rejection sampling. 
 
 
 

Introduction 
 
Consider the problem of selecting the best subset 
of a number of multinomial populations with 
ordinal categories. This can be accomplished by 
first converting the nominal data to numeric 
scores, and then a standard multiple comparison 
procedure can be performed on these scores. 
However, this procedure can go badly wrong 
when the conversion is made. It is, therefore, the 
purpose of this article to describe a 
straightforward method based on a stochastic 
ordering of the multinomial populations for 
selecting the best subset of populations and then 
to estimate parameters used to assess the quality 
of the best subset without conversion of the 
nominal data. A Bayesian  approach  is preferred 
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because it is natural to incorporate a priori 
information about which subset is the best. 

In sensory evaluation of food 
acceptability, judges are asked to rate several 
products on the 9-point scale with qualitative 
responses ranging from “dislike extremely” to 
“neither like nor dislike” to “like extremely” on 
an ordinal scale. Usually in the analysis these 
nominal values are converted to scores ranging 
from 1 to 9 where an attempt is made to 
associate “dislike extremely” with 1, “neither 
like nor dislike” with 5, “like extremely” with 9, 
and intermediate nominal values have graduated 
meanings. The use of scores has several 
disadvantages, which weaken the interpretation 
that can be placed on the analysis of sensory 
evaluation data. 

First, the intervals between categories 
are psychologically unequal. Second, judges 
tend to avoid the use of extreme categories by 
grouping judgments into the center of the scale, 
and sometimes avoiding even “neither like nor 
dislike” response. Third, scale values have no 
numerical relationship. Thus, it is difficult to 
make conclusions concerning ratios of    
acceptability   of   the   food products when 
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qualitative responses are converted to 
quantitative responses. 

Newel (1982) applied the method of 
McCullagh (1980) to analyze sensory data and  
was able to overcome some of the advantages in 
using scores. This method for ordinal data treats 
the response categories as contiguous intervals 
on a continuous scale with unknown cutpoints 

1θ ,… , 1−Jθ , where for the J-point scale J = 9. 

Inherent in these models is the stochastic 
ordering with the use of scores unnecessary. Let 

ijπ  denote the probability of the jth response in 

the ith population, and ∑
=

=
j

s
isij p

1

γ be the 

cumulative probability of the ith population. 
Then Newel (1982) entertained a model of the 
form 

 

iijijij τβθγγ /)()}1/(log{ −=− , ,,,1 Ii …=  

,1,,1 −= Jj …  
 
where iβ  and iτ  are relative measures of 

location and spread respectively of the ith 
population. This model incorporates the location 
of the ratings and the consistency of the 
panelists' responses directly. 
 Such a model is usually fitted using 
nonlinear iteratively reweighted least squares; 
see, for example, Green (1985). While this is an 
attractive model, besides the cell probabilities, it 
introduces 2I +J new parameters. Moreover, 
while one can choose the best population as the 
one with the largest iβ , and perhaps the 

smallest iτ , this modeling does not address the 

problem of selecting the best population directly, 
and in fact, it is difficult to assess the uncertainty 
in selecting the best population. Also as the 
analysis relies heavily on asymptotic theory, 
with sparse data this approach will provide poor 
estimates for the cutpoints jθ , and hence the 

other parameters. A more appropriate method is 
associated with ranking and selection. 

Recent Bayesian work on selection and 
ranking includes the approach of Morris and 
Christiansen (1996).  They used a simple two-
level Bayes empirical Bayes model to select the 
best mean.  They   generated samples from the 

product normal posterior distribution of the 
means, and obtained posterior probabilities that 
each of the means is the largest. Goldstein and 
Spiegelhalter (1996) described statistical issues 
in ranking institutions in the areas of health and 
education based on outcome data by using 
certain performance indicators. They obtained 
interval estimates of the ranks of these indicators 
for the different institutions, using both Bayesian 
and non-Bayesian methods. Similar to Morris 
and Christiansen (1996), Goldstein and 
Spiegelhalter (1996) did not incorporate 
uncertainty directly about the ranks of the 
performance indicators. Moreover, these authors 
did not consider the ranking of several 
multinomial populations nor did they consider 
sensory evaluation data. However, the sampling-
based approach of these authors is closest in 
spirit to the work in this article. 
 In fact, Nandram (1997) obtained the 
best multinomial population (not best subset) 
among a set of populations, converting the 
nominal data on the hedonic scale to numeric 
scores. A number of independent nonidentical 
multinomial populations with the same ordinal 
categories are considered. This approach is 
different from that in the ranking and selection 
literature because it incorporates the prior belief 
about which population is the best by assigning 
a nonzero probability to the event that any 
population could be the best population 
(Nandram, 1997). The simple tree order (see 
Robertson, Wright and Dykstra, 1988) is used to 
obtain the most probable population under a 
variation of the stochastic ordering. Consider 
two discrete random variables, P and Q, which 
take the same values ja (increasing in j) with 

probabilities jp  and jq  respectively, j = 1,…, J 

- 1, where  
 

∑∑
==

==
J

j
i

J

j
i qp

11

1 . 

 
then  
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st

≥  

 
if, and only if,  

 



A BAYESIAN SUBSET ANALYSIS OF SENSORY EVALUATION DATA 
 

484 

∑∑
==

≤
s

i
i

s

i
i qp

11

,  .1,,1 −= Js …           (1) 

   
This is the situation for two multinomial 
populations which are stochastically ordered (P 
stochastically greater than Q) with the same 
ordered categories; see, for example, Sampson 
and Whitaker (1989). This stochastic ordering is 
modified to obtain a criterion which will be used 
to select the best population or best subset of 
populations without using the values ja on the 

ordinal scale. 
The Bayesian analysis is pertinent as 

there is useful information about which is the 
best product. In the non-Bayesian approach, it is 
difficult to express uncertainty about which 
population is the best. Moreover, as the non-
Bayesian methods do not express uncertainty 
about the best population, estimation after 
selection becomes a delicate and tricky issue. In 
the Bayesian method the parameters can be 
estimated in a straightforward manner by mixing 
with appropriate weights (posterior 
probabilities); see Nandram (1997).  

