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Comparison Of Statistical Tests In Logistic Regression: 
The Case Of Hypernatreamia 

 
Stylianos Katsaragakis             Christos Koukouvinos   Stella Stylianou   Eleni-Maria Theodoraki 
   University of Athens                            National Technical University of Athens 
 
 
The logistic regression has become an integral component of any medical data analysis concerning binary 
responses. The main issue rising after the adaptation of the final model is its goodness-of-fit. The fit of 
the model is assessed via the overall measures and summary statistics and comparing them in the case of 
hypernateamia. 
 
Key words: Logistic regression, goodness-of-fit, covariates 
 
 

Introduction 
 
The use of overall summary measures of 
goodness-of-fit has become an important and 
easily performed step in building logistic 
regression models. Pearson chi-square sum-of-
squares statistics and the Score test are 
recommended due to their superior power in the 
simulations, but one must keep in mind that in 
small sample cases there is lack of detecting 
subtle deviations from the model (Hosmer, 
1997). When it comes to sparse data, a non-
significant result of a goodness-of-fit test does 
not tell that the model is correct, it just tells that 
the lack-of-fit is not large enough for the model 
to be rejected (Kuss, 2002).  

In general, there are two different 
approaches to assessing goodness-of-fit in 
logistic regression models (e.g., Cook, 1979; 
Pregibon, 1981). The first one, residual analysis, 
investigates the model on the level of 
individuals and looks for those observations 
which  are   not   adequately   described   by   the 

 
 
Stylianos Katsaragakis is an Associate Professor 
in the First Propedeutic Clinic of Surgery, 
Ippokratio Hospital, Athens, Greece. Christos 
Koukouvinos is a Professor in the Department of 
Mathematics, Zografou 15773, Athens, Greece. 
Email: ckoukouv@math.ntua.gr. Dr. Stella 
Stylianou is at the Department of Mathematics, 
Zografou 15773, Athens, Greece. Eleni-Maria 
Theodoraki is a postgraduate student in 
Biostatistics.  

model or which are highly influential on the 
model fit. The second approach seeks to 
combine the information on the amount of lack-
of-fit in a single number. Statistical tests, so-
called goodness-of-fit tests, are then calculated 
to judge if this lack-of-fit is significant or due to 
random chance and can be distinguished to 
specific and global. Global tests do not evaluate 
specific alternatives, rather test unspecific 
hypotheses of the form ‘the model fits’ versus 
the alternative ‘the model does not fit’. 

The goal is to investigate the choice of 
statistic test for assessing the coefficients of 
parameters as well as the goodness of fit by 
examining the medical disorder called 
hypernatreamia. For this purpose, three well 
known statistic tests will be used: the Likelihood 
Ratio statistic (LR), the Wald test (W) and the 
Score test (Scr) (Hosmer, 1989), although some 
authors warn that for large coefficients, standard 
error is inflated, lowering the Wald statistic (chi-
square) value (Hosmer, 1989) and the 
likelihood-ratio test is more reliable for small 
sample sizes than the Wald test (Argesti, 1996). 
Methods for checking goodness-of-fit, are less 
developed, which may be due to the relative 
youth and enhanced mathematical complexity of 
the logistic regression model compared to, for 
example, the linear regression model (e.g., 
Bendel, 1977; Cook, 1977). 

The study includes 314 patients treated 
at the Surgery Intensive Care Unit of a central 
hospital in Athens during 1996 - 2003. All data 
have been extracted from the Central Data Base 
of the Unit in which are recorded all 
demographic information (ID, age, sex, disease, 
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APACHE II score), daily biochemical indication 
and medical treatment and mortality. These 
patients have been chosen, excluding some from 
the 364 recorded, due to their staying in the ICU 
less than 3 days, which is thought to be a 
cutpoint for the ones who enter only for after 
surgery treatment. In addition, the patients under 
examination have not been transported to other 
hospital in order to be aware of the final 
condition of their health. 

To compare the groups of patients 
having expressed the disorder hypernatreamia, 
with a control group, there were 35 patients from 
the first one with at least one indication of the 
electrolyte Na >147mmol/l   during their staying 
in the ICU and 279 from the second group. With 
the aim of studying their behaviour, possible risk 
factors, sepsis criteria, Apache II score, medical 
treatment and mortality were examined. 

