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A Bayesian Subset Analysis Of Sensory Evaluation Data

Balgobin Nandram
Department of Mathematical Sciences
Worcester Polytechnic Institute

In social sciencesit is easy to carry out sensory experiments using say a J-point hedonic scale. One major
problem with the J-point hedonic scale is that a conversion from the category scales to numeric scores
might not be sensible because the panelists generally view increments on the hedonic scale as
psychologically unequal. In the current problem several products are rated by a set of panelists on the J-
point hedonic scale. One objective is to select the best subset of products and to assess the quality of the
products by estimating the mean and standard deviation response for the selected products. A priori
information about which subset is the best is incorporated, and a stochastic ordering is modified to select
the best subset of the products. The method introduced in this article is sampling based, and it uses Monte
Carlo integration with rgection sampling. The methodology is applied to select the best set of entreesin a
military ration, and then to estimate the probability of at least a neutral response for the judged best
entrees. A comparison is made with the method, which converts the category scales to numeric scores.

Key words: Bayes factor; composition method; stochastic ordering; rejection sampling.

Introduction
because it is natural to incorporate a priori

Consider the problem of selecting the best subset information about which subset is the best.
of a number of multinomial populations with In  sensory evaluation of food
ordinal categories. This can be accomplished by acceptability, judges are asked to rate several
first converting the nominal data to numeric products on the 9-point scale with qualitative
scores, and then a standard multiple comparison responses ranging from “dislike extremely” to
procedure can be performed on these scores. “neither like nor dislike’ to “like extremely” on
However, this procedure can go badly wrong an ordinal scale. Usually in the analysis these
when the conversion is made. It is, therefore, the nominal values are converted to scores ranging
purpose of this article to describe a from 1 to 9 where an attempt is made to
straightforward method based on a stochastic associate “dislike extremely” with 1, “neither
ordering of the multinomial populations for like nor dislike” with 5, “like extremely” with 9,
selecting the best subset of populations and then and intermediate nominal values have graduated
to estimate parameters used to assess the quality meanings. The use of scores has severd
of the best subset without conversion of the disadvantages, which weaken the interpretation
nominal data. A Bayesian approach is preferred that can be placed on the analysis of sensory
evaluation data.

First, the intervals between categories
Balgobin Nandram is a Professor of Statistics, are psychologically unequal. Second, judges
and a fdlow of the American Statistical tend to avoid the use of extreme categories by
Association. His research interests are in survey grouping judgments into the center of the scale,
methodology, Bayesian statistics, categorical and sometimes avoiding even “neither like nor
data analysis, computational statistics and didike” response. Third, scale values have no
simulation, hedlth, industrial and environmental numerical relationship. Thus, it is difficult to
statistics, and statistical education. Email him at make conclusions concerning ratios  of
balnan@WPI.EDU. acceptability of the food products when
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qualitative  responses are converted to
quantitative responses.

Newel (1982) applied the method of
McCullagh (1980) to analyze sensory data and
was able to overcome some of the advantages in
using scores. This method for ordinal data treats
the response categories as contiguous intervals
on a continuous scale with unknown cutpoints
0,,...,0,_, where for the J-point scale J = 9.

Inherent in these models is the stochastic
ordering with the use of scores unnecessary. Let

7; denote the probability of the | response in

J
the i" population, and y; =Y p,be the
s=1

cumulative probability of the i™ population.
Then Newd (1982) entertained a model of the
form

log{7; Q-7 )} =6, -B) 7, 1=1...1,
j=%1...,J3-1

where B and 7, are relative measures of

location and spread respectively of the i
population. This model incorporates the location
of the ratings and the consistency of the
pandists' responses directly.

Such a modd is usualy fitted using
nonlinear iteratively reweighted least squares;
see, for example, Green (1985). While this is an
attractive model, besides the cell probabilities, it
introduces 2I +J new parameters. Moreover,
while one can choose the best population as the

one with the largest A, and perhaps the

smallest 7;, this modeling does not address the

problem of selecting the best population directly,
and in fact, it is difficult to assess the uncertainty
in selecting the best population. Also as the
analysis relies heavily on asymptotic theory,
with sparse data this approach will provide poor
estimates for the cutpoints €;, and hence the

other parameters. A more appropriate method is
associated with ranking and selection.

Recent Bayesian work on selection and
ranking includes the approach of Morris and
Christiansen (1996). They used a simple two-
level Bayes empirical Bayes model to select the
best mean. They generated samples from the

product normal posterior distribution of the
means, and obtained posterior probabilities that
each of the means is the largest. Goldstein and
Spiegelhalter (1996) described statistical issues
in ranking institutions in the areas of health and
education based on outcome data by using
certain performance indicators. They obtained
interval estimates of the ranks of these indicators
for the different institutions, using both Bayesian
and non-Bayesian methods. Similar to Morris
and Christiansen (1996), Goldstein and
Spiegelhalter (1996) did not incorporate
uncertainty directly about the ranks of the
performance indicators. Moreover, these authors
did not consider the ranking of several
multinomial populations nor did they consider
sensory evaluation data. However, the sampling-
based approach of these authors is closest in
spirit to thework in this article.