The objective is to select the best 
population (or subset) among a number of 
multinomial populations, whose cell counts arise 
from sensory evaluation, and to show how to 
estimate the parameters of the selected 
population. The method is sampling based, and 
it uses Monte Carlo integration which is 
accommodated by rejection sampling. A 
methodology is described, and it is shown how 
to compute efficiently the relevant quantities. 
Next, the sensory data obtained from the Natick 
food experiment is described and the 
methodology is applied to select the best entree. 
Finally, there are conclusions. 

 
Methodology 

 
The objective is to develop a method to judge 
the best multinomial population or the best 
subset of multinomial populations without 
converting the ordinal categories to numeric 
scores by modifying the stochastic ordering. 
Estimation is performed to make inference about 
the quality of product. In general, it is assumed 
that there are I multinomial populations, and the 
best subset of size ℓ < I subsets is to be selected. 

There are )!(!/! �� −= IIT distinct subsets of 

size ℓ which are denoted by ,tI  Tt ,1…= . For 

example, with I = 3, ℓ = 2, the set of all products 
is {1, 2, 3}, T = 3, and the subsets are I1 = {1, 
2}, I2 = {1, 3} and I3 = {2, 3}. The primary 
objective is to select the best subset among the 
It.  
 
Model 
 I multinomial populations with J 
categories are considered.  For the ith population, 
the counts, denoted by ,)',,( 1

~
iJii nnn …=  

Ii ,,1…= , are taken. In many applications it is 

reasonable to assume that the 
~
in have 

independent multinomial distributions with 

probabilities ,)',,( 1
~

iJii ppp …=  ∑
=

=
J

j
ijp

1

1.  

Letting  
 

,)'',,'( 1
~~

Ippp …=  

 
the joint likelihood is 

 

.)(
11

~~
∏∏

==

∝
J

j

n
ij

I

i

ijpnpl            (2) 

A priori, without any order restriction on the pij, 
we take independent Dirichlet distributions for 
the pi, 

 

∏∏
=

=
−

=
I

i i

J

j ij

D

p
p

ij

1
~

1

~ )(
)(

1

α
π

α

,                      (3) 

 
where the )',,( 1

~
iJii ααα …=  and αij  are fixed 

quantities to be specified. Note that in 

(3)
1

1 1
~

)}()}{({)(
−

= =
∏ ∑ΓΓ=

J

j

J

j
jj aaaD and )(⋅Γ  

is the gamma function. In (3), αij = ½ is taken for 
three reasons. First, it is difficult to elicit 
information about αij even though they can be 
interpreted as cell counts in a prior sensory 
evaluation. Second, one does not want to model 
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similarity among the different products as it is 
believed that a priori some of them are better 
than others. Third, it simplifies the computation 
a lot if the αij are taken known, rather than if an 
assumption is made about their distributions a 
priori. Thus, to ensure the maximum 
heterogeneity (no preference) Jeffreys' reference 
prior is used (i.e., αij = ½), a proper density in this 
application. In classical statistics, this is 
equivalent to adding a ½ to the cell counts; a 
recommendation usually made for sparse 
categorical tables. Rather, prior information will 
be inputted through the belief about which is the 
best product. 
 
Criteria for Selection 
 One criterion that can be used is based 
on the random variable Xi representing values on 
the hedonic scale. That is, letting aj denote the 
values on the ordinal scale, 

Pr ,)(
~

ijiji ppaX ==  ,,,1 Jj …=  Ii ,,1…=  

and the mean of Xi is denoted by ∑
=

=
J

j
ijji pa

1

µ . 

First, to introduce the general criterion, suppose 
a single population is selected; let b denote the 
selected population. The best (selected) 
population is defined as the one for which  

 
{ }.,,1,max Iiib …=≥ µµ           (4) 

   
That is, the population with the largest mean is 
selected. Thus, the best population is defined by 
using the simple tree order; see Robertson, 
Wright and Dykstra (1988). Such an order 
restriction arises naturally in many situations. 
For example, if an investigator wishes to 
compare several treatments with a new one, the 
prior information that the new treatment mean is 
at least as large as the others might be 
entertained. Because of its simplicity, (4) is 
popular. 

Nandram (1997) used criteria based on 
the mean, standard deviation and coefficient of 
variation of the Xi to obtain the best multinomial 
population (not best subset) among a set of 
populations. However, he used the scores on the 
hedonic scale to construct these criteria. 

For subset selection, let Ib denote the set 
containing the ℓ best populations. (Note that Ib is 
a proper nonempty subset of the set of I 
products.) Then, based on the means, the (best) 
selected set of populations Ib is defined as the 
one for which  

 
{ } { }.;max;min bibi IiIi ∉≥∈ µµ          (5) 

   
Note that (4) is a special case of (5), and (5) can 
be viewed as an extension of the simple tree 
order. 

Unfortunately, the method of subset 
selection based on the mean, uses the category 
scales. The aj are almost always unknown and 
are usually taken as aj = j, j = 1,…, J. The thesis 
is that this is inaccurate, and an alternative 
solution based on a modification of the 
stochastic ordering is sought. However, the 
method of subset selection based on the mean 
will be used for comparison with the method 
which does not use the category scales. 

A single criterion based on a version of 
the stochastic ordering is obtained, but first, an 
explanation for why the stochastic ordering 
cannot be used directly is provided. For 
simplicity, consider selecting the best 

population. Let ∑ =
≤= s

j ijis ppA
1

:{  max 

∑ =
≠=s

j tj itItp
1

)},,,,1,( …  1,,1 −= Js … , 

and ∩
1

1

−

=
=

J

j iji AS . Then for each j the Aij are 

mutually exclusive, ∑ =
=I

i ijAP
1

,1)(  and 

≤)( iSP  min }1,,1),({ −= JjAP ij … . As the 

P(Aij) are different for each i, for some choice of 
s and some i, >)( isAP  min 

}1,,1),({ −= JjAP ij … . 