In this article, the case of  
hypernatreamia with a multiple logistic 
regression model is considered. 
 
The Logistic Regression Model 
 Logistic regression is part of generalized 
linear models (McCullagh, 1983), which allows 
one to predict a discrete outcome, from a set of 
variables that may be continuous, discrete, 
dichotomous, or a mix of any of these. 
Dichotomous (binary) outcome is the most 
common situation in biology and epidemiology, 
standing for the presence or absence of a 
disease, success or failure etc. Although 
discriminant analysis may also predict group 
membership (e.g., Costanza, 1979; Efron, 1975), 
it can be used only with two groups, so in the 
cases of categorical, or a mix of continuous and 
categorical covariates, logistic regression is 
preferred (e.g., Cook, 1979; Fleiss, 1979; 
Furnival, 1974; Mickey, 1989). 

What seems to distinguish logistic 
regression to linear is conditional 
mean ( )xYE / , the mean value of the outcome 

variable, given the value of the independent 
variable. In linear regression, it is assumed that 
this mean may be expressed as an equation 
linear in x, which implies that ( )xYE /  may 

take any value as x ranges between -∞ and +∞, 
but with dichotomous data conditional mean 
must be greater than or equal to zero and less 
than or greater to one. The second important 

difference concerns the conditional distribution 
of the outcome variable. In the linear regression 
model, it is assumed that an observation of the 
outcome variable may be expressed as 

( ) ε+= xYEy / , where the error ε follows a 

normal distribution [ε ~N( 2,σµ )], whereas in 
logistic ε follows the binomial one. 

Logistic regression makes no 
assumption about the distribution of the 
independent or predictor variables, that is they 
do not have to be normally distributed (Lawless, 
1978), linearly related or of equal variance 
within each group so the relationship between 
the predictor and response variables is not a 
linear function. 
 
 Let ( )xf = ( )xYP
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denotes a collection of  p  covariates. Then the 
logistic regression function, in form of the logit 
transformation  
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During model creation, variables can be 

entered into the model in the order specified by 
the researcher or logistic regression can test the 
fit of the model after each coefficient is added or 
deleted, called stepwise regression. Stepwise 
regression is used in the exploratory phase of 
research but it is not recommended for theory 
testing. Forward variable selection enters the 
variables in the block one at a time based on 
entry criteria and backward stepwise regression 
appears to be a preferred method of exploratory 
analysis, where the analysis begins with a full or 
saturated model and variables are eliminated 
from the model in an iterative process. 

Backward selection is sometimes less 
successful than forward or stepwise selection 
because the full model fit in the first step is the 
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model most likely to result in a complete or 
quasi-complete separation of response values. 
The fit of the model is tested after the 
elimination of each variable to ensure that the 
model still adequately fits the data. When no 
more variables can be eliminated from the 
model, the analysis has been completed. The 
process by which coefficients are tested for 
significance for inclusion or elimination from 
the model involves several different techniques 
(e.g., Bendel, 1977; Costanza, 1979). Some of 
these tests are described in the next section. 

 
Assessment of the Coefficients of the Model 
 A Wald test is used to test the statistical 
significance of each coefficient iβ  in the 

model. A Wald test calculates a z statistic, which 
is: 

( )i

i

SE
z

β
β

= . 

 
This z value is then squared, yielding a 

Wald statistic with a chi-square distribution with 
p+1 degrees of freedom, where p is the number 
of covariates.  The likelihood-ratio test uses 
the ratio of the maximized value of the 
likelihood function for the saturated model (L1) 
over the maximized value of the likelihood 
function for the current model (L0). The 
likelihood-ratio test statistic equals:  
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This log transformation of the likelihood 

functions yields a chi-squared statistic with p 
degrees of freedom equal to the number of 
covariates of the model. This appears to be the 
recommended test statistic to use, when building 
a model through backward stepwise elimination.  