In fact, Nandram (1997) obtained the
best multinomial population (not best subset)
among a set of populations, converting the
nominal data on the hedonic scale to numeric
scores. A number of independent nonidentical
multinomial populations with the same ordinal
categories are considered. This approach is
different from that in the ranking and selection
literature because it incorporates the prior belief
about which population is the best by assigning
a nonzero probability to the event that any
population could be the best population
(Nandram, 1997). The simple tree order (see
Rabertson, Wright and Dykstra, 1988) is used to
obtain the most probable population under a
variation of the stochastic ordering. Consider
two discrete random variables, P and Q, which

take the same values &, (increasing in j) with
probabilities p; and q; respectively,j=1,...,J
- 1, where

J

J
Z P =2_0G =1.
=1

=

then

P>Q

if, and only if,



484 A BAYESIAN SUBSET ANALY SIS OF SENSORY EVALUATION DATA

Zpi qui, s=1...,J-1. (1)

This is the situation for two multinomial
populations which are stochastically ordered (P
stochastically greater than Q) with the same
ordered categories; see, for example, Sampson
and Whitaker (1989). This stochastic ordering is
modified to obtain a criterion which will be used
to select the best population or best subset of

populations without using the values a; on the

ordinal scale.

The Bayesian analysis is pertinent as
there is useful information about which is the
best product. In the non-Bayesian approach, it is
difficult to express uncertainty about which
population is the best. Moreover, as the non-
Bayesian methods do not express uncertainty
about the best population, estimation after
selection becomes a delicate and tricky issue. In
the Bayesian method the parameters can be
estimated in a straightforward manner by mixing
with appropriate weights (posterior
probabilities); see Nandram (1997).

The objective is to select the best
population (or subset) among a number of
multinomial populations, whaose cell counts arise
from sensory evaluation, and to show how to
estimate the parametes of the selected
population. The method is sampling based, and
it uses Monte Carlo integration which is
accommodated by rgection sampling. A
methodology is described, and it is shown how
to compute efficiently the relevant quantities.
Next, the sensory data obtained from the Natick
food experiment is described and the
methodology is applied to select the best entree.
Finally, there are conclusions.

Methodol ogy

The objective is to develop a method to judge
the best multinomial population or the best
subset of multinomial populations without
converting the ordinal categories to numeric
scores by modifying the stochastic ordering.
Estimation is performed to make inference about
the quality of product. In general, it is assumed
that there are | multinomial populations, and the
best subset of size{ < | subsets is to be selected.

There are T =11/4(l —£)'distinct subsets of
size{ whicharedenoted by |,, t=1...,T . For
example, with | = 3, £ = 2, the set of all products
is{1, 2, 3}, T =3, and the subsets are |, = {1,
2}, I, ={1, 3} and I3 = {2, 3}. The primary
objective is to select the best subset among the
It

Mode
I multinomial populations with J
categories are considered. For thei™ population,

the counts, denoted by n =(ng...,n;),

i=1...,1, aretaken. In many applications it is
reasonable to assume that the n, have

independent multinomial  distributions with
J
probabilities p, = (Pyy,.. Py) D, Py =1.
- =

Letting
P:(PI11"" pl| ).,

thejoint likelihood is

| J

e TT TT P} @

i=1  j=1

A priori, without any order restriction on the p;;,
we take independent Dirichlet distributions for
the p;,

J ajj-1
H j=1 Py ’ 3

”(P)z L - D(a.)

where the o, = (ry,...,&;;)" and o; are fixed

guantities to be specified. Note that in

©D@=([r@Hr(a) aa 0

is the gamma function. In (3), a;j - ¥2 is taken for
three reasons. First, it is difficult to elicit
information about o;; even though they can be
interpreted as cell counts in a prior sensory
evaluation. Second, one does not want to model
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similarity among the different products as it is
believed that a priori some of them are better
than others. Third, it simplifies the computation
alot if the o;; are taken known, rather than if an
assumption is made about their distributions a
priori. Thus, to ensure the maximum
heterogeneity (no preference) Jeffreys reference
prior isused (i.e., ojj-%2), a proper density in this
application. In classical dtatistics, this is
equivalent to adding a %2 to the cell counts; a
recommendation usually made for sparse
categorical tables. Rather, prior information will
be inputted through the belief about which is the
best product.

Criteriafor Sdlection

One criterion that can be used is based
on the random variable X; representing values on
the hedonic scale. That is, letting g denote the
values on the ordinal scale,

Pr (X, = a, p)= (o j=1...,d,i=1...,1

J
and the mean of X; isdenoted by 1, => &, p; -
=1

First, to introduce the general criterion, suppose
a single population is sdected; let b denote the
selected population. The best (selected)
population is defined as the one for which

uy > max{u,i=1...,1}% (4)

That is, the population with the largest mean is
selected. Thus, the best population is defined by
using the simple tree order; see Robertson,
Wright and Dykstra (1988). Such an order
restriction arises naturally in many situations.
For example, if an investigator wishes to
compare severa treatments with a new one, the
prior information that the new treatment mean is
at least as large as the others might be
entertained. Because of its simplicity, (4) is
popular.

Nandram (1997) used criteria based on
the mean, standard deviation and coefficient of
variation of the X; to obtain the best multinomial
population (not best subset) among a set of
populations. However, he used the scores on the
hedonic scale to construct these criteria.