Then, ∑ ∑= =
=<I

i

I

i isi APSP
1 1

1)()( . 

That is, while the Si are mutually exclusive, they 
are not exhaustive. In fact, P (Si) is not the 
probability that the ith population is the best; the 
P (Si) could be extremely small and 

∑ =
<<I

i iSP
1

1)( . Thus, for each j {Aij, I = 

1,…,I} will be used as a partition to identify the 
best population or subset. 
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Letting 
 

∑
=

==∆
J

kj
ijik Jkp ,,,2, …  ,,,1 Ii …=          (6) 

    
these ∆ik are measures of the quality of the ith 
product. Note that ∆ik is the probability of 
getting at least response k on the ordinal scale 
(e.g., 

,i∆  
2

1+J  is the probability of getting at least 

a neutral response). To express uncertainty about 
the best subset of populations, let B denote the 
random variable indicating the best population 
and κ denote exclusively the measure of quality 
which is used. Let ≥∈∆= },min{:{ tiktk IipA  

max },,{ tik Ii ∉∆  JkTt ,...,2,,...,1 == , and 

∪
1

222 ,
−

=
−===

s

j tjtstktt AASAS  Js ,,3…= . 

Then, κ = k if ,
~

tkAp ∈  Jk ,,2…= is defined 

(However, note that κ is a nuisance parameter.). 
The criterion based on Sbk is defined as the 
modified stochastic ordering (MSO) criterion. 
Then,   
 
Pr ,),( bkkbB ωκ === ,,,1 Tb …=  

∑∑
= =

==
I

b

J

k
bkJk

1 1

1,,,2 ω… ,         (7) 

 
where the  bkω are to be specified. Letting 

,
1

1
∑

−

=
=

J

k
bkb ωλ  a priori the best population is the 

bth population for which 
},,1,max{ Tttb …== λλ . The bλ  are to be 

updated using the data. 
Incorporating prior information about 

which is the best entree through the bkω  rather 

than the αij is preferred. It should be noted that it 
is conceptually simple and convenient to use the 
random variables B and κ to model uncertainty 
about which is the best entree. On the other 
hand, it is much more difficult to add 
information about which is the best entree 
through the αij. However, unless the αij are all 
equal, their specification will give latent 
information about which is the best entree, but 
this    information    is     difficult     to    discern.  

In addition, if there is a reluctance to 
specify the αij, then in the Bayesian paradigm 
they are random variables, and the problem of 
selection and estimation becomes extremely 
difficult, especially if one wants to incorporate 
uncertainty about which is the best population. 
 For the criterion given by (5) based on 
the mean, k = 1 will be taken and define 

≥∉= },min{:{1 bib IipS µ  max 

TbIi bi ,,1},,( …=∉µ . The criterion based on 

1bS  will be called the mean response ordering 

(MRO) criterion. 
 Then the prior distribution on 

~
p in (3) 

becomes 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=⎟
⎠

⎞
⎜
⎝

⎛ = ∏∏
=

=

−

,0

,
)(

)(
, 1

~

1

1

~

~

I

i i

J

j ij

bk D

p
c

bBp

ij

α
α

κπ

α

 

,

,
~

otherwise

Sp bk∈

 

  (8) 
 
where  
 

)'',,'(
~

1
~~

Iααα …=  

 
and  

∫ ∏ ∏
=

=

−

− =
bk

ij

S

I

i i

J

j ij

bk D

p
c

1
~

1

1

1

~ )(
)(

α
α

α

 

.,,2,,,1,
~

JkIbdp …… ==  

Note that 
 

JkTbSpc bkbk ,,2,,,1),Pr()(
~

1

~
…… ==∈=−α . 

 
These quantities are to be updated by the data, 
and are to be used to update the bkω  which, in 

turn, are to be used to judge the best product or 
set of products. 
  
 
 
 
 



NANDRAM 487 

Bayesian Selection and Estimation 
 Now, it is shown how to use the data to 
judge the best subset, and then to make inference 
about the best set of populations. 
Let  
 

)'',,','(',' 21
~

iJiiiijijij nnnnnn …=+= α  

 
and  
 

)},,1;,,1:'{'
~

JjIinn ij …… === . 

 
Using Bayes’ theorem, the joint posterior 
distribution of 

~
p , B and κ is 

~~

~ ~~

( , , )

( , , ) ( , )

f pB b kn

f pn B b k PB b kn

κ

κ κ

= =

= = = = =
                        (9) 

    
where  
 

),,(
~~

kbBnpf == κ  

and  
 

),(
~
nkbBP == κ  

 
are to be described. First, 
 

~~

1

1

~ ~1
~

, ,

( ) ,
( )

0, ,

ij
J n

I
ijj

bk bk
i i

f p n B b k

p
c p S

D n

otherwise

κ

α
′ −

=

=

⎛ ⎞= =⎜ ⎟
⎝ ⎠

⎧
⎪ ∈⎪ ′= ⎨
⎪
⎪⎩

∏∏    (10)  

   
where 
 

∏∏
∫

=

=

−′

−

′
=′

I

i i

J

j

n
ij

Sbk nD

p
nc

ij

bk 1
~

1

1

1

~ )(
)(   ,

~
dp  

b=1,…,T, k=2,…,J.  
 