The score statistic is a quadratic form 
based on the vector of partial derivatives of the 
log-likelihood function with respect to the 
parameters of interest, evaluated at the values 
postulated       by       the     null     hypothesis.  
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be the weighted likelihood function and  
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be the log likelihood function. Then, the (p + 1) 
x 1 score vector, S(β), is given by  
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Testing the Fit of the Model 
 For a particular covariate pattern, the 
Pearson residual is defined as follows:                                      
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The summary statistic based on these 

residuals is the Pearson chi-square statistic  
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and the deviance residual:                  
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 The distribution of the statistics X2 and 
D under the assumption that the fitted model is 
correct in all aspects is supposed to be chi-
square with degrees of freedom equal to J-p-1. 
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 The Hosmer-Lemeshow goodness-of-fit 
statistic is obtained by calculating the Pearson 
chi-square statistic from the 2×g table of 
observed and expected frequencies, where g is 
the number of groups. The statistic is written as: 

 

( )
( )

2

2

1 1

g
i i i

HL
i i i i

O N

N=

− π
χ =

π − π∑  

 
where Ni is the total frequency of subjects in the 
ith group, Oi  is the total frequency of event 
outcomes in the ith group, and 

i
π  is the average 

estimated probability of an event outcome for 
the ith group. The Hosmer-Lemeshow statistic is 
then compared to a chi-square distribution with 
(g-n) degrees of freedom, where the value of n 
can be specified in the lackfit option in the 
model statement. The default is n=2. Large 

values of 
2

HL
X  (and small p-values) indicate a 

lack of fit of the model. 
 
Comparison of the Coefficients-Results 
 The data set used to compare the 
statistical tests contains 24 covariates for each of 
the two groups of patients under examination 
(hypernatreamic-control patients). At a brief 
description it is observed that both groups have 
statistically comparable ages (t290, 0.025=-0.753, 

p=0.452), the sepsis score ( ( )05.02
4X =6.979, 

p=0.137) as well as the Acute Physiology And 
Chronic Health Evaluation, 

( ( ) WailesKruskallX 05.02
1  = 1.174, p = 0.279), 

which both estimate the condition of health of 
each patient at his entrance in the ICU, does not 
seem to differentiate between two groups. 
 It is of interest now to explore the 
relationship between the covariates and the 
presence or absence of hypernatreamia. Using a 
univariate model containing the intercept and 
every time the variable of interest, it seems to 
exist strong relationships with the binary 
outcome indicating that patients with high 
values of Na differentiate from the control 
group. But can this univariate result be used to 
confirm, for example, that hypernateamia is 
associated with mortality - taking under 
consideration all possible risk factors? That is 
one of the questions generated and concerns a 

set of covariates that can be partly answered 
with a multivariable logistic regression analysis. 
 For this purpose, variables are included 
in the model that has been shown to be 
associated with hypernatreamia. Covariates of 
interest included age, gender, evaluation of the 
stage of the patients condition (APACHE, sepsis 
score), resuscitation fluids and antibiotics 
containing Na. The multivariate logistic 
regression model also included the interactions 
of plasma (FFP) with the antibiotics containing 
furosemide, teicoplanin and humanxlasix to 
examine if their combination is mischievous, 
that is they lead to hypernatreamia. 
 The analysis was conducted with the 
SAS program and the method used for the 
binary model was the full one. 31 observations 
were deleted due to missing values for the 
explanatory variables so the number of 
observations that finally contributed to the 
analysis was 283 (30 patients who expressed the 
disorder and 253 control patients). The 
importance of a variable is defined in terms of a 
measure of the statistical significance of the 
coefficient of the model (p<0.05), which denotes 
the fixed decision rule for the inclusion of 
variables at the procedure used. However there 
seems to be an indication of the influential role 
for some covariates (p<0.10) that needs to be 
taken under consideration and are therefore 
illustrated.  
 The results for the logistic regression 
model to be assessed are presented in table 1. 
Initially the model contained all the possible 
interaction factors, which have already been 
discussed, with no statistically significant 
results; therefore only the main effects were 
used. With the exception of the design variable 
sepsis, there is clear evidence that each of the 
variables has some association with the 
outcome. This observation is based on an 
inspection of the 95% Wald confidence interval 
estimates which, either do not contain 1 or just 
barely do. At this point, a decision concerning 
the variable age had to be made, as it is known 
to be a biologically important variable, yet is not 
statistically significant in this model. For this 
reason the covariate’s estimate and the Wald 
test’s value at the Analysis of Maximum 
Likelihood Estimates table were included. In 
search of a confounding effect, it was found that  
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Table 1: Analysis of Maximum Likelihood Estimates 
P aram eter D F E stim ate Standard  E rro r W ald  C hi-Sq uare P r> C hiSq 
Intercept 1  -5 2 .186  35 3.70 0 0 .022  0 .883  