For subset selection, let |, denote the set
containing the £ best populations. (Notethat Iy, is
a proper nonempty subset of the set of |
products.) Then, based on the means, the (best)
selected set of populations Iy, is defined as the
onefor which

min{u;iel }>max{u;iel,}. (5)

Note that (4) is aspecial case of (5), and (5) can
be viewed as an extension of the simpletree
order.

Unfortunately, the method of subset
selection based on the mean, uses the category
scales. The & are amost always unknown and
areusualy takenas g =j, j = 1,..., J. Thethesis
is that this is inaccurate, and an alternative
solution based on a modification of the
stochastic ordering is sought. However, the
method of subset selection based on the mean
will be used for comparison with the method
which does not use the category scales.

A single criterion based on a version of
the stochastic ordering is obtained, but first, an
explanation for why the stochastic ordering
cannot be used directly is provided. For
simplicity, consider sdecting the best

population. Let A :{p:Z?:l p; <  max
(Zj:lptj,t=1,...,|,t¢i)}, s=1,...,J-1,
and S =ﬂ”:Aj . Then for each j the A; are

mutually  exclusive, ZilzlP(Aj)=L and

P(S)< min {P(A)), j=L1...,0-1. As the
P(Ajj) are different for each i, for some choice of
s and some i, P(A,) > min

{P(A), ] =1...,9-1.
Then, > P(S)<> P(A)=1.

That is, whilethe § are mutually exclusive, they
are not exhaustive. In fact, P (S) is not the
probability that the i™ population is the best; the
P (S) could be extremdy smal and

> P(S)<<l. Thus, for each j {A; | =

1,...,1} will be used as a partition to identify the
best population or subset.
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Aik=ZJ:pij,k=2,...,J, i=1..,1, 6)

these Ay are measures of the quality of the i™
product. Note that A is the probability of
getting at least response k on the ordinal scale

(9., A, .. isthe probability of getting at |east

aneutral response). To express uncertainty about
the best subset of populations, let B denote the
random variable indicating the best population
and « denote exclusively the measure of quality

whichisused. Let A, ={p:min{A,,iel}=
max {A,,iel}, t=1..T,k=2..J, ad

S AZ Sk As UJ ZAJ’ 523""")'
Then, x = kif pe A,, k=2,...,Jis defined

(However, note that « is a nuisance parameter.).
The criterion based on Sy is defined as the
modified stochastic ordering (MSO) criterion.
Then,

Pr(B=b,x=k) =@y, b=1...T,

| J
3.0 >y =1, 7)

b=1 k=1
where the o, are to be specified. Letting

J-1
Ay = @y, apriori the best population is the
k=1

p™" population for which
A, =max{4,,t=1....,T}. The 4, are to be
updated using the data.

Incorporating prior information about
which is the best entree through the w,, rather

than the a;; is preferred. 1t should be noted that it
is conceptually simple and convenient to use the
random variables B and x to model uncertainty
about which is the best entree. On the other
hand, it is much more difficult to add
information about which is the best entree
through the «;;. However, unless the o;; are all
equal, their specification will give latent
information about which is the best entree, but
this information is difficult to discern.

In addition, if there is a reluctance to
specify the a;j, then in the Bayesian paradigm
they are random variables, and the problem of
selection and estimation becomes extremey
difficult, especially if one wants to incorporate
uncertainty about which is the best population.

For the criterion given by (5) based on
the mean, k = 1 will be taken and define

Syy={p:mn{ g,,iel,}= max
(&;,1¢ 1.}, b=1....,T . Thecriterion based on
S,; will be called the mean response ordering

(MRO) criterion.
Then the prior distribution on pin (3)

becomes
lpf' pe Sk,

/{QB bj C”k@ D)

Q ~ otherwise,

8)

where

a=(y,.. )
and

IR |
eu () = | T =5 —— )

i=1

dp,b=1...,1,k=2,...,3J.
Note that

cbk(q)‘lzPr(Pe S).b=1... T, k=2..,J.

These quantities are to be updated by the data,
and are to be used to update the @, which, in

turn, are to be used to judge the best product or
set of products.



Bayesian Selection and Estimation

Now, it is shown how to use the data to
judge the best subset, and then to make inference

about the best set of populations.

Let
NG =n; +o;, N = (ny, N'y,..,n’y)
and
r~1':{n'ij =1...,1;j=1...,3)}.

Using Bayes' theorem, the joint posterior

distribution of P, Band«is
f(pB=b K=k}
=f(gn, B=h x=KRB=h k=K1
where

f(E)‘[l, B=b, x=k)

and

P(B=b, k= k‘[l)
areto be described. First,
f(E)‘[l,B=b, K=kj

J -1
| '_1p|,'
_ cok(qo[[H,’D(—n,;, pes,

0, otherwise,

where

-1 ! H}]:l p'T” B
Co (M) =Lok HT“:)

i=1

dp,

b=1,...T, k=2,...,J.
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For convenience, letting §Dk be the complement
of Sy,

Thefollowing is defined as,

G (M)

J ; _
=1-¢, (M) LU
s W o)
\Second, letting

Mok (I’l') = Cpx (Of)cbk (rl,)_l,

b=1,..., T,k=2,..,7J,
(B=b, k= k"j) = Q) Zwbkrbk(r],)

Pr T J o (11)
{ X2anm b
t=1 j=2
Letting
. J
ﬂbzza)bj’ 12)
j=2

in (11), a posteriori the best subset is the b"
subset for which

A

/fb =max( A,t=1,...,T).