For convenience, letting bkS be the complement 

of Sbk,  
 
 
The following is defined as,  
 

1

~

1
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~
1

~

( )

1 ( )
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ij
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I
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bk S
i i

c n

p
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\Second, letting 

 
1

~ ~ ~
( ) ( ) ( ) ,

1, , , 2 , , ,

b k b k b kr n c c n

b T k J

α −′ ′=

= =… …

 

Pr
{ }

~ ~

1

~
1 2

ˆ( , ) ( )

( ) .

bk bk bk

T J

tj tj
t j

B b k n r n

r n

κ ω ω

ω −

= =

′= = = =

′∑∑
        (11) 

Letting 
 

,ˆˆ
2
∑

=

=
J

j
bjb ωλ                        (12) 

    
in (11), a posteriori the best subset is the bth 
subset for which 

),,1,ˆmax(ˆ Tttb …== λλ .  

 
Consider testing Ho: b

th subset is the best versus 
h1: bth subset is not the best where Pr(H0) =λb 
=1–Pr(H1). Then the Bayes factor, Bf, for testing 
H0 versus H1 is  
 

( ) ( ) .}1/}{ˆ1/ˆ{ 1−−−= bbbbfB λλλλ  

 
Letting  
 

1

~
2

1

~

* )()( −

=

−
∑= αα
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j
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~
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~
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=
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J

j
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it follows easily from (11) and (12) that the 
Bayes factor is also given by 
 

11

~

*1

~

*1

~

*

~

* })(1}{)()()({ −−−− ′−′−′= ncncnccB bbbbf α
 

* * 1

~ ~

1 1

~ ~ ~
2

( ) ( )

( 1) ( ) ( ) ( ) .

b b

J

bj bj b
j

c c n

J c c n r n

α

α

−

− −

=

′≈ ≈

′ ′− =∑
       (13) 

 
In (13) the first approximation follows because 

in many examples 1)'(
~

* >>ncb . This is true 

when there is a large number of subsets as in our 
application. Also in (13) the second 
approximation follows if the cbk(

~
α ) are 

approximately constant which is the case with a 
uniform prior on B and κ. Note that )'(

~
nrb  is the 

average of the )'(
~
nrbk in (11). Thus, it is 

interesting to observe that one might interpret 
)'(

~
nrb  as the Bayes factor, which, in turn, can 

be interpreted as the odds for H0 provided by the 
data. For a review of the literature on the Bayes 
factor and its interpretation see Kass and Raftery 
(1995).  

Inference proceeds by first picking with 
uncertainty the best subset (i.e., the subset with 

the largest bλ̂ ). Whether the frequentist method 

or the Bayesian method is used, the statistician 
will be uncertain about which is the best subset 
of populations. However, in the Bayesian 
method, as presented here the statistician can 
incorporate uncertainty about the best 
population, and this is attractive because by (11) 
the uncertainty about the best population a 
posteriori can be quantified. In addition, a 
posteriori inference about the parameters of the 
judged best population is obtained by using the 
posterior distribution 
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~~1
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tBnpnp b

T

t
tb ==⎟

⎠

⎞
⎜
⎝

⎛
∑

=
πλπ .       (14) 

The elegance in the current approach is 
contained in (14), as the weakness in the 
classical approach, is that after the best 
population is obtained the methods usually 

proceed as though it is known with certainty 
which is the best population. 

The expression in (14) can be 
simplified. For 
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When the criterion based on the mean is 
used, the following is taken  
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When the criterion based on the modified 
stochastic ordering is used, the following is 
taken 
 

1,,1,,,1,/)()}1/(ln{ −==−=− JjIiiijijij ……τβθγγ , 

 
where  

∑
=

=
j

s
isij p

1

γ and θ1 < θ2 <…< θJ-1 

are the unknown cutpoints. A posteriori 
inference about βi and τi can be obtained by 
using (15). Inference is made about the 
population means βi and standard deviations τi, 
i=1,…,I. 
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Computations 
 In this section, a description of how to 

compute bλ̂  in (12) and ⎟
⎠

⎞
⎜
⎝

⎛
~~

npbπ  in (15) is 

provided. 

 First, consider bλ̂ . Although it is more 

accurate to compute )'(
~
nrbk  directly rather than 

first computing )(
~
αbkc  and )'(

~
ncbk  separately, 

a simple method is proposed which first obtains 
)(

~
αbkc and )'(

~
ncbk .  How to obtain )'(

~
ncbk , or 

)'(
~
ncbk  is described, for which the simple 

method suggested by Nandram, Sedransk and 
Smith (1997) is used. The problem of estimating 

)'(
~
nrbk directly is a special case of the more 

general problem associated with estimating the 
ratio of two normalization constants; see, for 
example, Meng and Wong (1996) and Chen and 
Shao (1997) who used Markov chain Monte 
Carlo methods. (These refinements are 
unnecessary in this application.) Denoting the 
joint  unrestricted  posterior distribution of 

~
p by 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛′′
~

~

npf , 

 
therefore,  
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                                                          (16) 
 

N independent multivariate samples are selected 
from the unrestricted product Dirichlet 
distributions with parameters Iini ,...,1,

~

=′ in 

(16), and find the number 
N

N
in

~

′

 falling inside Sbk.  

(Note that 1

~
)'( −ncbk is estimated by the 

proportion '
~

1 nT− , falling outside Sbk.)  The 

Monte Carlo sample size, N, is obtained by 
taking, for example, 
 

Pr .95.001.1)(
~~

=
⎭
⎬
⎫

⎩
⎨
⎧ <−′ ′nbk Tnc         (17) 

 
For the examples discussed, N=10,000 is taken. 