A P A C H E  1  0 .121  0 .073  2 .748  0 .097  
daysofst 1  2 .356  0 .624  14 .245    0 .000  

age 1  0 .035  0 .037  0 .884  0 .347  
q furosem ide 1  -0 .145  0 .050  8 .462  0 .004  

qffp  1    -0 .590          0.25 3            5 .4 27     0 .0 20  
q im ipenem e 1     0 .8 44          0.29 2            8 .3 86     0 .004  
q teicop lanin  1  1 .024  0 .527  3 .776  0 .052  

qso d . h lo pideam p 15%  1  -0 .389  0 .109  12 .877 0 .000  
sex  (0 ) 1  1 .177  0 .597  3 .887  0 .049  

death  (0 ) 1  -3 .782  1 .068  12 .549 0 .000  
sepsis (0 ) 1  15 .483 8 .240  3 .531  0 .060  
sepsis (1 ) 1  14 .758 8 .298  3 .163  0 .075  
sepsis (2 ) 1  12 .958 7 .949  2 .658  0 .103  
sepsis (3 ) 1  15 .469 8 .276  3 .494  0 .062  

ffp  (0) 1    -1 .099          0.63 0            3 .0 43     0 .081  
im ipenem e (0) 1  -3 .514  1 .646  4 .559  0 .033  
teicop lanin (0) 1  -1 6 .705  6 .381  6 .854  0 .000  

  
 
 

 
 

Table 2: Odds Ratio Estimates 
Effect Point Estimate 95% Wald Confidence Limits 

APACHE 0.886 0.767            1.022 
daysofst 0.095 0.028            0.322 

age 1.035 0.963            1.114 
qfurosemide 1.156 1.049            1.275 

qffp 1.804          1.098            2.963 
qimipeneme 0.430          0.243            0.761 

qsod. Chlopideamp 15% 0.359 0.128            1.009 
sex (0 vs 1) 0.095 0.009            0.986 

death (0 vs 1) >999.999 29.340           >999.999 
sepsis (0 vs 4) <0.001 <0.001           290.589 
sepsis (1 vs 4) <0.001 <0.001           689.112 
sepsis (2 vs 4) <0.001  <0.001            >999.999 
sepsis (3 vs 4) <0.001 <0.001            337.138 

ffp (0 vs 1) 9.006   0.762             106.412 
imipeneme (0 vs 1) <0.001       <0.001             0.562 
teicoplanin (0 vs 1) <0.001 <0.001            <0.001  
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the absence of age indeed acts as a confounder 
changing remarkably the significance status of 
the model. Assessing the reduced model for that 
case, the LR and Score Tests  
 

(
)()(

2
26 )05.0(

agefLRX
−

=126.486, 

 

)()(
2
26 )05.0(

agefScrX
−

=123.824, p<0.0001) 

 
agrees with the saturated one  
 

(
fLRX )(

2
27 )05.0( =141.465,

fScrX )(
2
27 )05.0( =12 

 
0.634, p<0.0001) and there is a small change  
 

( )(
2
277 )05.0( PearsonX =217.715 (p=0.997), 

 

))(05.0(2
8 HLX =3.322, (p=0.913) 

 
in the Pearson and Hosmer-Lemeshow 
goodness-of-fit tests  
 

( )(
2
255 )05.0( PearsonX =128.107 (p=1.000), 

 

))(05.0(2
8 HLX =2.333, p=0.969) 

 
reflecting the reduction of effectiveness in 
describing the outcome due to the absence of 
age.     
 Examining the results, it was also 
observed that the estimated coefficients for a set 
of variables in the model changed significantly 
when gender was deleted. Hence, there is clear 
evidence of a confounding effect due to gender 
describing that it is associated with both the 
outcome variable of interest, hypernatreamia, 
and the risk factors. Comparing the LR and 
Score tests of that model with the full one, it was 
found that although the LR and Score tests don’t 
seem to denote that the absence of the variable 
produces an alteration in the model  
 