Consider testing Ho: b™ subset is the best versus
h,: b™ subset is not the best where Pr(Ho) =/
=1-Pr(H,). Then the Bayes factor, By, for testing
Ho versus Hi is

B, ={ A /- A H A (- 2.}

Letting
J
@' =2 (@)
j=2
and

C;; (rj,)_l = icbj (rj,)_l,
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it follows easily from (11) and (12) that the
Bayes factor is also given by

= {6 (@cs (M) " -G (m) THi- 6, (m)
= Gy (@), () =

J (13)
(J —1)_12% (@), (rj,)_l = Tb(rj’) -

In (13) the first approximation follows because
in many examples c, (n')>>1. This is true

when there is a large number of subsets asin our
application. Also in (13) the second

approximation follows if the oy(a) are

approximately constant which is the case with a
uniform prior on B and k. Notethat T, (n') isthe

average of the T, (n')in (11). Thus, it is

interesting to observe that one might interpret
r,(n") as the Bayes factor, which, in turn, can

be interpreted as the odds for Ho provided by the
data. For areview of the literature on the Bayes
factor and its interpretation see Kass and Raftery
(1995).

Inference proceeds by first picking with
uncertainty the best subset (i.e., the subset with

the largest /ib). Whether the frequentist method

or the Bayesian method is used, the statistician
will be uncertain about which is the best subset
of populations. However, in the Bayesian
method, as presented here the statistician can
incorporate  uncertainty about the best
population, and this is attractive because by (11)
the uncertainty about the best population a
posteriori can be quantified. In addition, a
posteriori inference about the parameters of the
judged best population is obtained by using the
posterior distribution

A -2 Aste

The elegance in the current approach is
contained in (14), as the weakness in the
classical approach, is that after the best
population is obtained the methods usually

n, B= t). (14)

proceed as though it is known with certainty
which is the best population.

The expressionin (14) can be
simplified. For

”(pb [‘j:jb”(pb n,pe §)+
~ S : (15)
(1= A)7 (p,|n, pe §)
where
0 pes
= M) Pe
plnpes)= SOTL ey o)
Q otherwise,

S = Ui:z S, S, is the component of S, and
() 1y (m)

When the criterion based on the mean is
used, the following is taken

J
;Bi = Z jpij
=1

and

7 :{Zi: pij(j_ﬂi)z} =11

When the criterion based on the modified
stochastic ordering is used, the following is
taken

Infy 1@-x)}=6~A)/7,i=1..,1, j=1..,3-1,

where

i
}/” =Z pis and 0,< 0,<..< 93.1

s=1
are the unknown cutpoints. A posteriori
inference about f; and 7 can be obtained by
using (15). Inference is made about the
population means f; and standard deviations t;,
i=1,...l.
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Computations
In this section, a description of how to

Qj in (15) is

compute ﬂAb in (12) and 7[[ P,

provided.
First, consider 4,. Although it is more
accurate to compute T, (n') directly rather than

first computing Gy, (@) and ¢, (') separately,

a simple method is proposed which first abtains
Gy () and c,, (N') . How to obtain ¢, (n'), or

Cy (N') is described, for which the simple

method suggested by Nandram, Sedransk and
Smith (1997) is used. The problem of estimating

T, (n'") directly is a specia case of the more

general problem associated with estimating the
ratio of two normalization constants; see, for
example, Meng and Wong (1996) and Chen and
Shao (1997) who used Markov chain Monte
Carlo methods. (These refinements are
unnecessary in this application.) Denoting the
joint unrestricted posterior distribution of p by

{eh]

therefore,
o " b =1
) 1—[ j—1 M) ngjg ;pij—
(A= D)
Q otherwise.

(16)

N independent multivariate samples are selected
from the wunrestricted product Dirichlet

digtributions with parameters n’,i=1...,1 in

Ny

n;

(16), and find the number N~ falling inside Sx.

(Note that T, (n')™is estimated by the

proportion 1-T., falling outside Sy.) The

Monte Carlo sample size, N, is obtained by
taking, for example,

y

For the examples discussed, N=10,000 is taken.
The computations for ¢, ()™ or T, (n")™ are

Coy (Q,)T'I' —4 < .Ol} =0.95. (17)

performed for whichever requires smaller Monte
Carlo sample size in (17). Estimates of the

C, (o) are obtained in a similar manner. But

note that with a uniform prior on B and «, it is
unnecessary to compute C,, (&) since they are

al equal. Otherwise, 1, (n") are obtained by
monitoring the estimates of the ratios of ¢, ()

and ¢, (n") for convergence. Again 10,000

iterates suffice.
Samples from the posterior distribution

of '?b’ 7[[[2,3

using the composition method (Tanner 1993).
First, draw a uniform random variate, U ~ U

(0,1). Then if U <a&,, daw p,from

[lj in (15), can be obtained by

zz[pb n,pe S, |, othewise draw p, from

71'[ Po|N, PE §ij Samples of p, from
7[[ Po[N, PE Snkj can be obtained simply by

drawing p, from f"(p‘[lj and thenif pe S,,

accept  it.  Similarly,  samples  from

{n

drawing p from f"(p‘[lj and then if pe S, ,

n, pe §ijare obtained by simply

accept it. However, it is still possible to obtain
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samples from 7[”[ Py [lj more efficiently.