The computations for 1

~
)'( −ncbk  or 1

~
)'( −ncbk  are 

performed for whichever requires smaller Monte 
Carlo sample size in (17). Estimates of the 

)(
~
αbkc  are obtained in a similar manner. But 

note that with a uniform prior on B and κ, it is 
unnecessary to compute )(

~
αbkc since they are 

all equal. Otherwise, )(
~
nrbk ′  are obtained by 

monitoring the estimates of the ratios of )(
~
αbkc  

and )'(
~
ncbk  for convergence. Again 10,000 

iterates suffice. 
 Samples from the posterior distribution 

of 
~
bp , ⎟

⎠

⎞
⎜
⎝

⎛
~~

npbπ  in (15), can be obtained by 

using the composition method (Tanner 1993). 
First, draw a uniform random variate, U ~ U 
(0,1). Then if U bkω̂≤ , draw 

~
bp from 

;,
~~~

⎟
⎠

⎞
⎜
⎝

⎛ ∈ bkb Spnpπ  otherwise draw 
~
bp from 

.,
~~~

⎟
⎠

⎞
⎜
⎝

⎛ ∈ bkb Spnpπ  Samples of 
~
bp  from 

⎟
⎠

⎞
⎜
⎝

⎛ ∈ bkb Spnp
~~~

,π  can be obtained simply by 

drawing 
~
bp from ⎟

⎠
⎞

⎜
⎝
⎛′′

~~
npf and then if bkSp∈

~
, 

accept it. Similarly, samples from 

⎟
⎠

⎞
⎜
⎝

⎛ ∈ bkb Spnp
~~~

,π are obtained by simply 

drawing 
~
p from ⎟

⎠
⎞

⎜
⎝
⎛′′

~~
npf  and then if bkSp∈

~
, 

accept it. However, it is still possible to obtain 
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samples from ⎟
⎠

⎞
⎜
⎝

⎛′′
~~

npbπ  more efficiently. 

 It is not difficult to show that 

,1)(
~

* ≠αλ bbc  then 1)(ˆ
~

* <′ncbbλ  if and only if 

.1)()ˆ1(
~

* >′− ncbbλ  Also, it is not difficult to 

show that if 1)(ˆ
~

* <′ncbbλ , then 
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 Note that 

~

('' npf | )
~
n  is obtained by 

marginalization of the posterior distribution 

~
('' pf | )

~
n , in (16). Related arguments are 

given by Bhattacharya and Nandram (1996). 

Note that the application bλ̂  could be very small 

and 1

~

* )'( −ncb  very close to 1, so that it is very 

likely that (18) is the choice. 
 Thus, samples from the posterior 

distribution ⎟
⎠

⎞
⎜
⎝

⎛
~~

npbπ  can be obtained by using 

the composition method in either (15), (18) or 
(19). Notice that it is really simple to draw from 

⎟
⎠

⎞
⎜
⎝

⎛′′
~~

npf b . In practice, if )(ˆ
~

* ncbb ′λ is large but 

less than 1, draws can be made easily from (18), 

or  if  )()ˆ1(
~

* ncbb ′− λ   is  large  but  less  than  1,  

draws can be made easily from (19). In the event 

that )(ˆ
~

* ncbb ′λ and 1

~

* )( −′ncb  are small, or 

)()ˆ1(
~

* ncbb ′− λ  and 1

~

* )( −′ncb  are small, one can 

draw efficiently from (15). 
 Posterior inference of any function of 

~
bp (e.g., ∆bk) can be obtained by using samples 

from ⎟
⎠

⎞
⎜
⎝

⎛′′
~~

npbπ  in a straightforward manner. 

Noting that 
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p is first drawn from ⎟
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⎜
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and the components 
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bp are stripped off, one can 
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−  Note that in 

these estimation procedures independent 
samples are used, not dependent samples as in 
Markov chain Monte Carlo methods. 
 To make inference about βi and τi a 

random sample 
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~

)1(
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,..., Mpp  is first obtained 

from ⎟
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npbπ . Then using the criterion based 

on the mean, the following is computed 
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For the criterion based on the modified 
stochastic ordering, nonlinear least squares 
minimizing is used 
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to obtain )()( , h
i

h
j βθ  and )(h

iτ , h=1,…,M; see 

appendix A for the appropriate equations. (The 
iterative procedure converges quickly in less 
than 5 steps.) Then a posteriori we take  
 

∑ =
−= M

h

h
ii M
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)(1ˆ ββ  

 
and  
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with corresponding standard deviation given by 
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Analysis of the Military Data 
 In this section, the methodology is 
applied to the Natick Food Experiment.  The 
Meal, Ready-To-Eat (MRE) has twelve meals 
(menus), each consisting of four to six food 
items. The system contains 39 distinct foods. 
Some of these items occur in more than one 
meal and are regarded as different items in 
different meals, so the total number of items 
studied is 52. These items can be classified into 
five principal types: entrees, pastries, vegetables, 
fruits and miscellaneous. Chen, Nandram and 
Ross (1996) analyzed these data to predict shelf 
lives of the entrees, and they classified the 
entrees according to whether their shelf lives are 
short, medium or long. 

Meals were purchased through the 
military supply procedures of the armed-forces 
procurement system, and the taste testing was 
carried out at the Natick Laboratories (NLABS). 
On arrival at NLABS they were inspected for 
completeness, immediately tested at room 
temperature (21ºC) and stored at four different 
temperatures. Those stored at room temperature 

were withdrawn and tested at 12, 24 36, 48, 60 
months' storage. 

The meals were opened by test 
monitors, and each item served to a panel of 36 
untrained subjects who judged its acceptability 
on a 9-point hedonic rating scale. At a session, 
each consumer evaluated all the items in one 
meal which consists of four to six items 
(including an entree) served one at a time in 
random order with a mouth-rinsing between 
items. 

Each item in the entire meal, which 
consists of the entree and the other items, was 
rated on the 9-point hedonic scale by each 
panelist (Only one storage temperature was 
tested for that particular meal, and other 
temperatures for the same meal were judged 
mostly by other panelists.). The panelists were 
chosen from a pool of volunteers comprising 
both military and civilian staff at NLABS. At 
most, two meals were tested each day, one in the 
morning session and one in the afternoon.  Care 
was taken so that no panelist was used twice in 
the same day. Thus, it is not unreasonable to 
entertain the assumption that the responses 
across meals and storage temperatures are 
uncorrelated. 