(
)()(

2
26 )05.0(

genderfLRX
−

=136.777, 

 
 
 
 

genderScrX )(
2
26 )05.0( =120.05,  

 

p<0.0001,
fLRX )(

2
27 )05.0( =141.465, 

 

fScrX )(
2
27 )05.0( =120.634,p<0.0001), 

 
the goodness-of-fit statistics seem to ascertain a 
small one  

 

(
)()(

2
256 )05.0(

genderfPearsonX
−

=194.389 

 

(p=0.998),
)()(

2
8 )05.0(

genderfHLX
−

=2.127 

 

(p=0.977), 
fPearsonX )(

2
255 )05.0( =128.107 

 

(p=1.000),
fHLX )(

2
8 )05.0( =2.334 =0.969). 

 
 The confounding status of sepsis score 
has also been examined, confirming that it is 
interactively associated with both the disorder 
and the covariates. The results of the comparison 
are very interesting since the absence of the 
polytomous covariate sepsis score produces 
remarkable changes to the model fit. In specific, 
although the saturated model seems to fit well, 
the null hypothesis for the reduced model is 
rejected  
 

(
)()(

2
259 )05.0(

sepsisfPearsonX
−

=591.935 

 

(p<0.001), fLHX )(2
8 − =20.167 (p=0.0097)). 

 
 Considering that the overall goal is to 
obtain the best fitting model while minimizing 
the number of parameters, the next step is to fit a 
reduced model containing only those variables 
thought to be significant, and compare it to the 
full model containing all the variables. The 
results fitting a model with intercepts only and 
for fitting a model with intercepts and 
explanatory variables,  show that  the overall 
statistic  tests  reject  the  global  null  hypothesis  
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BETA=0 in the case of both the reduced and the 
full model.  
 

(
rLRX )(

2
7 )05.0( =65.395,

rScrX )(
2
7 )05.0( =94.37 

 

7,p<0.0001)
fLRX )(

2
27 )05.0( =141.465, 

 

fScrX )(
2
27 )05.0( =120.634, p<0.0001). 

 
However examining the Pearson and Hosmer-
Lemeshow statistics  
 

( )(
2
8 )05.0( HLX =17.756 (p=0.023), 

 

)(
2
278 )05.0( PearsonX =1316.375 (p<0.0001) 

 
a remarkable change demonstrating a better fit 
of the full model is observed 
 

( )(
2
8 )05.0( HLX =128.107 p=1.000, 

 

)(
2
278 )05.0( PearsonX =2.333, p=0.969)). 

 
During model assessment, it was observed that 
deviance does not seem to alter  
 

( =
fDevianceX )(

2
255 )05.0( 49.891 

 

(p=1.000), =
− )()(

2
277 )05.0(

agefDevianceX 78.103(p 

 

=1.000), =
− )()(

2
256 )05.0(

genderfDevianceX 54.58 

 
(p=1.000)), 

 
placing all models containing confounders or 
other reduced models in the same goodness-of-
fit status with the full model. That happens even 
in the last case of the confounding of sepsis 
score when Pearson and Hosmer-Lemeshow 
tests agree in rejecting the goodness-of-fit but 
deviance fails to identify such alteration  
 
 
 

 

( =
− )()(

2
255 )05.0(

sepsisfDevianceX 88.531, p=1.000). 

 
 The estimated coefficients and odds 
ratio show that women are 10.6 times more 
likely to express the disorder (p<0.05) than men,  
mortality increases to hypernatriemic patients 
(p<0.01) and the ones with sepsis score 4 are 
much less likely to get hypernatreamic 
compared to any of the other 3 sepsis levels (0, 
1, 2, 3). In the case of the design variables of 
sepsis, although between levels 2 and 4 there 
seems to be a marginal relationship at the 10% 
level (p=0.103), the variable was included 
because the W statistics for all relative 
coefficients exceed 2 (Hosmer & Lemeshow, 
1989). 
 There is great interest to the influential 
part that the antibiotics and resuscitation fluids 
containing Na, play during patients treatment in 
ICU. Especially, patients that were treated 
intravenously with furosemide increased the risk 
of getting hypernatriemic 15% every time they 
accepted 20mg as long as getting FFP they 
increased the risk 9 times from those who didn’t 
(an increase of 1 point led to a 80% increase of 
risk). 