It is not difficult to show that
2,6, () #1, then A, () <1 if and only if

(1-4,)C (M) >1. Also, it is not difficult to

show that if 4,C,(n’) <1, then

w(pefn)= e[ ) ag
a- A, (pufn).pe 5)
and if
-4,)5 (M <1
then
(o) ot ()

(1-(1- ﬁ:\b)c_bk(rl,))” ( F{b |rjjv PG Sy).

Note that f"(p, |n) is obtained by

marginalization of the posterior distribution
f"(p |n), in (16). Related arguments are

given by Bhattacharya and Nandram (1996).
Note that the application 4, could be very small
and c, (n')™ very close to 1, so that it is very

likely that (18) is the choice.
Thus, samples from the posterior

distribution 7[[ P,

[lj can be obtained by using

the composition method in ether (15), (18) or
(19). Notice that it is really simple to draw from

f”[ Rb

less than 1, draws can be made easily from (18),
or if (1-4,)C, () is large but less than 1,

nj. In practice, if jbc;(r]’) is large but

draws can be made easily from (19). In the event
that A,c,(n)and T, (n)™" ae smal, or

a-4)c (n") and ¢, (n)™ are small, one can

draw efficiently from (15).
Posterior inference of any function of

P, (0., Ay) can be obtained by using samples

nj in a straightforward manner.

)

and the components p, are stripped off, one can

from 7[”[ Py

Noting that pis first drawn from 7["[ Py

take p,", h=1,...M to be M vectors drawn

[lj and

)

is estimated by Ay, =M7>" AD and

nj is
Ay =M= (AD A, )% Note that in
these estimation procedures independent
samples are used, not dependent samples as in

Markov chain Monte Carlo methods.
To make inference about 5 and 7 a

from 7["[ Py

(h
A =37 AP, h=1..M. Then E[Abk

var[Abk estimated by

random sample p(l),...,p(M) is first obtained

from 7[”[ Py nj . Then using the criterion based

on the mean, the following is computed

J
g = z jpi(jh)andfi(h)

For the criterion based on the modified
stochastic ordering, nonlinear least squares
minimizing is used

2

S iy 12— 70 - @ - g0 170

i=1 j=1
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to obtain 8", 8" and 7", h=1,...M; see

appendix A for the appropriate equations. (The
iterative procedure converges quickly in less
than 5 steps.) Then a posteriori we take

2 _m-1NM ph)

IBi - M Zh:]_lBi
and

~ 1 M (h)

7=M Zh:lri

with corresponding standard deviation given by

{(M —1)‘12_] (8" - A )2}

and
{(m DI )2} |

1

Analysis of the Military Data

In this section, the methodology is
applied to the Natick Food Experiment. The
Meal, Ready-To-Eat (MRE) has twelve meals
(menus), each consisting of four to six food
items. The system contains 39 distinct foods.
Some of these items occur in more than one
meal and are regarded as different items in
different meals, so the total number of items
studied is 52. These items can be classified into
five principal types: entrees, pastries, vegetables,
fruits and miscellaneous. Chen, Nandram and
Ross (1996) analyzed these data to predict shelf
lives of the entrees, and they classified the
entrees according to whether their shelf lives are
short, medium or long.

Medls were purchased through the
military supply procedures of the armed-forces
procurement system, and the taste testing was
carried out at the Natick Laboratories (NLABS).
On arrival at NLABS they were inspected for
completeness, immediately tested at room
temperature (21°C) and stored at four different
temperatures. Those stored at room temperature

were withdrawn and tested at 12, 24 36, 48, 60
months' storage.

The meals were opened by test
monitors, and each item served to a panel of 36
untrained subjects who judged its acceptability
on a 9-point hedonic rating scale. At a session,
each consumer evaluated all the items in one
meal which consists of four to six items
(including an entree) served one at a time in
random order with a mouth-rinsing between
items.

Each item in the entire meal, which
consists of the entree and the other items, was
rated on the 9-point hedonic scale by each
pandist (Only one storage temperature was
tested for that particular meal, and other
temperatures for the same meal were judged
mostly by other panelists.). The pandlists were
chosen from a pool of volunteers comprising
both military and civilian staff at NLABS. At
most, two meals were tested each day, onein the
morning session and one in the afternoon. Care
was taken so that no panelist was used twice in
the same day. Thus, it is not unreasonable to
entertain the assumption that the responses
across meals and storage temperatures are
uncorrelated.

The samples were coded alphabetically
when presented to the test-subjects. The items
were al served at room temperature as they
came from the package except for the
dehydrated items, which were re-hydrated with
water at 60°C before serving. The tests took
place in semi-isolated booths at NLABS under
standard fluorescent lighting conditions. At any
withdrawal period as many as 48 sessions
(twelve menus at four temperatures) were
required, which means that the tests went up to 5
weeks, and individual pandists were used about
ten times during that period. Thus, it is natural to
assume that the responses on each item in a meal
follow a multinomial distribution, with different
distributions for different entrees.

For each of the 23 combinations of time
and temperature, there were sensory ratings for
each of the 36 pandlists, and so the data for each
item consisted of 828 scores. The results were
studied for 12 entrees: pork sausage (1), ham-
chicken loaf (2), beef patty (3), barbecued beef
(4), beef stew (5), frankfurters (6), turkey (7),
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beef in gravy (8), chicken (9), meat balls (10),
ham slices (11) and beef in sauce (12).