The samples were coded alphabetically 
when presented to the test-subjects. The items 
were all served at room temperature as they 
came from the package, except for the 
dehydrated items, which were re-hydrated with 
water at 60ºC before serving. The tests took 
place in semi-isolated booths at NLABS under 
standard fluorescent lighting conditions. At any 
withdrawal period as many as 48 sessions 
(twelve menus at four temperatures) were 
required, which means that the tests went up to 5 
weeks, and individual panelists were used about 
ten times during that period. Thus, it is natural to 
assume that the responses on each item in a meal 
follow a multinomial distribution, with different 
distributions for different entrees. 

For each of the 23 combinations of time 
and temperature, there were sensory ratings for 
each of the 36 panelists, and so the data for each 
item consisted of 828 scores. The results were 
studied for 12 entrees: pork sausage (1), ham-
chicken loaf (2), beef patty (3), barbecued beef 
(4), beef stew (5), frankfurters (6), turkey (7), 



A BAYESIAN SUBSET ANALYSIS OF SENSORY EVALUATION DATA 
 

492 

beef in gravy (8), chicken (9), meat balls (10), 
ham slices (11) and beef in sauce (12). 

Our contact at NLABS suggested, of 
course with uncertainty, that among the best 
entrees are 5, 9 and 11. In fact, Chen, Nandram 
and Ross (1995) found that at room temperature 
the shelf lives of 5, 9 and 11 are very long (12, 8 
and 14 years respectively) making these 
estimates less useful. 

In Table 1 the responses of the 36 
panelists for each entree are presented for the 
entrees withdrawn after 12 months' storage; the 
last two columns contain the average (avg) and 
standard deviation (std) of the 36 scores. Here, 
chicken (entree 9) has the largest average and 
the smallest standard deviation, and beef stew 
(entree 5) seems to be a good competitor. 

Further, a Bonferroni multiple 
comparison procedure was performed using the 
ANOVA procedure of SAS on the raw data. Of 
course, this procedure assumes that the 36 scores 
are normally distributed. At 12 months' storage, 
the procedure indicated no significant 
differences between the means of the entrees, 
suggesting that there is no best entree at 12 
months' storage. Thus, a procedure which is 
more sensitive than classical multiple 
comparison is needed. 
 
Numerical Results 
 The data on the sensory evaluation of 
the twelve entrees withdrawn after twelve 
months' storage was used. Selection and 
estimation were studied in turn. The best subset 
of entrees with t entrees, t = 1,…, 4 were 
considered. First, a uniform prior on all subsets 
of size t was considered. That is, λb 

= TbT ,,1,1
…=−  was taken. To make 

comparisons a much larger prior probability λb = 
.25 for a pre-assigned best subset and the 
remaining probability split equally among the (T 
- 1) subsets was also studied. To further assess 
difference between the criteria based on the 
mean response ordering (MRO) and the 
modified stochastic ordering (MSO) the 
observed data was perturbed by replacing each 
of the last two cell counts by the average of the 
observed cell counts for the last two cells for 
each entree. 

In Table 2, the posterior probability bλ̂  

and the Bayes factor Bf associated with the 
presumed best subsets which are {9} {5, 9} ,{ 5, 
9, 11} , { 5, 7, 9, 11} by criterion, data and prior 
weight λb is presented. For the observed data 
when uniform prior weight is used, except for 
the best entree which is {9} when the MRO is 
used and {11} when the MSO is used, the 
determined subsets of size 2, 3 and 4 are the 
same, being exactly the presumed best subsets. 

The best subsets with prior λb = .25 are 
the same as the presumed best subsets. The 
posterior probabilities increase as the number of 
subsets increase for both MRO and MSO, but 
much more rapidly for the MRO. For the 
perturbed data, there are substantial differences 
between the MRO and the MSO with the 
uniform prior. The posterior probability 
decreases with the number of subsets for the 
MRO and less rapidly for the MSO. But in both 
cases the Bayes factor increases rapidly with the 
number of subsets, more rapidly for the MRO.  

Note that the best subsets of sizes 1, 2, 
3, 4 with the MRO are {5}, {5, 9} {5, 9, 11}, {1, 
5, 9, 11} respectively as compared with {11}, 
{9, 11} {5, 9, 10}, {5, 7, 9, 10}. The best 
subsets with the perturbed data and λ= .25 are 
the same as those for the observed data for both 
the MRO and the MSO. Thus, the two criteria 
can lead to different judged best subsets. 
However, if the prior probability on the best 
subset is substantial, the two criteria provide the 
same best subsets, the evidence with the MRO is 
slightly larger than with the MSO. 

In Table 3, a sensitivity analysis to 
investigate misspecifications with the presumed 
best subsets is presented. A prior probability of 
λb = .25 is assigned to the possibly worst subsets 
{2}, {2, 4}, {2, 4, 6} and {2, 4, 6, 12} with a 
probability of .75 assigned equally to the 
remaining T – 1 subsets. Again, the observed 
and the perturbed data are considered. With the 
MSO the evidence for the presumed best subsets 
is very weak, and in fact, the best judged subsets 
are the ones expected. However, with the MSO 
the best subsets are the same as assigned for 
sizes 1, 2, 3 with very weak evidence, and for 
size 4 the best subset is {5, 7, 9, 10} rather than  
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{5, 7, 9, 11} as specified by the MRO (Note that 
the evidence is substantial.). Although the 
judged best subsets for the perturbed data and 
the observed data are the same, there are 
substantial differences between the MRO and 
the MSO for the perturbed data. The determined 
subsets are different at every size and 
interestingly the best subset of size 4 has 
associated with it fairly large Bayes factors (82.5 
versus 29.2). Thus, it is important to specify the 
correct subset a priori especially if a large prior 
probability is placed on such a subset. Note that 
the determined subsets are different for the four 
scenarios. 

Thus, the best subsets of any size are 
likely to be different for the two criteria, 
suggesting that it is risky to use the category 
scales when selecting the best subsets. 