 
Conclusion 

 
During or after model creation, there seems to be 
efficiency and applicability of the proposed 
Wald Test, Likelihood Ratio Test, and Score 
test, because they agree in refining the 
significance of the coefficients. Our comparison 
of the proposed goodness-of-fit statistics 
Pearson chi-square and Hosmer-Lemeshow, 
showed small deviations between them at the 
omission of important confounders, but both are 
much more powerful from deviance in detecting 
the fit of the model. That leads to an important 
association between the behaviour of the logistic 
regression model through the application of 
different assessment statistics, in representing 
best the biological mechanism, hence correctly 
logistic regression is a significant tool in any 
medical data analysis of an ordinal response 
model with both categorical and continuous 
covariates. 
 

 



KATSARAGAKIS, KOUKOUVINOS, STYLIANOU, & THEODORAKI 521 

References 

Argesti, A. (1996). An introduction to 
categorical data analysis. Wiley. 

Bendel, R. B., & Afifi, A. (1977). 
Comparison of stopping rules in forward 
regression. Journal of the American Statistical 
Association, 72, 46-53. 

Cook, R. D. (1977). Detection of 
influential observations in linear regression. 
Technometrics, 19, 15-18. 

Cook, R. D. (1979). Influential 
observations in linear regression. Journal of the 
American Statistical Association, 74, 169-174. 

Costanza, M. C., & Afifi, A. (1979). 
Comparison of stopping rules in forward 
stepwise discriminant analysis. Journal of the 
American Statistical Association, 74, 777-785. 

Efron, B. (1975). The efficiency of 
logistic regression compared to normal 
discriminant function analysis. Journal of the 
American Statistical Association, 70, 892-898. 

Fleiss, J. (1979). Confidence intervals 
for the odds ratio in case control studies: State of 
the art. Journal of Chronic Diseases, 32, 69-77. 

Furnival, G. M., & Wilson, R. W. 
(1974). Regression by leaps and bounds. 
Technometrics, 16,  499-511. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hauck, W. W. (1985). A comparison of 
the logistic risk function and the proportional 
hazards model in prospective epidemiologic 
studies. Journal of Chronic Diseases, 38, 125-
126. 

Hosmer, D. W., Hosmer, T.,   Cessie , S. 
Le, & Lemeshow, S. (1997). A comparison of 
goodness-of-fit tests for logistic regression 
model. Statistics in Medicine, 16, 965-980. 

Hosmer, D. W., & Lemeshow, S. 
(1989). Applied logistic regression, Wiley. 

Kuss, O. (2002). Global goodness-of-fit 
tests in logistic regression with sparse data. 
Statistics in Medicine, 21, 3789-3801. 

Lawless, J. F., & Singhal, K. (1978). 
Efficient screening of non-normal regression 
models. Biometrics, 34, 318-327. 

McCullagh, P., & Nelder, J. A. (1983). 
Generalized linear models. Chapman Hall: 
London. 

Mickey, J., & Greenland, S. (1989). A 
study of the impact of confounder - selection 
criteria on effect estimation. American Journal 
of Epidemiology, 129, 125-137. 
  Pregibon, D. (1981). Logistic regression 
diagnostics. Annals of Statistics, 9, 705-724. 

Pulkstenis, E., & Robinson, T. J. (2002). 
Two goodness of fit tests for logistic regression 
models with continuous variables. Statistics in 
Medicine, 21, 79-83.  
 


	Journal of Modern Applied Statistical Methods
	11-1-2005

	Comparison Of Statistical Tests In Logistic Regression: The Case Of Hypernatreamia
	Stylianos Katsaragakis
	Christos Koukouvinos
	Stella Stylianou
	Eleni-Maria Theodoraki
	Eleni-Maria Theodoraki
	Recommended Citation


	Microsoft Word - Keselman.doc