Our contact at NLABS suggested, of
course with uncertainty, that among the best
entrees are 5, 9 and 11. In fact, Chen, Nandram
and Ross (1995) found that at room temperature
the shdlf lives of 5, 9 and 11 are very long (12, 8
and 14 vyears respectively) making these
estimates less useful.

In Table 1 the responses of the 36
pandists for each entree are presented for the
entrees withdrawn after 12 months' storage; the
last two columns contain the average (avg) and
standard deviation (std) of the 36 scores. Here,
chicken (entree 9) has the largest average and
the smallest standard deviation, and beef stew
(entree 5) seems to be a good competitor.

Further, a Bonferroni  multiple
comparison procedure was performed using the
ANOVA procedure of SAS on the raw data. Of
course, this procedure assumes that the 36 scores
are normally distributed. At 12 months' storage,
the procedure indicated no significant
differences between the means of the entrees,
suggesting that there is no best entree at 12
months storage. Thus, a procedure which is
more sensitive than classical multiple
comparison is needed.

Numerical Results

The data on the sensory evaluation of
the twelve entrees withdrawn after twelve
months storage was used. Selection and
estimation were studied in turn. The best subset
of entrees with t entrees, t = 1,..., 4 were
considered. First, a uniform prior on all subsets
of size t was considered. That is, Ay
=T b=1... T was taken. To make
comparisons a much larger prior probability i, =
.25 for a preassigned best subset and the
remaining probability split equally among the (T
- 1) subsets was also studied. To further assess
difference between the criteria based on the
mean response ordering (MRO) and the
modified stochastic ordering (MSO) the
observed data was perturbed by replacing each
of the last two cell counts by the average of the
observed cell counts for the last two cells for
each entree.

In Table 2, the posterior probability /ib

and the Bayes factor Bf associated with the
presumed best subsets which are {9} {5, 9} { 5,
9,11} ,{5,7,9, 11} by criterion, data and prior
weight /y, is presented. For the observed data
when uniform prior weight is used, except for
the best entree which is {9} when the MRO is
used and {11} when the MSO is used, the
determined subsets of size 2, 3 and 4 are the
same, being exactly the presumed best subsets.

The best subsets with prior 4, = .25 are
the same as the presumed best subsets. The
posterior probabilities increase as the number of
subsets increase for both MRO and MSO, but
much more rapidly for the MRO. For the
perturbed data, there are substantial differences
between the MRO and the MSO with the
uniform prior. The posterior probability
decreases with the number of subsets for the
MRO and less rapidly for the MSO. But in both
cases the Bayes factor increases rapidly with the
number of subsets, more rapidly for the MRO.

Note that the best subsets of sizes 1, 2,
3, 4withthe MRO are{5}, {5, 9} {5, 9, 11}, {1,
5, 9, 11} respectively as compared with {11},
{9, 11} {5, 9, 10}, {5, 7, 9, 10}. The best
subsets with the perturbed data and A= .25 are
the same as those for the observed data for both
the MRO and the MSO. Thus, the two criteria
can lead to different judged best subsets.
However, if the prior probability on the best
subset is substantial, the two criteria provide the
same best subsets, the evidence with the MRO is
dlightly larger than with the MSO.

In Table 3, a sensitivity analysis to
investigate misspecifications with the presumed
best subsets is presented. A prior probability of
Ap= .25 is assigned to the possibly worst subsets
{2}, {2, 4}, {2, 4, 6} and {2, 4, 6, 12} with a
probability of .75 assigned equaly to the
remaining T — 1 subsets. Again, the observed
and the perturbed data are considered. With the
M SO the evidence for the presumed best subsets
is very weak, and in fact, the best judged subsets
are the ones expected. However, with the MSO
the best subsets are the same as assigned for
sizes 1, 2, 3 with very weak evidence, and for
size 4 the best subset is{5, 7, 9, 10} rather than
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{5, 7,9, 11} as specified by the MRO (Note that
the evidence is substantial.). Although the
judged best subsets for the perturbed data and
the observed data are the same, there are
substantial differences between the MRO and
the MSO for the perturbed data. The determined
subsets are different at every size and
interestingly the best subset of size 4 has
associated with it fairly large Bayes factors (82.5
versus 29.2). Thus, it is important to specify the
correct subset a priori especially if alarge prior
probability is placed on such a subset. Note that
the determined subsets are different for the four
scenarios.

Thus, the best subsets of any size are
likely to be different for the two criteria,
suggesting that it is risky to use the category
scales when selecting the best subsets.

Next, consider estimation of the mean
response /5 and the measure of variability 7 for
which the posterior mean and standard deviation
are obtained. Letting 6 dencte either 5 or 7, we

take AVGC = é(5 lj) and STDC =

{vaf'(6)n)}*"* under criterion based on C (MRO

or MSO). Then, consider the ratio Rayg = AVGneo
IAVGiyo and Rgg = STD o /STD o

In Table 4, results are presented for the
observed data by prior weight for the modified
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stochastic ordering (MSO) for subsets of size 4.
Columns 3 and 4, and 7 and 8, show there are
minor differences between posterior means for f;
and 7, respectively for A = T * and 1=.25. In
addition, columns 5 and 9 show minor
differences between the point estimates when
the MRO and M SO are used. However, columns
6 and 10 show substantial differences between
the MRO and MSO. Ryq under the MSO is at
least twice as large under the MRO for the f; and
at least one and a half times as large for the 7.
Note also that there are differences for Ry
between 4 = T * and /=.25 (e.g., compare the
values for entrees 7 and 10 in column 6). Thus,
for estimation when little difference is expected
between the posterior means with the MRO and
MSO, there are substantial differences between
the standard deviations.