Next, consider estimation of the mean 
response βi and the measure of variability τi for 
which the posterior mean and standard deviation 
are obtained. Letting δ denote either βi or τi, we 

take AVGC = )(ˆ
~
nE δ  and STDC = 

2/1

~
)}(r̂{va nδ  under criterion based on C (MRO 

or MSO). Then, consider the ratio Ravg = AVGmso 
/AVGmro and Rstd = STDmso /STDmro. 

In Table 4, results are presented for the 
observed  data  by  prior weight for the modified 
 
 

stochastic ordering (MSO) for subsets of size 4. 
Columns 3 and 4, and 7 and 8, show there are 
minor differences between posterior means for βi 
and τi respectively for λ = T -1 and λ=.25. In 
addition, columns 5 and 9 show minor 
differences between the point estimates when 
the MRO and MSO are used. However, columns 
6 and 10 show substantial differences between 
the MRO and MSO. Rstd under the MSO is at 
least twice as large under the MRO for the βi and 
at least one and a half times as large for the τi. 
Note also that there are differences for Rstd 
between λ = T -1 and λ=.25 (e.g., compare the 
values for entrees 7 and 10 in column 6). Thus, 
for estimation when little difference is expected 
between the posterior means with the MRO and 
MSO, there are substantial differences between 
the standard deviations. 

In Table 5, ranges are considered for the 
ratios Ravg and Rstd for subsets of sizes 1-4 λ = T -

1 and λ=.25 and for the observed data sets and 
the perturbed data sets for the βi and the τi. The 
ranges for Ravg are very similar for both βi and τi 
for all scenarios (i.e., the posterior means are 
very similar under MRO and MSO). The 
standard deviations are much larger under the 
MSO for βi, but not so large for the τi, and there 
is a slight increase in the ranges of Rstd from T -1 
to λ=.25. In addition, as expected, note that there 
are virtually no differences in estimation for 
various sizes of the subsets. 

 

 
Table 1: Panelists’ responses for the military sensory evaluation Response Categories 

 
Entree 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
avg 

 
std 

 
1 

 
2 

 
0 

 
1 

 
5 

 
4 

 
6 

 
8 

 
8 

 
2 

 
6.08 

 
2.01 

2 0 4 1 7 4 8 6 5 1 5.50 1.93 

3 2 1 3 7 3 8 8 4 0 5.33 1.94 
4 0 2 1 3 5 10 8 7 0 6.00 1.64 
5 0 0 1 3 7 6 8 10 1 6.42 1.50 
6 0 3 4 7 4 8 8 2 0 5.17 1.75 
7 0 1 0 5 4 10 10 5 1 6.14 1.50 
8 1 3 2 3 4 12 7 4 0 5.50 1.86 
9 0 0 1 5 0 9 14 6 1 6.44 1.40 
10 0 0 2 5 4 7 11 7 0 6.14 1.51 
11 2 1 2 1 1 5 17 6 1 6.25 1.98 
12 2 2 5 3 0 13 6 3 2 5.42 2.16 

 
Note: Meals were withdrawn after twelve months’ storage. 
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Table 2: Posterior probability, Bayes factor and the judged best subset (b) of entrees with a prior probability on the 
presumed best subset by data, criterion and prior weight 

 
Observed Data 

 
Perturbed Data 

 
 

MRO 
 

MSO 
 

MRO 
 

MSO 

 

bλ̂  

 

fB  

 

bt  

 

bλ̂  

 

fB  

 

bt  

 

bλ̂  

 

fB  

 

bt  

 

bλ̂  

 

fB  

 

bt  

 
 

(a) 1−= Tbλ  

 
.36 5.1 9 .21 2.9 11 .32 5.2 5 .21 2.9 11 
.72 22.7 5, 9 .34 4.7 5, 9 .20 16.6 5, 9 .10 7.5 9, 11 
.85 50.2 5, 9, 11 .59 12.8 5, 9, 11 .13 31.3 5, 9, 11 .06 14.7 5, 9, 10 
.88 64.4 5, 7, 9, 11 .69 20.1 5, 7, 9, 11 .11 62.0 1, 5, 9, 11 .04 22.0 5, 7, 9, 10 

 

(b) 25.=bλ  

 
.63 5.1 9 .38 1.9 9 .59 4.3 9 .41 2.1 9 
.88 22.7 5, 9 .61 4.7 5, 9 .85 16.6 5, 9 .62 4.9 5, 9 
.94 50.2 5, 9, 11 .81 12.8 5, 9, 11 .91 31.3 5, 9, 11 .80 11.7 5, 9, 11 
.96 64.4 5, 7, 9, 11 .87 20.1 5, 7, 9, 11 .94 44.9 5, 7, 9, 11 .88 21.7 5, 7, 9, 11 

 

NOTE: The presumed best subsets are {9}, {5, 9}, {5, 9,11}, {5, 7, 9, 11}; a probability bλ  is assigned to each of these subsets 

and 1)1)(1( −−− Tbλ  is assigned to each of the remaining )1( −T subsets; mean response ordering (MRO), modified 

stochastic ordering (MSO) 
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Table 3: Posterior probability, Bayes factor for the judged best subset (b) of entrees under 
misspecification of the presumed best subset by data, criterion and prior weight 

 
Observed Data 

 
Perturbed Data 

 
 

Preassigned 
 

Determined 
 

Preassigned              Determined 

 

bλ̂  

 

fB  

 

bλ̂  

 

fB  
 

bt  

 

bλ̂  

 

fB  
 

bλ̂  

 

fB  

 

bt  

 
(a) Mean Response Ordering (MRO) 

 
.24 0.3 .25 6.9 9 .10 0.3 .30 5.8 5 
.02 0.0 .25 43.8 5, 9 .01 0.0 .20 21.8 5, 9 
.00 0.0 .19 100.2 5, 9, 11 .00 0.0 .13 41.6 5, 9, 11 
.00 0.0 .12 128.7 5, 7, 9, 11 .00 0.0 .11 82.5 1, 5, 9, 11 