In Table 5, ranges are considered for the
ratios Rayg and Ryq for subsets of sizes1-4 . =T"
! and 1=.25 and for the observed data sets and
the perturbed data sets for the g; and the 7. The
ranges for Ra,g are very similar for both f; and
for all scenarios (i.e., the posterior means are
very similar undr MRO and MSO). The
standard deviations are much larger under the
MSO for £, but not so large for the 7;, and there
isa dlight increase in the ranges of Ryg from T ™*
to A=.25. In addition, as expected, note that there
are virtually no differences in estimation for
various sizes of the subsets.

Table 1: Pandlists’ responses for the military sensory evaluation Response Categories

Entree 1 2 3 4 5 6 7 8 9 avg std
1 2 0 1 5 4 6 8 8 2 6.08 2.01
2 0O 4 1 7 4 8 6 5 1 5.50 1.93
3 2 1 3 7 3 8 8 4 0 5.33 1.94
4 0o 2 1 3 5 10 8 7 0 6.00 1.64
5 0O O 1 3 7 6 8 100 1 6.42 1.50
6 O 3 4 7 4 8 8 2 0 5.17 1.75
7 0 1 0O 5 4 10 10 5 1 6.14 1.50
8 1 3 2 3 4 12 7 4 0 5.50 1.86
9 0O O 1 5 0 9 14 6 1 6.44 1.40
10 O o0 2 5 4 7 11 7 0 6.14 1.51
11 2 1 2 1 1 5 17 6 1 6.25 1.98
12 2 2 5 3 0 13 6 3 2 5.42 2.16

Note: Meals were withdrawn after twelve months’ storage.
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Table 2: Posterior probability, Bayes factor and the judged best subset (b) of entrees with a prior probability on the
presumed best subset by data, criterion and prior weight

Observed Data Perturbed Data

MRO MSO MRO MSO

A, B t, i, B t, A, B t, i, B t,

@4 =T"
.36 51 9 21 2.9 11 .32 5.2 5 21 2.9 11
72 22.7 59 34 4.7 59 .20 16.6 59 .10 7.5 9 11
.85 50.2 509 11 .59 12.8 509 11 13 31.3 509 11 .06 14.7 59, 10
.88 64.4 57,911 .69 20.1 57,911 A1 62.0 1,509 11 .04 22.0 57,9 10
() 4, =.25
.63 51 9 .38 1.9 9 .59 4.3 9 41 2.1 9
.88 22.7 59 .61 4.7 59 .85 16.6 59 .62 49 59
94 50.2 509 11 81 12.8 509 11 91 31.3 509, 11 .80 11.7 509 11

.96 64.4 570911 87 201 570911 94 449 570911 88 217 570911

NOTE: The presumed best subsets are {9}, {5, 9}, {5, 9,11}, {5, 7, 9, 11}; a probahility ﬂb is assigned to each of these subsets

and (1-A,)(T -1 is assigned to each of the remaining (T —1) subsets; mean response ordering (MRO), modified
stochastic ordering (MSO)
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Table 3: Posterior probability, Bayes factor for the judged best subset (b) of entrees under
misspecification of the presumed best subset by data, criterion and prior weight

Observed Data Perturbed Data

Preassigned Determined Preassigned Determined

/:i’b Bf /:i’b Bf tb /:i’b Bf /:i’b Bf tb

(a) Mean Response Ordering (MRO)

24 03 25 6.9 9 10 03 .30 5.8 5
.02 00 25 43.8 59 01 00 .20 218 59
.00 00 .19 100.2 5911 .00 00 .13 416 5911

.00 00 .12 128.7 570911 .00 00 .11 825 1,591

(b) Modified Stochastic Ordering (MSO)

39 06 .39 0.6 4 20 07 .20 0.7 4

25 03 25 0.3 2,4 16 06 .16 0.6 2,4
37 06 .37 0.6 2,4,6 19 07 .19 0.7 2,4,6
.05 01 .07 69.2 57,910 01 00 .04 292 57,910

NOTE: The presumed worst subsets are {2}, {2, 4}, {2, 4, 6}, {2, 4, 6, 12}; a probability ﬂb =.25 isassigned to
each of these subsetsand (1— A, )(T —1) ™ isassigned to each of the remaining (T —1) subsets.
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Table 4: Posterior mean and standard deviation of u and T under M SO, and ratios of
posterior means and standard deviations for all entrees based on the judged best four
entrees using the observed data by prior weight