 
(b) Modified Stochastic Ordering (MSO) 

 
.39 0.6 .39 0.6 4 .20 0.7 .20 0.7 4 
.25 0.3 .25 0.3 2, 4 .16 0.6 .16 0.6 2, 4 
.37 0.6 .37 0.6 2, 4, 6 .19 0.7 .19 0.7 2, 4, 6 
.05 0.1 .07 69.2 5, 7, 9, 10 .01 0.0 .04 29.2 5, 7, 9, 10 

 

NOTE: The presumed worst subsets are {2}, {2, 4}, {2, 4, 6}, {2, 4, 6, 12}; a probability 25.=bλ  is assigned to 

each of these subsets and 1)1)(1( −−− Tbλ  is assigned to each of the remaining )1( −T subsets. 
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Table 4: Posterior mean and standard deviation of µ and τ under MSO, and ratios of 
posterior means and standard deviations for all entrees based on the judged best four 
entrees using the observed data by prior weight 

 
                                                        µ 

 
               τ 

 
λ 

 
Entree 

 
AVG 

 
STD 

 
Ravg 

 
Rstd 

 
AVG 

 
STD 

 
Ravg 

 
Rstd 

 
1 6.52 0.77 1.09 2.38 2.47 0.41 1.20 1.90 
2 5.76 0.64 1.06 2.05 1.83 0.35 0.93 2.07 
3 4.71 0.69 0.89 2.21 1.83 0.38 0.93 2.16 
4 5.82 0.68 0.99 2.46 1.49 0.31 0.86 1.60 
5 6.95 0.60 1.11 2.28 1.68 0.33 1.01 1.86 
6 4.91 0.65 0.95 2.27 1.48 0.30 0.82 2.04 
7 6.49 0.60 1.08 2.28 1.69 0.31 1.03 1.64 
8 4.94 0.68 0.91 2.25 1.74 0.35 0.91 1.86 
9 6.91 0.60 1.10 2.39 1.65 0.32 1.04 1.65 

10 6.11 0.67 1.02 2.56 1.42 0.29 0.85 1.76 
11 6.25 0.78 1.02 2.42 2.33 0.40 1.15 1.59 

T-1 

12 
 

5.37 0.76 1.00 2.22 2.51 0.41 1.16 2.21 

1 6.28 0.71 1.08 2.80 2.47 0.41 1.18 1.99 
2 5.69 0.64 1.05 2.18 1.83 0.35 0.93 2.07 
3 4.67 0.67 0.88 2.18 1.82 0.38 0.93 2.13 
4 5.65 0.65 0.98 2.85 1.51 0.32 0.85 1.73 
5 7.11 0.58 1.12 2.69 1.66 0.32 1.01 1.91 
6 4.89 0.65 0.95 2.29 1.48 0.31 0.82 2.08 
7 6.73 0.56 1.09 3.00 1.68 0.31 1.06 1.80 
8 4.85 0.66 0.89 2.28 1.74 0.36 0.91 1.93 
9 7.02 0.57 1.11 2.73 1.65 0.31 1.05 1.74 

10 5.90 0.64 1.01 3.09 1.43 0.31 0.84 1.82 
11 6.44 0.75 1.03 3.37 2.28 0.38 1.18 1.78 

.25 

12 5.28 0.74 0.99 2.25 2.51 0.41 1.16 2.22 
 

 
 



NANDRAM 497 

Conclusion 
 

The method for how to obtain the best subset of 
a set of multinomial populations and how to 
estimate the parameters of any of the selected 
population has been shown. In addition, it has 
been shown that the judged best subset can be 
different under the modified stochastic ordering 
and the mean response ordering. The 
methodology applies generally to many sensory 
data problems when a nonparametric approach 
might be desirable and when there are small cell 
counts. For an alternative nonparametric 
Bayesian approach to estimate several similar 
multinomial populations see Quintana (1998). 
He used a Dirichlet process prior to obtain a 
more robust specification of exchangeability. 
The method to obtain the best subset of entrees 
that was outlined in this article is much simpler. 

Specifically, five tasks were 
accomplished. First, a more formal framework 
for selection than Morris and Christiansen 
(1996) and Goldstein and Spiegelhalter (1996) 
has been obtained. The main feature of the 
estimation method is that it weighs the different 
subsets according to which one is believed to be 
best. As there is a joint posterior distribution of 
the     best     population    and    its    parameters, 
estimation proceeds in a simple manner. Second, 
most non-Bayesian procedures in ranking and 
selection, use the normality assumption. A 

normal approximation was not used in this 
analysis; instead work was done directly with 
the multinomial assumption. Third, work was 
done with all the categories in the multinomial 
table (i.e., collapsing to remove sparseness has 
not been done). Fourth, this method is sampling 
based, facilitating a complete probabilistic 
analysis of the best subset of multinomial 
populations. Fifth, the method for how to 
estimate the average response score and standard 
deviation for each food without actually using 
the numeric scores has been shown. 

With respect to the application 
discussed, future work will address more 
complicated issues associated with different 
storage temperatures, and the other items 
including the entrees in each meal. It will be 
useful to obtain the best subset at all 
temperatures for all rated items in each food. 
More generally, a number of items is usually 
rated in accordance with a number of different 
characteristics. Then, one might wish to find the 
best subset of items when all the characteristics 
are taken simultaneously. 
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Appendix A 
 
For the iterative nonlinear least squares, one 
would take 
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Then, the normal equations, obtained by 
minimizing 
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and starting values are obtained by taking 
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Starting with a random sample 
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Mppp …  taking 
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h
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h
ij γγ −=∆  and solving the 

normal equations (A.1), (A.2), (A.3), samples 

,, )()( h
i

h
j βθ  and ,)(h

iτ  h=1, 2,…, M are obtained 

from their empirical posterior distributions. 
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