u

1

/8 Entree AVG STD Ravg Ry AVG STD Ravg Ry

T! 1 6.52 0.77 1.09 2.38 247 0.41 1.20 1.90
2 5.76 0.64 1.06 2.05 1.83 0.35 0.93 2.07
3 4.71 0.69 0.89 221 1.83 0.38 0.93 2.16
4 5.82 0.68 0.99 2.46 1.49 0.31 0.86 1.60
5 6.95 0.60 111 2.28 1.68 0.33 101 1.86
6 491 0.65 0.95 2.27 1.48 0.30 0.82 2.04
7 6.49 0.60 1.08 2.28 1.69 0.31 1.03 164
8 4.94 0.68 0.91 2.25 174 0.35 0.91 1.86
9 6.91 0.60 1.10 2.39 1.65 0.32 1.04 1.65
10 6.11 0.67 1.02 2.56 1.42 0.29 0.85 176
11 6.25 0.78 1.02 242 2.33 0.40 115 1.59
12 5.37 0.76 1.00 2.22 251 0.41 116 221
.25 1 6.28 0.71 108 2.80 247 0.41 118 1.99
2 5.69 0.64 105 218 1.83 0.35 0.93 2.07
3 4.67 0.67 088 218 1.82 0.38 0.93 213
4 5.65 0.65 098 285 151 0.32 0.85 173
5 7.11 0.58 112 269 1.66 0.32 101 191
6 4.89 0.65 095 229 1.48 0.31 0.82 2.08
7 6.73 0.56 1.09 3.00 1.68 0.31 1.06 1.80
8 4.85 0.66 089 228 174 0.36 0.91 193
9 7.02 0.57 111 273 1.65 0.31 1.05 174
10 5.90 0.64 101 3.09 143 0.31 0.84 1.82
11 6.44 0.75 103 337 2.28 0.38 118 178
12 5.28 0.74 099 225 251 0.41 116 2.22
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Table 5: Ranges of ratios of posterior means and standard deviations of p and T based on the judged

best subset of sizes 1—- 4 by data and prior weight

u T
(a) Observed data
T! 0.89-1.12 2.02-2.56 0.82-1.21 1.54-2.21
.25 0.88-1.13 2.05-3.37 0.82-1.21 1.61-2.22
(b) Perturbed data
T! 0.92-1.13 1.78-2.23 0.83-1.21 1.68-2.26
.25 0.91-1.13 1.75-3.17 0.83-1.26 1.70-2.26

Conclusion

The method for how to obtain the best subset of
a sat of multinomial populations and how to
estimate the parameters of any of the selected
population has been shown. In addition, it has
been shown that the judged best subset can be
different under the modified stochastic ordering
and the mean response ordering. The
methodology applies generaly to many sensory
data problems when a nonparametric approach
might be desirable and when there are small cell
counts. For an aternative nonparametric
Bayesian approach to estimate several similar
multinomial populations see Quintana (1998).
He used a Dirichlet process prior to obtain a
more robust specification of exchangeability.
The method to obtain the best subset of entrees
that was outlined in this article is much simpler.
Specifically, five tasks were
accomplished. First, a more formal framework
for sdection than Morris and Christiansen
(1996) and Goldstein and Spiegelhalter (1996)
has been obtained. The main feature of the
estimation method is that it weighs the different
subsets according to which one is believed to be
best. As thereis a joint posterior distribution of
the best population and its parameters,
estimation proceeds in a simple manner. Second,
most non-Bayesian procedures in ranking and
selection, use the normality assumption. A

normal approximation was not used in this
analysis, instead work was done directly with
the multinomial assumption. Third, work was
done with all the categories in the multinomial
table (i.e., collapsing to remove sparseness has
not been done). Fourth, this method is sampling
based, facilitating a complete probabilistic
analysis of the best subset of multinomial
populations. Fifth, the method for how to
estimate the average response score and standard
deviation for each food without actually using
the numeric scores has been shown.

With respect to the application
discussed, future work will address more
complicated issues associated with different
storage temperatures, and the other items
including the entrees in each meal. It will be
useful to obtain the best subset at al
temperatures for all rated items in each food.
More generally, a humber of items is usualy
rated in accordance with a number of different
characteristics. Then, one might wish to find the
best subset of items when all the characteristics
are taken simultaneously.
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Appendix A

For the iterative nonlinear least squares, one
would take

Ay =In{y; 1A=y} =0, - B) 7,
where
0,<0,<...<0, ,%;

J
=>p,i=L2..,1,j=12.,3-1
p=1
Let

6=(J —1)—1§9j, A=(J —1)-1§A”,
@ :{i(ej _;Bi)/AiJ} {(ej _;Bi)/Aij},
i=12...,1,j=12..J-1

Then, the normal equations, obtained by
minimizing
I J1

ZZ{AU’ _(ej _IBi)/Ti}z

i=1 j=1

over 8, B, and 7, , are
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6, {'erzj_ iq‘z(inj +B8)j=12..,3-1

) (A.D)
B =6 -1A, i=12...,1,
(A.2)
J-1
T = Zwij (91' _;Bi)A_ijl-
j=1
(A.3)
Letting

) [ (B +1r2n)
b . 1-p;+1/2n.)

with

and starting values are obtained by taking
J
n.=>n fori=1,2,...,1,j=1,2,.., 31,
j=1

IHi:ZJ:jf)ij’ Ti:{j ﬁij(j_ﬂi)z} .

j=1

| -1
0; :[ Ti_zj Zz-i_z(fiAij +1).
i=1 j=1
Starting with a random sample

p®, p® ,p ™M taking

(h _ (h) (h) i
AP =In{y;" IQ-y;")} and solving the
normal equations (A.1), (A.2), (A.3), samples
6", g, and 7", h=1,2,..., M are obtained
from their empirical posterior distributions.
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